

International Journal of Sensor Networks

ISSN online: 1748-1287 - ISSN print: 1748-1279
https://www.inderscience.com/ijsnet

A Snort-based secure edge router for smart home

N.D. Patel, B.M. Mehtre, Rajeev Wankar

DOI: 10.1504/IJSNET.2022.10051521

Article History:
Received: 27 June 2022
Accepted: 17 September 2022
Published online: 24 January 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsnet
https://dx.doi.org/10.1504/IJSNET.2022.10051521
http://www.tcpdf.org

42 Int. J. Sensor Networks, Vol. 41, No. 1, 2023

A Snort-based secure edge router for smart home

N.D. Patel*
Centre of Excellence in Cyber Security,
Institute for Development and Research in Banking Technology (IDRBT),
Hyderabad, India
and
School of Computer and Information Sciences (SCIS),
University of Hyderabad (UoH),
Hyderabad, India
Email: ndpatel@uohyd.ac.in
*Corresponding author

B.M. Mehtre
Centre of Excellence in Cyber Security,
Institute for Development and Research in Banking Technology (IDRBT),
Hyderabad, India
Email: bmmehtre@idrbt.ac.in

Rajeev Wankar
School of Computer and Information Sciences (SCIS),
University of Hyderabad (UoH),
Hyderabad, India
Email: wankarcs@uohyd.ac.in

Abstract: Cybercrimes are rising rapidly with the increasing use of the internet of things
(IoT)-based gadgets at home. For instance, the Mirai-BotNet infected and compromised many
IoT-based devices and routers, creating a zombie network of robots that can be controlled
remotely. There is a need for a cost-effective, secure router for a smart home. This paper
investigates and proposes a Snort-based secure edge router for smart home (SERfSH),
which is resilient to many cyberattacks. SERfSH automatically generates Snort content rules
by combining the extracted string, location information, header information, and sequential
pattern. The experimental setup of SERfSH consists of a Raspberry Pi 4 model, an ESP32
microcontroller, six IoT devices, and a malicious actor machine. The proposed SERfSH is tested
for 15 attacks, and the results show that 14 attacks were detected and 12 attacks were mitigated.

Keywords: intrusion detection system; IDS; Snort; IoT attacks; intrusion prevention system;
IPS; cyber security.

Reference to this paper should be made as follows: Patel, N.D., Mehtre, B.M. and Wankar, R.
(2023) ‘A Snort-based secure edge router for smart home’, Int. J. Sensor Networks, Vol. 41,
No. 1, pp.42–59.

Biographical notes: N.D. Patel received his BTech in Computer Science from the
Dr. A.P.J. Abdul Kalam Technical University, in 2012 and MTech in Computer Science from the
School of Computer and Information Sciences (SCIS), University of Hyderabad (UoH), India, in
2015. He is currently pursuing his PhD in Computer Science from the Centre of Excellence in
Cyber Security (CoECS) at the Institute for Development and Research in Banking Technology
(IDRBT) and the University of Hyderabad (UoH), India. His research interest includes the area
of computer and network security, cyber security and digital forensics.

B.M. Mehtre is Professor and the Head of the Centre of Excellence in Cyber Security (CoECS)
at Institute for Development and Research in Banking Technology (IDRBT), India. His areas of
interest include cyber security, digital forensics and technologies for cyber defense. He received
his BE in Electronics and Communication from the Gulbarga University, in 1983, an MTech
in Automation and Control, and PhD in Engineering from the Indian Institute of Technology,
Kharagpur, in 1985 and 1991, respectively. His seminal work on fingerprint identification led
to developing of the first automated fingerprint identification system in India, which was later
deployed in many state police departments in India and some countries outside India.

Copyright © 2023 Inderscience Enterprises Ltd.

A Snort-based secure edge router for smart home 43

Rajeev Wankar is working as a Professor in the School of Computer and Information Sciences
(SCIS) at the University of Hyderabad (UoH). He earned his PhD in Computer Science
from the School of Computer Sciences, Devi Ahilya University Indore. In 1998, the German
Academic Exchange Service (DAAD) awarded him the ‘Sandwich Model’ Fellowship. His
research interests are in the areas of cloud computing and grid computing.

1 Introduction

Internet of things (IoT), as the definition presented by
Haller et al. (2008), is “A world where physical objects
are seamlessly integrated into the information network, and
where the physical objects can become active participants
in the business process.” IoT is influencing our lifestyle
because we are becoming more dependent on smart IoT
gadgets like air conditioners, smart TVs, intelligent cars,
smartwatches, smart cameras, and other innovative IoT
gadgets. IoT is an extensive network with smart connected
gadgets. These gadgets collect and share data with the
fog/cloud nodes; they use sensors and are embedded in
every physical gadget. These sensors continuously emit
the sensor data of the working state of methods. The
critical question is, how do we secure this communication
and massive data? The famous Mirai IoT BotNet attack
continued growing in 2020 while changing tactics and
techniques. Mirai IoT BotNet activity nearly doubled
between 2018 and 2019. Starting in 2016, it is a
wide-scale distributed denial-of-service (DDoS) attack. It is
a self-propagating BotNet virus that affects access to the
internet (Kolias et al., 2017).

Denial-of-service (DoS) attack (Zhang et al., 2015)
sends a large amount of information to a specific network
at once, reducing all allowed bandwidth or depleting the
resources of the attack target system to prevent service.
A bot is a program or executable code propagated using
vulnerabilities in the operating system or backdoors of
worms and viruses. It is being used for sending spam
e-mails and DDoS attacks (Mirkovic and Reiher, 2004)
through command delivery sites and backdoor connections.
DDoS attacks such as DDoS attacks are challenging to
detect in advance because they use legitimate hosts infected
with bots and zombies. The increase in malicious bots is
also a significant threat to Internet security. PCs infected
with malicious bots are being abused for DDoS attacks
targeting specific sites, so countermeasures are urgently
needed. In this paper, research and analysis on DoS attacks,
which are the main targets of recent attacks, are conducted
using DoS attack tools, performing attacks, and analysing
them through packets. It is meant to maintain safe network
resources from hackers’ DoS attacks by deriving a plan to
block attacks. It is meaningful in analysing cases of hacking
accidents occurring around us, trends in hacking methods
that are developing daily, intrusion detection techniques
using these illegal intrusions, intrusion detection methods
related to networks, and trends in the packets. An intrusion

detection system (IDS) is an active process or device that
analyses system and network activity to determine whether
unauthorised users log in or malicious activity occurs.
Many types of IDSs are necessary to detect all kinds of
malicious patterns that traditional firewalls cannot detect.
The IDS detects host-based attacks such as data-driven
attacks, privilege escalation, major file access by intruders,
and malicious software.

1.1 Contribution highlights of the paper

The contribution highlights of this paper are as follows:

• We contemplate the IoT network model, which is
conventionally established in smart homes.

• We have developed a low-cost testbed SERfSH:
secure edge router for smart home, which is a
Raspberry Pi 4 (single-board computer), packet sniffer
(wireless micro-controller), and six sensor-based
devices are appended to it.

• Propose a method for automatically generating Snort
rules by combining the extracted string, location
information, and header information.

• Investigate the introvert behaviour of SERfSH and
devices undergoing attacks and security and privacy
concerns.

• We trust that the proposed SERfSH checks all
incoming/outgoing traffic and controls access to our
smart home Wi-Fi network. It will significantly
increase resistance to IoT attacks.

• This setup is tested for 15 attacks, and the results
show that 14 attacks are detected and 12 attacks are
mitigated.

1.2 Outline of the paper

The rest of the paper is structured as follows: Section 2
discusses related work. Section 3 describes the proposed
approach for the detection and mitigation of attacks
with the automated Snort rule generation by the content
rule extraction algorithm. Section 4 shows the level-wise
IoT-attacks taxonomy. Section 5 shows the experimental
results of SERfSH. Finally, a conclusive discussion is given
in Section 6.

44 N.D. Patel et al.

2 Related work

Stiawan et al. (2019) investigated the Brute Force
Malware Attack patterns in IoT-based network
(FTP Server). They attempted to obtain escalating
privileges on an FTP Server. Danda and Hota (2016)
proposed a model to inspect security threats to IoT devices.
They ran Snort-based IDS on the bridge with syntax rules
for generating warnings/alerts for intrusion. Aljumah (2017)
introduced a DDoS investigation system using artificial
neural network (ANN). Jesús et al. (2019) implemented
the Snort as IDS/intrusion prevention system (IPS) on
Raspberry Pi 3 and successfully ran it. They tested the
performance of different tunneling techniques. Sarkar et al.
(2019) proposed a model for managing IoT Devices in a
smart structure to model services based on the server-less
computing paradigm. The main types of attacks that
threaten wireless LANs are data leakage by external
hackers, rogue APs, access vulnerabilities, and hotspot
hacking Noubir and Lin (2003). The types of security
breaches include packet sniffing, the man in the middle
(MITM), evil twin attack (Wi-Fi phishing), wardriving, and
dictionary attack (Jamal et al., 2017).

The IDS (Bace et al., 2001), which is widely used as
a network security solution, controls the network so that
abnormal intrusions by hackers do not occur and can block
unauthorised access attempts. Attacks against intruders are
indeed vulnerable. Network and system intrusions caused
by insiders or outsiders require technology to respond
and detect immediately. The IDS is a security solution
tailored to these needs. It is a system that analyses
and collects security-related information from the network,
detects intrusion or misuse, and includes a countermeasure
against intrusion.

IPS is a security solution that detects attack signatures
on the network, takes action automatically, and blocks
abnormal traffic. Unlike passive defense IDSs, it focuses
on blocking attacks before intrusion alerts (Rodas and
To, 2015). It is a solution that combines an automatic
response function and an intrusion induction function and
was created as an alternative to IDS. In addition, it is
possible to control the abnormal behaviour of the authorised
person by detecting and blocking information leakage due
to the abnormal behaviour of the server.

Snort (IDS/IPS) is an open source network intrusion
detection/prevention system (Roesch et al., 1999). It
performs network protocol analysis, investigation, and
penetrating. It can be detected and mitigated (fix)
variations of attacks and vulnerabilities, such as stack-based
overflows, CGI-based attacks, SMB protocol, and much
more. Snort is a network IDS based on libpcap, a
packet collection library; Snort monitors, records, and
alerts packets that match the predefined rules for intrusion
detection. Caswell and Beale (2004) proposed the basic
structure of Snort. Decoding filters all packets flowing
on the network and extracts necessary information from
packets. Intrusion detection engine that detects intrusion
based on rules for intrusion detection existing in the system
and input packet information and warning information. It

consists of altering and logging steps that output packet
information.

Krishna et al. (2021) in his research work, the
comparison of Raspberry Pis, Snort IDS with a custom
rule set specified in the 2013 case study was used, along
with Snort IDS default rules tested on RaspberryPi 4B and
RaspberryPi 3A+ IOT kits. In order to determine which
IOT kit is most suitable to protect against hacking attacks,
we compared CPU load, throughput, and memory load
on nonfunctional requirements. Simadiputra and Surantha
(2021) discovered that 60% of the simulated network
assaults used Raspberry Pi-specific Snort setup. In the
investigation, it was discovered that twofish encryption
techniques had the best encryption time, throughput,
and power consumption compared to other encryption
algorithms. With a low-performance computer like the
Raspberry Pi, the Rasefiberry architecture efficiently
runs both lightweight security programs and Openhab
smarthome gateway programs.

3 Proposed approach for detection and mitigation of
attacks

We proposed a SERfSH, which is resilient to many
cyberattacks. Apart from handling internet connectivity,
this edge router defends malicious activities and intruder
attacks. This is a Snort-based one-step solution for
protecting the smart home environment. The experimental
setup consists of a Raspberry Pi 4 model, an ESP32
microcontroller, six IoT devices, and a malicious actor
machine. This setup is tested with OWASP-based 15 attacks
on IoT-based environment.

3.1 SERfSH experimental setup

Table 1 shows all requirements for the SERfSH
experimental setup and configuration. Figure 1 shows the
inside and outside the network attacks testbed topology
and SERfSH experimental setup. In the SERfSH testbed,
we installed the official Raspbian OS on it. The API
used for configuring the Raspberry Pi as a secure router
is Raspap-WebGUI. IoT gadgets were connected to this
SERfSH and were assigned IP Addresses using a DHCP
server. RaspAP helped us to monitor the status of which
gadgets were connected to the SERfSH. It gives an
802.11ac wireless mode option with 5 GHz. We configure a
SERfSH access point (AP) for our IoT gadgets to connect.
It is possible to a Bridged-AP mode, log-file output, and
show/hide SSID in the broadcast.

ESP32 is a packet sniffer for alarm (beep/light). We
programmed an ESP32 microcontroller using Arduino IDE
studio as a packet sniffer.

As an attacker, we used Kali-Linux (version = ‘2019.2’)
and ‘Parrot GNU/Linux’ to perform all attacks. We used
Atheros AR9271 wireless USB LAN adapter to monitor
and send malicious packets. For practical testing, we built
up IoT Devices with the help of different micro-controllers

A Snort-based secure edge router for smart home 45

(Arduino Uno Wi-Fi/ESP32-S0WD/ESP8266) and various
IoT sensors. We connected a microcontroller with SERfSH
to link to the local wireless network. Also, we tested with
an Android App ‘IP WebCam’ on a smart android phone
that turns your smartphone into a Network Camera. In
general, two types of attacks happen external (outside) or
internal (inside) attacks on the network interface.

Snort is the most popular and most used network-based
IDS in the open-source NIDS and was first created
by Martion Roesch in 1998. Snort detects intrusions by
comparing and analysing traffic packets passing through
the system with internal rules and performs packet logging
and real-time traffic analysis on IP networks. In addition, it
performs protocol analysis, content comparison, and search
functions and can detect various attacks and scans (stealth
port scan, buffer overflow SMB scan, OS fingerprinting,
and CGI attack). Snort can be set in three main modes
(network intrusion detection, sniffer mode, and packet
logger). In Snort mode, it reads packets from the network
and outputs them. In the packet logger mode, packets
are stored in the storage medium in log format. Network
intrusion detection mode monitors and analyses network
traffic with rules set by the user.

Look at the configuration of Snort’s internal operation
phase as shown in standard Snort architecture. It consists
of a packet sniffer, pre-processor, detection engine,
logging/warning, and log file/database. First, the packet
sniffer receives a packet from the network, and the
pre-processor determines whether the packet is a malicious
packet or a valid packet before reaching Snort’s detection
engine. Next, the malicious intrusion is detected by
comparing it with the rules set by the user through the
detection engine. Finally, based on the results from the
detection engine, the security administrator records alarms,
and logs to save the detection records in the form of log
files and databases.

This paper proposes a method for generating Snort
content rules (SCRs) using a sequential pattern algorithm.
A more accurate rule could be created by extracting the
common string (content) observed from the input traffic and
adding location information and header information of the
corresponding content. The validity of the proposed method
was verified by applying it to 15 state-of-the-art attacks
and tested inside and outside the network attacks testbed
environment.

3.2 Automated Snort rule generation: content rule
extraction algorithm

This section describes how to create SCRs using the
sequential pattern algorithm automatically. Table 2
demonstrates that while the SCRs can include various
components, only header information, and payload
information is targeted. The above example described the
rule among packets using TCP for protocol and 80 for
destination port number. If the content of ‘cgi-bin/phf’ is
located between the 4th and 30th bytes of the payload, a
notification is sent.

Figure 2 shows the process of automatically creating
a Snort rule. Applications and services to be analysed for
each host or malicious code-generated traffic is collected for
each host. Network packets with the exact communication
path are merged in a single flow to form one pattern
sequence. The pattern sequence set is an input string to
the pattern algorithm to uproot the content (Sagala, 2015).
In the input sequence, the algorithm discovers candidate
content as they increase in length, beginning with the
content with a length of 1, and eventually extracts the
content with a specific level of consent (Wuu et al., 2007).
If only content is used, as a rule, the probability of false
positives (traffic detection that is not the target of detection)
is high. Therefore, further information is investigated and
explained in the rule. Additional information is used in the
header information and content location information. The
finally created Snort rule is applied to the network setup on
which the Snort open-source IDS is installed. We propose
an automation method targeting the step of creating an SCR
from the collected traffic. The following sections describe
each part in detail.

3.2.1 Network traffic collection phase

Collecting network traffic is the first step to rule
creation. In order to collect traffic, it is necessary to
determine the detection target. Detection targets are very
diverse depending on the purpose of network management,
such as application, service, attack, and malicious code.
When the detection target is determined, traffic generated
from the detection target is collected. To collect traffic
directly from the host that generates the traffic, use
a network traffic collection tool such as Lamping and
Warnicke (2004), Wireshark (1998) and TCPDUMP &
LIBPCAP (199). When collecting network-wide traffic, is
collected using the non-learning function of the switch
or a tap device. Equations (1) and (2) indicate the
form of the collected packet. NetworkPacketSet means
a set of network packets. A single network packet
NP consists of two addresses (SendingHostip and
RecevingHostip), source/destination (Portnumber), hop
limit/ time to live (Hoplimit), packet length (Packetlength),
protocol identifier/stack (Protocolidentifier), and payload
<α1α2α3...αα>. In particular, the payload consists of
consecutive characters, and the content automatically
generated means a substring of the payload.

NetworkPacketSet = {NP1, NP2, ..., NPρ} (1)

NPi =

Flowid, SendingHostip,
RecevingHostip, Portnumber,

Hoplimit, Packetlength,
P rotocolidentifier, Payload =< α1

= ‘data′ : α2 = ‘msg′ : α3 = ‘hi′ :
· · ·αα = ‘ ′ >

(2)

46 N.D. Patel et al.

Figure 1 Inside and outside the network attacks testbed topology (see online version for colours)

Table 1 A SERfSH experimental setup and configurations

A secure router for smart home experimental setup
Single-board computer Model standard Ethernet/wireless GPIO
Raspberry Pi 3/4 B Yes 40

B+
IoT sensors

Sensors Code Power Readings
Temperature and humidity sensor DHT11 3 to 5 V 0–50◦ temp.

20–80% humidity
Motion detector Hc-Sr501 4.5–20 V (DC) Passive infrared sensor
Photosensitive light sensor LM393 3.3 V–5 V Detect brightness and light intensity
Heartbeat sensor HBS 5 V DC Bright LED and light detector
Gyroscope and accelerometer MPU6050 5 V MEMS MotionTracking

Smart phone application
Smart phone OS Application Server
Oppo Af3 Android IP WebCan Local HTTP

IoT sensors – microcontrollers
Name Flash memory Processor Description
ESP32‑S0WD 2 MiB 2 cores Single-core processor
Arduino Uno Wi-Fi 512 KiB 1 cores

Attacker machine
OS name Processor RAM Hard disk
Kali/Parrot OS Intel Core i7 4 GB 40 GB

A Snort-based secure edge router for smart home 47

Table 1 A SERfSH experimental setup and configurations (continued)

Packet sniffer
Name Flash memory Processor Description
ESP8266 Wi-Fi 1 MiB 1 cores Using Arduino IDE as a packet sniffer

Network intrusion detection and prevention system
Software Available OS Description
Snort Open source Cross-platform Packet logger sniffer mode

Table 2 Snort rule syntax and examples

Detection rule Rule header Rule options
Configuration Rule Protocol Sender IP/ Sender Port Direction Receiver IP/ Receiver Port ‘Payload detection’

action Netmask numbers operator Netmask numbers ‘Non-payload detection’
‘Post-detection’

Meaning Treatment Protocol Sender IP Sender Port Packet Recipient IP Recipient Port Option/payload
method address number direction address number

Example Alert TCP Any Any → Any/192.168.10.12/24 80/111 (content: ‘|cgi-bin/phf|’;
msg: ‘mounted access’;
offset: 8; depth: 100)

Figure 2 The flow of automatically create and verify SCR (see online version for colours)

Since only the traffic to be detected needs to be collected
in traffic collection for rule creation, collecting traffic from
individual hosts is recommended to improve the accuracy
of the created rule. As shown in equation (3), the support
is based on the ServiceHost that generated the input
traffic, and traffic must be collected from at least two
ServiceHosts.

Support =

Number of support ServiceHosts
(svchost.exe)

Total number of ServiceHosts
(svchost.exe)

(3)

However, it is cumbersome and impossible to collect traffic
from multiple ServiceHosts in a virtual traffic collection
environment. How do we divide and store the traffic
collected from the same ServiceHost in multiple files and

calculate the support based on the input file instead of
the ServiceHost? That is, the criterion for calculating the
support map may change according to the environment of
traffic collection.

3.2.2 Flow configuration steps

The collected packet aggregation traffic is configured as a
network flow (NS). The NF is used as a set of packets
with the same tuple as in equations (4) and (5). However, a
flow in which the sender and receiver sides are symmetric
is composed of one flow, and the transmission direction
(forward, backward) is written in each packet. The flow
defined is bidirectional, including a packet set with the
same tuple and a symmetric packet set. Flowid specifies

48 N.D. Patel et al.

from which host the flow was collected to calculate
support.

NetworkF low = {NF1, NF2, ..., NFf} (4)

NFi =

Flowid, SendingHostip,
RecevingHostip,
SourcePortnumber,

DestinationPortnumber,
Hoplimit, Packetlength,

P rotocolidentifier,
forward

=
{
P1, P2, ..., Px | P1.5(tuple)...

= Px.5(tuple),
backward

=
{
P1, P2, ..., Py | P1.5(tuple)...

= Py.5(tuple)

||forward.SendingHostip
= backward.RecevingHostip,
forward.SourcePortnumber

= backward.DestinationPortnumber,
forward.Hoplimit

= backward.Hoplimit,
forward.Packetlength

= backward.Packetlength,
forward.Protocolidentifier

= backward.Protocolidentifier||

(5)

The reason for composing a packet into a flow is
that although Snort is applied on a packet-by-packet
basis, a single message is divided into several packets
and transmitted (packet fragmentation) due to network
characteristics. Therefore, if the packets constituting a
single flow are divided by transmission direction and the
payloads are combined, the actual transmitted payload
message can be checked without interruption of the
message.

3.2.3 Sequence pattern construction steps

Creating a sequence is accomplished by separating only
the payload from the packets and dividing them into
the forward and reverse directions. If the flow consists
of two-way communication packets, two sequences are
generated, and one sequence is generated in the case of
one-way communication traffic. A SequencePatternSet is
composed of several SequencesPattern (SP) as shown in
equation (6), and one sequence is composed of a flow ID
(Flowid) and a string <s1, s2, s3, ..., sm> as shown in
equation (7).

SequencePatternSet = {SP1, SP2, ..., SPs} (6)

SPi = {Flowid, < s1, s2, s3, ..., sm >} (7)

Write the flow ID in the sequence configured as in
equations (6) and (7). This is used to calculate support
in the following content extraction step. If the support
calculation is based on a file, enter the file ID.

3.2.4 Content extraction step

Content extraction involves inputting a sequence pattern set
and a borderline support threshold, and content that meets
the threshold is extracted. Here, the Apriorior algorithm is
made more appropriate to match the requirements of content
extraction. As shown in equation (8), ContentSet (CS), the
output of the algorithm, is composed of several contents,
and a single ContentSet is an adjacent substring of sequence
pattern string, as illustrated in equation (9).

ContentSet = {CS1, CS2, ..., CSc} (8)

CSi = {⟨apap+1...aq⟩ | 1 ≤ p ≤ q ≤ m, } (9)

Algorithm 1 Content extraction algorithm

Input: SequencePatternSet = {SP1, SP2, ..., SPs}
Output: ContentSet = {CS1, CS2, ..., CSc}

1 ContentExtractor(SequencePatternSet, MinimumSupport)
2 foreach sequencePattern SP in the SequencePatternSet do

3 foreach character s in the SequencePattern SP do

4 L1 = L2 ∪ α;
5 end

6 end

7 n = 2;
8 while Ln−1 = ϕ do

9 foreach content c in the Ln−1 do

10 for j = 1 to s do

11 if SPj include c then

12 count = count + 1;
13 end

14 end

15 if ((count/s) < MinimumSupport) then

16 Ln−1 = Ln−1 − CS;
17 end

18 end

19 Ln = candidategen (Ln−1)
20 n++;

21 end

22 ContentSet = ∀ Ln

23 delete(CorrespondingContentSet);
24 return ContentSet {CS1, CS2, ..., CSc}

Algorithm 2 Candidate content extraction algorithm

Input: Ln−1

Output: Ln

Data: candidategen(Ln−1)
1 foreach created content ρ in Ln−1 do

2 foreach created content σ in Ln−1 do

3 if ((ρ.a2 = σ.a1) && (ρ.a3 = σ.a2) && (ρ.an−1 = σ.an−2)) then

4 Ln = Ln∪ < ρ.a1, ρ.a2, ..., σ.an−1, σ.an−1 >;
5 end

6 end

7 end

8 return Ln // Ln: length n ContentSet

Algorithms 1 and 2 show a method of outputting a
ContentSet that fulfills the predefined MinimumSupport
from the input PatternSequenceSet. Algorithm 1 performs
the content extraction algorithm by extracting content with
length size one from all input sequences. And storing it in
a ContentSet with that length L1 (Algorithm 1, lines 1∼6),
the content with a minimum length of one of all lengths is
extracted by increasing the length by one starting with and
storing it in a ContentSet with that length Ln (Algorithm 1,
lines 7∼21).

A Snort-based secure edge router for smart home 49

However, among all the contents of the newly
created set Ln−1, the contents that do not satisfy
the input MinimumSupport are deleted (Algorithm 1,
lines 9∼18). This is because the content that does
not satisfy the MinimumSupport does not satisfy the
content extraction qualification. Also, the content that
extends the corresponding content does not satisfy the
MinimumSupport. The ContentSet Ln−1 from which
the content that does not satisfy the MinimumSupport
is deleted is used to create the set Ln (Algorithm 1,
line 19). The method used at this time is the method
described in Algorithm 2. ContentSets Ln−1 are compared
to create the contents of the set Ln. Creating ContentSet
Ln by integrating the ContentSets Ln−1 is possible
between ContentSet Ln−1 whose length n− 2 content
except the foremost character and total length n− 2
content eliminating the last string char is the same. Do
(Algorithm 2, lines 1∼7). For sample, ‘pqrs’ and ‘qrst’,
which are the ContentSet L4, ‘qrs’ excluding ‘p’ and ‘qrs’
excluding ‘t’ are the same, so the content ‘pqrst’ of set L5

cannot be created.
In the same way as above, while increasing the

length by 1, content extraction and deletion of content
less than support are repeated until new content is
no longer extracted. As the last step of extraction, the
addition interconnection of all extracted content lengths is
checked. If the content in the additional interconnection is
found, the corresponding content is removed from the set
(Algorithm 1, line 23). Finally, the generated ContentSet is
passed to the next step.

3.2.5 Additional information analysis steps

If a Snort rule is written using only the content root
information extracted in the previous step, the possibility
of false positives is high. That is, if the length of the
extracted content root is too short, the corresponding rule
may be applied to traffic that is not a detection target.
There is a big difference between a rule that uses only
content information and a rule that does not. For example,
we check whether the corresponding content exists while
examining the entire packet payload. However, among
packets transmitted using the TCP protocol, the destination
IP is 192.168.10.12/24, and the port number is 80. The
content is located between the 4th byte and the 30th byte of
the payload. Check whether it is. Including content location
information and header information makes it possible to
reduce the possibility of false detection of rules. It also
helps to improve system performance by reducing the
amount of payload inspection, which has a relatively large
execution overhead.

This analysis aims to determine the location information
for the extracted content root. The packet data generated
in the traffic collection step is used. Since Snort operates
in units of packets, the location of content root should be
analysed as the location in the actual packet payload, not
the sequence.

Algorithm 3 shows the process of analysing content root
location information when given content root and

NetworkPacketSet. The output of this algorithm, the offset,
means the minimum byte position of the matching start
position when the corresponding content root matches the
packet of the NetworkPacketSet, and the depth means the
maximum byte position of the matching end position. That
is, when the corresponding content root matches the packet,
it only matches between the offset and the depth of the
payload. Count c the number of rule matching in s seconds
that will cause event filter limit to be exceeded. c and s
must be non-zero values.

Algorithm 3 Location information extraction algorithm

Input: content, NetworkPacketSet = ¶NP1, NP2, ..., NPρ♢
Output: offset, depth, count, seconds

Data: AnalysisContentLocation(content_root, NetworkPcketSet)
1 offset = Max_Network_Packet_Size;
2 depth = 0;
3 count ̸= 0 ≤ 10;
4 seconds = 60;
5 foreach NetworkPacket t in NetworkPacketSet do

6 if (t.ContentMatching(content_root) then

7 offset = min(offset, t.getStartMatching(content_root));
8 depth = max(depth, t.getEndMatching(content_root));
9 count = min(count, t.getStartMatching(content_root));

10 seconds = max(seconds, t.getEndMatching(content_root));

11 end

12 end

13 return offset, depth, count, seconds; // Matching offset sets the

minimum bytes to begin, and matching depth sets the

maximum bytes to finish, the count is the reason the

event_filter limit was exceeded, and seconds is the

time period for which the count was accrued.

A packet offset indicates the maximum size of a network
packet, and a packet depth indicates zero (Algorithm 3,
lines 1∼2). Then, it traverses all network packets in the
NetworkPacketSet and modifies the offset and depth. Check
whether the content root obtained as input matches the
network packet; if it reaches, get the start byte position and
compare it with the present offset. If it is a smaller value
than the present offset, the corresponding value is replaced
by the present offset. As for depth, the value of the end
byte position is retrieved, and the corresponding value is
changed to be equal to the present depth if it is greater
than it is now (Algorithm 3, lines 6∼8). Add the finally
determined offset and depth values to the content root rule.

A process similar to that described above is
used to examine the header information of the
extracted content root. It traverses all packets in the
NetworkPacketSet and checks whether it matches the
corresponding content root. If there is a match, the header
information of the corresponding packet is saved. After
inspecting all packets, the corresponding header information
is added to the content root rule if the accumulated header
details have one unique value.

However, in the case of IP, the classless inter-domain
routing (CIDR) value is decreased in the order of 32, 24,
and 16 and repeated until a unique value is extracted. In
other words, it tries to find a unique value as a D-class
IP with a CIDR value of 32 and, if not found, applies the
CIDR value to 24 to find a C-class IP. For example, if
‘192.168.10.12/32’ and ‘192.168.10.13/32’ are extracted as
the destination IP matching the corresponding content with
CIDR 32, set as CIDR 24 and extract ‘192.168.10.11/24’.

50 N.D. Patel et al.

3.3 Computational complexity

The complexity of Subsection 3.2.1 procedure (network
traffic collection phase) is O(ρ2), assuming that the
arrangement of sensor nodes/devices concerning the router
is in a mesh topology. Only the traffic to be detected
need to be collected in traffic collection for rule creation.
Collecting traffic from individual hosts is essential at this
phase.

The complexity of Subsection 3.2.2 procedure (flow
configuration steps) is discussed here. The complexity
in this phase mainly depends upon inter-node distance
(consider d) and branching factor (consider b). With these
considerations, the total amortised complexity will be
O(b

d
2 + b

d
2) or O(2 ∗ b d

2).
The complexity of Subsection 3.2.3 procedure (sequence

pattern construction steps) is O(m), where m is the size of
the sequence pattern set of network traffic.

The complexity of Subsection 3.2.4 procedure (content
extraction step) is O(c.s), where c: is the maximum range
value of content set and s: is the maximum range value of
sequence pattern set.

The complexity of Subsection 3.2.5 procedure
(additional information analysis steps) is O(ρ), where ρ: is
the size of the network packet set.

4 Level-wise IoT-attacks taxonomy

The IoT-attacks have been grouped into four colour-coded
levels to experiment with SERfSH and identify rigorous
methods (bugs, errors, and complexity). We showed 15
attacks ranging from level zero to three based on their
complexity and vulnerability. Figure 3 demonstrates a
level base representation of our taxonomy of various
attacks based on the vulnerabilities/complexity of
IoT gadgets/devices. On analysis of these attacks’
methodologies, we understand that spoofed operations such
as deauthentication attacks, ARP Spoofing, DNS Spoofing,
etc. are the core of cyberattacks on IoT networks. Smart
home networking and risk or threat recognition are
insufficient to protect the associated smart home against
present-day cyber attacks.

Figure 3 Level-wise IoT-attacks taxonomy (see online version
for colours)

4.1 Level-0 guarded (low/general risk of attacks)

4.1.1 NMAP port scanning attack

This attack is found within the local area network
(LAN). It obtains all the port scanning and a malicious
actor can exploit open ports on the victim’s device to
exploit it (De Vivo et al., 1999). They can deliver
malicious payloads and malware when they find open
ports. Figure 4 shows how the malicious actor scans
NMAP TCP Scan on a local network. An example of
a TCP Scan is shown in the highlighted box, performed
by the device ‘192.168.50.XX:42876’ against the device
‘192.168.50.XX:903’. We performed the NMAP port
scanning attack steps in Listing 1.

Figure 4 Scanning by NMAP and detecting the ‘TCP Scan’ in
this case, A targets B is represented by ‘A -> B’
(see online version for colours)

Figure 5 Scan demonstrating the WAP-ESSID (identifier) and
the Physical/Wi-Fi Addresses BSSID of connected
sensor-based devices (see online version for colours)

Note: The rectangle box shows the captured BSSID and ESSID.

Listing 1 NMAP port scanning attack steps

1.Identify your IP using the command
#ifconfig

2.Use the command: nmap <your Gateway_IP >
Various flags can be used to perform
various types of NMAP port scans:
a.TCP_SYN (Stealth) Scan (-sS)
b.UDP_Scan (-sU): # nmap -sU -v

IP_Address
c.TCP FIN_Scan(-sF), NULL scan(-sN), and

Xmas_Scans(-sX)
nmap -sF -T4 IP_Address

4.1.2 Deauthentication attack

Deauthentication attack is straightforward to conduct, and
different occurrences exist in history when ‘black hat’
malicious actors have utilised this attack for vindictive

A Snort-based secure edge router for smart home 51

purposes. In this type of attack, the malicious actor must
be exceptionally promiscuous and needs to examine the
network now and then with the goal that the victim does
not get associated with some other AP on some other
channel. A good malicious actor sends the deauthentication
packets just when the partners with some AP effectively
(Xu et al., 2017). Deauthentication frame format is:

"wlan.fc.type==0)&&
(wlan.fc.type_subtype==0x0c"

During the deauthentication attack, we analysed the
captured data transmission packets from our testbed
setup. Figure 5 demonstrates a scan done during
the deauthentication attack. We demonstrate the
deauthentication attack steps in Listing 2.

Listing 2 Deauthentication attack steps (see online version
for colours)

1.Plug your Wi-Fi adapter in the kali machine
and set it to "Monitor" mode using the
following commands:
a.airmon-ng start <interface_name >
b.Some running processes might interrupt

the working of this command.
Then use the following commands:
i.airmon-ng "check kill"
ii.airmon-ng <start/stop>

<interface_name >
2.Now scan the whole of the network using

the following command:
a.airodump -ng <interface_name >
b.Select the name of the access point

and the client whom you want to
disassociate from the network and
also note the channel on which the
AP is broadcasting.

c.Use the following command to launch a
more sophisticated scanning on the
network:
i.Airodump -ng -c <channel no.>
<interface >

d.Use the following command to
deauthenticate the victim client from
the network:
i.Aireplay -ng --deauth <no. of packets

to send> -b <AP_MAC> -c <Victim_MAC >
<interface >

ii.If the Attack is to be launched
against all the clients connected to
the AP, then skip the
"-c <Client_MAC >" part from the
command.

4.1.3 Fake-authentication attack

Fake-authentication is an attack that is launched against
wireless access points (WAPs) broadcasting on WEP
security. The APs already on WPA/WPA2 protocols are
immune to this attack. Hence the best mitigation and

prevention measure against this attack is to use WPA/WPA2
security protocols on the router. This attack is exceptionally
valuable when we need a connected MAC Address (device)
with the AP. No ARP packets can be produced, and
the malicious device connects with the AP. Subsequent
to the partner, the malicious actor infuses packets in the
system and attempts to compel the AP to create ARP
packets and consequently use them to get the subtleties of
the system (Waliullah et al., 2015). We have shown the
fake-authentication attack steps in Listing 3.

Figure 6 Malicious actor supplicant spoofed deauthentication
packets to victim machine (WAP) (see online version
for colours)

Listing 3 Fake-authentication attack steps (see online version
for colours)

1.Plug your Wi-Fi adapter in the kali machine
and set it to "Monitor" mode using the
following commands:
a.airmon-ng start <interface_name >
b.Some running processes might interrupt

of this command.
If so then use the following commands:
i.airmon-ng "check kill"
ii.airmon-ng <start|stop>

<interface_name >
2.Now scan the whole of the network using

the following command:
a.airodump-ng <interface_name >
b.Select the name of the access point and

the client you want to disassociate from
the network and note the channel on
which the AP is broadcasting.

c.Use the following command to launch a
more sophisticated scanning attack on
the local network:
i.Airodump-ng -c <channel no. of AP>

<interface >
d.Use the following command to fake

authenticate the victim client from the
network:
i.Aireplay-ng --fake-auth -b <AP_MAC>

<interface >
e.Various attacks might not work if this

attack is not successful.

Figure 7 demonstrates a fake-authentication attack where
the WEP penetrations (open system and shared key). It
gives the prosperous WEP authentication and prosperous
cooperation by the malicious actor machine. The malicious
actor machine is connected with the router (WEP AP) using
the falsified credentials.

52 N.D. Patel et al.

4.2 Detection and mitigation of level-0 attacks

Since deauthentication packets are part of the 802.11n
protocol, they cannot be blocked or prevented. Malicious
actors use this to disconnect the gadgets from the network
router unwillingly. Hence, to validate whether the packets
received by the router are authentic or not, we propose a
two-factor authentication for such packets. An encrypted
key generated by the device to be decrypted by the router
is used to achieve the same. The key is unique for each
IoT gadget that connects to the network. In this way,
a malicious actor cannot merely send deauthentication
packets to the router.

Figure 7 Fake-authentication attack to be successfully launched
using aireplay-ng tool (see online version for colours)

Figure 8 Observation of spoofed deauthentication packets by
using packet sniffer (see online version for colours)

Note: The rectangle box shows the captured network packets.

4.2.1 Deauthentication detection

Figure 6 shows the deauthentication packets send by a
malicious actor machine to the target victim machine
WAP. Figure 8 demonstrates the successful detection of
the deauthentication and disassociation packets by a packet
sniffer. We have shown the main steps to detect the attack
by a packet sniffer (see Listing 4).

4.3 Level-1 elevated (significant risk of attacks)

4.3.1 Wi-Fi cracking

Wi-Fi (wireless) network attacks exploit security
weaknesses in local networks and comprise/gain
unauthorised access to IoT gadgets as they pretend to
have a high potential for additional vulnerability. There
is four possible Wi-Fi cracking methods for interrupting a
whole network active/passive brute force attacks, wireless
provisioning attack, and Wi-Fi phishing or phishing with
probing. The malicious actor uses some popular hacking

tools that seem to have been Aircrack-ng, Wi-FiTE, Wi-Fi
phisher, Fluxion, Reaver, Fern-Wi-Fi cracker, Cowpatty,
Omnipeek, etc.

Listing 4 Deauthentication attack detection steps by packet
sniffer (see online version for colours)

1.Begin
2.Set LED pin to PIN_Number
3.Set Serial Baud Rate as 115200
4.Set Scan Time for each channel as 140 ms
5.Define the channel list from 1 to 15.
6.Set the Threshold Packet rate to 5.
7.Set Packet_Time to 1
8.Fixed device to Station Mode
9.Enable the device to Sniff functionality
10.For each channel in channel_list

a.If the number of deauthentication
packets greater than the Threshold
Packet rate
i.Increment attack counter

b.Else If
The number of deauthentication
packets less than the Threshold packet
rate
i.Set attack counter to zero

c.End If
d.If the attack counter equal to

Packet_Time
i.Print "ATTACK DETECTED."

e.End If
11.End For
12.End

4.3.2 ARP Spoofing attack

An ARP spoofing is also known as ARP Poisoning,
ARP Cache Poisoning, and ARP Poison Routing. Address
Resolution Protocol (ARP) is used in the link/network
layer. In this attack, the attacker dispatches falsified
ARP Packets over a local area network (Abad and Bonilla,
2007).

This attack is executed by the Kali Linux tool called
‘mitmf’ (framework). This attack needs the malicious actor
to be in the same local network in which the targeted
devices are presented. The following command to start
this ARP Spoofing attack: $ ‘mitmf –arp –spoof –gateway
<Gateway IP> –targets <IPs of target machines> -i
<interface name>’.

We have shown the ARP Spoofing attack steps in
Listing 5.

Figure 9 ARP Spoofing attack on victim gadget
(see online version for colours)

A Snort-based secure edge router for smart home 53

Listing 5 ARP-spoofing attack steps (see online version
for colours)

1.Plug your Wi-Fi adapter into the kali
machine and set it to "Monitor" mode
using the following commands
a.airmon-ng start <interface_name >
b.Some running processes might interrupt

the working of this command. If so,
then use the following commands:
i.airmon-ng "check kill"
ii.airmon-ng <start|start>

<interface_name >
2.Now scan the whole of the network using

the following command:
a.airodump -ng <interface_name >
b.Select the name of the access point and

the client whom you want to launch the
ARP_Poisoning Attack on.

c.Execute the following commands in
different terminals to successfully
conduct the attack:
i.arpspoof -i <interface > -t <victim_mac >

<AP_MAC>
ii.arpspoof -i <interface > -t <AP_MAC>

<Victim_MAC >

Figure 9 shows the translation of IP addresses into
MAC addresses.

4.3.3 Sybil attack

Sybil Attack is a type of attack found in distributed
networks (P2P) in which a node (hub) in the P2P network
runs Multiple Identities at the time. The principle point
of the Sybil Node is to advantage of a disproportionately
large influence in the system to carry out illegitimate moves
(Asadian and Javadi, 2018). We detect this attack with
the help of the Random Password Comparison scheme,
which verifies the Sybil Node pseudonymous identities.
Eventually, SERfSH mitigates (fix) the Sybil Nodes in the
smart home network.

4.3.4 Broken authentication

Attackers hijack or intercept network connections by
imitating legitimate Wi-Fi networks (such as Starbucks
Wi-Fi). An authentication certificate or other technique may
be used to decrypt encrypted data if it has been encrypted
by the malicious actor (A2:2017-Broken Authentication,
2017). In Listing 6, we have shown broken authentication
attack scenarios.

4.4 Detection and mitigation of level-1 attacks

4.4.1 Wi-Fi cracking mitigation

Wi-Fi cracking methods involve a deauthentication attack in
its primary steps. We have already discussed the detection
and mitigation (fix) of deauthentication attacks. Hence,

these mechanisms will prevent Wi-Fi wireless network
cracking attacks also. The way to prevent/mitigate (fix)
this type of attack (sniffing, MITM and DoS) is examined
by exploiting strong ‘WPA/WPA-PSK’ defense schemes
for WLAN/Wi-Fi authentication and authorisation. Another
way to secure our wireless networks is to change the
default passwords, firewall software, and authentication
schemes and allow only registered MAC Address.

Listing 6 Broken authentication attack scenarios
(see online version for colours)

Scenario 1: "Credential stuffing" if the
application does not use
protection against this.

Scenario 2: "Continued use of passwords as
 a sole factor."
Scenario 3: Application session expiration

does not set correctly.

4.4.1.1 Snort wireless rule analysis

Writing a custom rule to detect 802.11 frames matching
specific criteria is as simple as writing other types of
custom Snort rules. Also, Snort wireless rule shares most
of the same syntax with Snort rule syntax. Listing 7 is the
Rule provided by Snort wireless.

Listing 7 Snort wireless rule (see online version
for colours)

alert Wi-Fi any -> any (msg: "Mgt_Frame";
type: TYPE_MANAGEMENT)
alert Wi-Fi any -> any (msg: "Ctrl_Frame";
type: TYPE_CONTROL)
alert Wi-Fi any -> any (msg: "Dt_Frame";
type: TYPE_DATA)

Rule configuration method is <action> Wi-Fi <mac>
<direction> <mac> (<rule options>). The first item of the
Snort wireless rule is action. Actions include alert, log, pass,
activate, and dynamic. MAC addresses can be specified
in the same way that IP addresses of the source and
destination MAC addresses are specified in Snort rules,
one MAC address being either a colon-separated list of
octets or comma-separated braces. It can be specified as a
list enclosed. In addition, a logical NOT operation can be
performed with the ‘!’ character.

The direction operator includes two operators to specify
the direction of traffic. Rule option can create rules using
the ‘Wi-Fi’ protocol, which is an 802.11-specific rule
option. Wi-Fi options include ‘frame control, type, stype,
more frags, from ds, to ds, retry, pwr mgmt, more data,
wep, order, duration id, bssid, seqnum, fragnum, addr4, and
ssid’.

4.4.2 ARP Spoofing attack detection

Figures 10 and 11 show the Physical Address and type
of the victim devices simultaneously before and after the

54 N.D. Patel et al.

attack and shows the default gateway-entry, changing the
Physical Address, and type of the devices. Also, we can
see the change in IP Addresses, Wi-Fi Addresses, and
Physical Addresses of the victim devices before and after
compromise.

Figure 10 IP Address and Physical Address before attack
(see online version for colours)

Figure 11 IP Address and Physical Address after attack
(see online version for colours)

In Listing 8, we have shown that the algorithm to detect
the ARP Spoofing attack.

Listing 8 ARP-spoofing attack detection (see online version
for colours)

1.Open the "CMD" & Check for the ARP_Table:
C:> arp -a (show all MAC_Address)

2.Pay a close look at the entries IF find
out two IP_Addresses (allotment the
same Physical/Wi-Fi_Address) THEN
the gadget is suffering from an
ARP-Poisoning attack.

4.4.3 ARP Spoofing attack mitigation

To mitigate (fix) this attack, we wrote and updated SCR
file [‘Snort.conf’] to include the [‘local.rules’] file where
the updated SCR are located. The updated SCR will make
warnings whenever malicious payloads had founded within
the local network area. We can do it as follows in Listing 9.

4.4.4 Broken authentication attack mitigate (fix)

SERfSH generates a different random session ID to
ensure the login. The session ID is a unique digit
code, and it can be saved as a URL/cookies. SERfSH
used the Wireless Intrusion Detection System (WIDS) for
unsuccessful login attempts and provided the extra layer of
protection. We also use the traffic filtering mechanisms in
the SNORT syntax rule.

Listing 9 ARP spoofing attack mitigation steps
(see online version for colours)

(Mitigation method for ARP-spoofing attack)
1.In the "Snort.conf" configuration file:

#preprocessor_arpspoof
#preprocessor_arpspoof Identify_HOST
"192.168.40.XX" f0:0f:00:f0:0f:00

2.Recapture the "#", and then update
the configuration file as it is:
#preprocessor_arpspoof Detect_HOST:
"Host_IP" Host_MAC
#preprocessor_arpspoof Detect_HOST:
"Gateway_IP" Gateway_MAC

4.5 Level-2 high (high risk of attacks)

4.5.1 MAC Spoofing

MAC Spoofing is a sort of attack in which the malicious
actor changes its Physical Address to the Physical Address
of some other gadget. This type of attack is generally
used on APs where MAC filtering is deployed, and
only those things whose MAC Address is written in
the router table can connect with the local network. In
such cases, the malicious actor finds one or more valid
Physical Addresses and then changes its Physical Address
to the valid Physical Address and gets access to the network
(Yu et al., 2016).

Listing 10 MAC Spoofing attack steps (see online version
for colours)

1.Plug your Wi-Fi adapter in the kali machine
and set it to "Monitor" mode using the
following commands:
a.airmon-ng start <interface_name >
b.Running processes might interrupt in the

working of this command. If so then use
the following commands:
i.airmon-ng "check kill"
ii.airmon-ng <start|stop>

<interface_name >
2.Now scan the whole of the network using

the following command:
a.airodump -ng <interface_name >
b.Select any one of the valid MAC_Address

from the list that you will get from
scanning.

c.Type the following command to change
your MAC_Address:
i.Macchanger -m <valid MAC_Address >

<interface >
3.The MAC_Address is changed to the selected

MAC_Address , and you can bypass the
filtering.

Figure 12 presents the ‘MAC Spoofing’ and exhibits the
changing ‘Physical Address’ of an interface to any required
Physical Address. For this attack, we used Kali 2020 Linux
OS, and the attack is executed by using the ‘macchanger’
tool. We have shown the MAC Spoofing attack steps in
Listing 10.

A Snort-based secure edge router for smart home 55

Figure 12 MAC Spoofing to a arbitrary Physical Address
using ‘macchanger’ (see online version for colours)

4.5.2 Sink Hole attack

A sinkhole attack is one of the extreme attacks on a remote
ad hoc network. In this attack, a compromised node or
malicious node communicates wrong routing data to deliver
itself as a particular node and gets entire network traffic.
Subsequent to getting the entire network traffic, it can either
adjust the parcel data or drop them to make the network
muddled. Sinkhole attacks influence the presentation of
ad hoc network conventions, for example, DSR, AODV
convention (Singh, 2017).

4.5.3 Denial-of-service

In the DoS attack, malicious actors hijack a server,
port overloading, deauthentication wireless, and deny
internet-based services. The idea behind a DoS attack
is making a particular service unavailable by sending
un-fragmented packets (Farooq et al., 2015). Since IoT
gadgets usually are not allocated much bandwidth, they
are often the victim of such attacks. The types of attacks
are flood attacks, reflected-attack, mailbombs, and teardrop
attacks.

We analysed and captured the attack’s payloads
(malicious packets) using Wireshark/Ettercap (network
scanning tool) and studied the packet data. We formed
SCR and configured the IDS to prevent DoS-type attacks.
These rules caused an alert as well as dropped packets
while such an attack is existence happened. Also, the
malicious actor and the victim’s internet protocol addresses
were demonstrated. This method covered all types of DoS
attacks: TCP, UDP, and HTTP. TO launch the DoS atatck,
we used metasploit framework. We have shown the DoS
attack steps in Listing 11.

Listing 11 DoS attack steps (see online version for colours)

1.Launch the Metasploit Framework in a
terminal:

2.Type the command in msfconsole:
use auxiliary/DoS/tcp/synflood

3.Use command to show options to find
the attack parameters

4.To set the victim IP_Address:
RHOST <Victim IP_Address >

5.Type "exploit" to execute DoS Attack.

Similarly, various DoS attack exploits can be performed
using the metasploit console framework.

4.5.4 Distributed DoS

A DDoS attack is a malevolent attempt to break normal
traffic of a particular/targeted server. The attackers
(multiple sources) are flooding the pursuit with a static
flood-of-traffic (Rebecchi et al., 2019). There are two most
popular DoS/DDoS tools: ‘low orbit ion cannon (LOIC)
and high orbit ion cannon (HOIC)’. Figure 13 shows
the number of packets sent to the target IP. In SERfSH,
Snort rules syntax give all web requests to drop malicious
attempts from being relayed to client servers. The art of
DDoS attacks:

MALICIOUS ACTOR -> Sends/Generates
Malicious/Infinite_Data -> VICTIM
VICTIM -> Cannot Handle
Malicious/Infinite_Data -> CRASHES

Figure 13 DDoS attack: sent packets to target IP

Figure 14 DNS Spoofing using Ettercap tool
(see online version for colours)

4.5.5 DNS Spoofing

It represents the Domain Name Server, the primary use to
translate the domain name to IP Address and memorise
the IP Address (192.168..). Regardless of whether a little
piece of the DNS is inaccessible for a brief time frame,
it can cause immense problems. UDP is a somewhat
weaker protocol than TCP since it does not use three-way
handshaking. In this manner, it cannot decide with
confidence whether a packet has originated from a similar
source regarding which it indicates (Varshney et al., 2016).
We have shown DNS Spoofing attack steps in Listing 12.

56 N.D. Patel et al.

Listing 12 DNS-spoofing attack steps (see online version
for colours)

1.Install "Ettercap" tool using the below
command:
a.sudo apt install Ettercap-common

2.Open the configuration file using the
below command:
a.sudo nano etc/ettercap/etter.conf

3.Configure the file according to the
environment.

4.Start Ettercap:
a.Ettercap -G
b.Sniff -> Unified/Bridged Sniffing ->

(Select the interface connected to the
internet) -> OK

c.Hosts -> Scan for hosts
5.Select the victim thing as TARGET1 and

AP as TARGET2.
6.Go to: MITM -> ARP_Poisoning ->

"Sniff Remote Connections" -> ok
7.Go to: Plugins -> Transact the plugins ->

DNS_Spoofing
8.Start the Apache server on your thing by

typing the following command:
a.Change the content of index.html file of

apache server according to your needs
b.service apache2 start

9.The DNS_Spoofing Attack will be activated.
10.If any problem repeats the steps (4 to 7).

Figure 14 exhibits a DNS Spoofing attack and exploits the
‘Ettercap’ network security tool. The coloured rectangle
demonstrates the prosperous attack on the target devices
(activating DNS Spoofing Plugin).

4.6 Detection and mitigation of level-2 attacks

4.6.1 DNS Spoofing detection

To mitigate (fix) DNS Spoofing attack, It can be detected
by us in the Snort syntax rules in IDS:

• Using the encrypted ‘Data Transfer Protocols’ and
‘End to End Encryption’ via Transport Layer
Security/Secure Sockets Layer.

• Manage ‘Domain Name System Security Extensions’;
it utilises digitally endorsed DNS host records
(A/AAAA record) to assist mapping and manage
data-authenticity.

• Snort command: ‘Snort -q -A consol -i eth0
-c/etc/Snort/Snort.conf’.

4.6.2 DoS/DDoS detection

In order to detect continuous packet inflow in DoS/DDoS
attacks, a rule statement for alerting must be added to
Snort’s rule-set. The rule format used in the experiment is
as follows. Action in the header part generates an alert as
an alert and uses the source IP of 172.22.22.12/24, so 20

excessive pings per ten seconds to the Ubuntu server at
172.26.26.16 from any port in the external network rather
than the internal network. Model generates a rule to detect
an attack that blows and shows a DOS form. The Snort
rule as follows (see online version for colours):

alert ip !172.22.22.12/24 any -> 172.26.26.16 any
(msg: "Ping of Death"; theshold: type both, track
by src, count 20, seconds 10; sid: 10000035)

As a result of retrying the ping of death attack to test
whether the IDS normally detects a malicious pattern, a
warning was shown that Snort was detected normally,
and the DROP command is normally sent to IP tables by
executing the Python module. It was confirmed that this
was added.

4.7 Level-3 critical (severe risk of attacks)

4.7.1 Malware-based DoS attacks

The target systems are running on MAC OS in the
malware-based DoS attacks. That malware repeatedly opens
draft e-mails. Instances of opening iTunes were reported in
some cases. So the effects exhaust system’s memory causes
the system to crash (Christodorescu et al., 2005). We can
also detect malware-based DoS attack.

4.7.2 RPL attacks

In the RPL attacks, we can create categories in the three
parts: resources, topology, and traffic. The resource-based
attacks are direct or indirect attacks like SYN flooding (an
attempt to consume enough server resources), hello flooding
(degrading of sensor energy), DNS flooding (targets one or
more DNS), HTTP flooding (overwhelm a targeted server),
UDP flooding (a large number of UDP packets sent), etc.
Routing Protocol for low power and lossy network (RPL) is
a lightweight protocol designed for LLN (low power lossy
networks).

SYN flooding: the attack requires having a client
frequently send SYN Packets to every port on a server,
using fraudulent IP Addresses. The normal scenario in
three-way TCP/IP handshake:

1 USER – SYN Packet -> Transmitting HOST

2 HOST – SYN-ACK Packet -> USER

3 USER – ACK Packet -> HOST.

In SYN flooding:

1 MALICIOUS ACTOR – Spoofed SYN Packet ->
TARGET

2 TARGET – SYN-ACK Packet -> SPOOF

3 No reply

4 The connection gets timeout.

A Snort-based secure edge router for smart home 57

Malicious actors send the huge number of SYN Packets
to the target system at a rate faster than the queued
connections get timed out.

4.7.3 Firmware vulnerabilities

For the IoT gadgets to work appropriately, they come
accompanied by firmware. The available firmware on
these devices does not have a robust security mechanism.
Besides, they do not consistently update the devices,
making their vulnerabilities progressively open as time
advances. Some Linux-based automated emulating tools for
firmware like ‘Firmadyne’ and ‘Binwalk’ exist. Figure 15
exhibits an example of the reverse-engineering router
firmware using ‘Firmadyne’ emulating software. They have
been created to determine the vulnerabilities present in
this firmware using reverse engineering. The absence of a
secure channel for updation is recognised as a significant
security threat by OWASP IoT project (Xie et al., 2017).
Malicious actors can also use this emulating software to
seize the opportunity later.

Figure 15 Reverse-engineering router firmware by using
‘Firmadyne’ software

4.8 Detection and mitigation of level-3 attacks

4.8.1 Malware-based DoS detection

This attack comes under the MALWARE-BACKDOOR
category, as a result of Snort’s malware detection,
suspicious traffic has been detected other than
command-driven communication, such as data exfiltration
from infected machines.

alert tcp any 1146 -> any 80 (msg:
"Trojan_RssFeeder"
content: "Professional3&macaddr
=00:0C:29:71:24:89&
owner=two13&version=1.2.0&t=4841";
offset: 152; depth: 71)

4.8.2 SYN flooding detection

SERfSH, to filter traffic undergo our network interfaces. It
protects from the SYN flooding attack with TCP intercept.
The Snort rule for SYN flooding as follows:

alert tcp any any -> IP_Address Port (sid:
1000008; msg: "TCP_SYN_Flooding_flags: S";
threshold: type both, track by_dst,
count 100, seconds 1)

5 Test results

Table 3 shows that the test results for detection and
mitigation of 15 attacks. In this paper, a method for
generating SCRs using a sequential pattern algorithm is
proposed. A more accurate rule could be created by not
only extracting the common string (content) observed from
the input traffic, but also adding location information
and header information of the corresponding content. The
validity of the proposed method was verified by applying
it to 15 attacks. Annotation [X] [X] indicates that the
particular attack is detected and mitigated successfully, [7]
[7] indicates that the particular attack is not detected and
mitigated, and [X] [7] indicates that the particular attack
is detected but not mitigated. The attack number 8 and
12 (MAC Spoofing and DNS Spoofing) are detected but
not mitigated. We need to look at further highly flexible
Snort (IDS/IPS) syntax rules for detection and mitigation.
The attack number 15 (firmware vulnerability) is one of
the attack it cannot detect and mitigate. The automatically
generated Snort rules is used in SERfSH as an IDS and
alerts are logged to a database from where they are read
and router access control list (ACL) rules are generated
based on Snort intrusion alerts and then these ACL rules are
configured on the router to block the potential intrusions.
We performed 15 types of attacks in the testbed simulations.
The proposed SERfSH is capable to detect 14 attacks
and mitigate 12 attacks with the help of Snort rules.
During the attacks if some alert generated its mean the
attack is detected by the proposed router. Table 4 shows
the comparisons of state-of-the-art IDSs with proposed
SERfSH.

Table 3 Test results: detection and mitigation (fix) of 15 attacks

S. no. Threat IoT-based attack name Detection Mitigation
level

1 Level NMAP scanning attack X X
2 0 Deauthentication attack X X
3 Fake authentication attack X X
4 Level Wi-Fi cracking attack X X
5 1 ARP poisoning attack X X
6 Sybil attack X X
7 Broken authentication attack X X
8 Level MAC spoofing attack X 7

9 2 Sink hole attacks X X
10 DoS attacks X X
11 Distributed DoS attack X X
12 DNS spoofing attack X 7

13 Level Malware-based DoS X X
14 3 RPL attacks X X
15 Firmware vulnerability attack 7 7

58 N.D. Patel et al.

Table 4 Proposed SERfSH IDS compare with existing state-of-the-art IDSs

Intrusion detection Synchrophasor specific IDS Smart grid IDS SDN-based IDS Proposed SERfSHsystem (IDS) (Khan et al., 2017) (Kang and Sezer, 2016) (Nam and Kim, 2018)
IDS tool Snort/suricata Suricata suricata Snort
Rule generation Manual Manual Manual Automatically
Detect no. of attacks MITM DoS Abnormal traffic 14/15 attacks

detection
Mitigate no. of attacks Abnormal traffic Stateful analysis Not define 12/15 attacks
Network traffic Real-time Simulated Simulated Monitoring real-time-based
Warning notification Yes No No Yes
Security information and No No No Yes
event management
Alarm filtering techniques No State inspection Open flow Sensors-based
Machine learning model No No No Yes (convert the pcap

file to csv)
Type Host-based IDS Protocol-based IDS Host-based IDS Network-based IDS

(HIDS) (PIDS) (HIDS) (NIDS)
Scalability No Simulated Yes Yes
Flexibility and usability No No No IoT networks,

small organisation

6 Conclusions and future work

SERfSH is an advanced edge router for securing
IoT gadgets at home. This experimental setup
has been tested for the following 15 attacks:
deauthentication, fake-authentication, sybil attacks,
broken-authentication, MAC spoofing, sink hole attacks,
DoS, distributed-DoS, port-scanning, Wi-Fi-cracking,
ARP-poisoning, DNS-spoofing, malware-based DoS, RPL
attacks (flooding), and firmware vulnerability. We have
detected all attacks except the firmware vulnerability
and did not mitigate two attacks, i.e., DNS spoofing
and firmware vulnerability. SERfSH is a scalable and
cost-effective solution for small/home networks. As a future
study, we collected background traffic during the testing.
We are planning to perform some unsupervised machine
learning algorithm to develop a robust IDS.

References

A2:2017-Broken Authentication (2017) [online] https://www.owasp.
org/index.php/Top 10-2017 A2-Broken Authentication.

Abad, C.L. and Bonilla, R.I. (2007) ‘An analysis on the schemes for
detecting and preventing arp cache poisoning attacks’, in 27th
International Conference on Distributed Computing Systems
Workshops (ICDCSW‘07), IEEE, pp.60–60.

Aljumah, A. (2017) ‘Detection of distributed denial of service
attacks using artificial neural networks’, International Journal
of Advanced Computer Science and Applications, Vol. 8, No. 8.

Asadian, H. and Javadi, H.H.S. (2018) ‘Identification of sybil
attacks on social networks using a framework based on user
interactions’, Security and Privacy, Vol. 1, No. 2, p.e19.

Bace, R.G., Mell, P. et al. (2001) Intrusion Detection Systems
[online] http://purl.access.gpo.gov/GPO/LPS72073.

Caswell, B. and Beale, J. (2004) Snort 2.1 Intrusion Detection,
Elsevier, Syngress, ISBN: 9780080549279.

Christodorescu, M., Jha, S., Seshia, S.A., Song, D. and Bryant, R.E.
(2005) ‘Semantics-aware malware detection’, in 2005 IEEE
Symposium on Security and Privacy (S&P‘05), IEEE, pp.32–46.

Danda, J.M.R. and Hota, C. (2016) ‘Attack identification framework
for IoT devices’, in Information Systems Design and Intelligent
Applications, pp.505–513, Springer, New Delhi.

De Vivo, M., Carrasco, E., Isern, G. and de Vivo, G.O. (1999) ‘A
review of port scanning techniques’, ACM SIGCOMM Computer
Communication Review, Vol. 29, No. 2, pp.41–48.

Farooq, M.U., Waseem, M., Khairi, A. and Mazhar, S. (2015)
‘A critical analysis on the security concerns of internet of
things (IoT)’, International Journal of Computer Applications,
Vol. 111, No. 7, pp.1–7.

Haller, S., Karnouskos, S. and Schroth, C. (2008) ‘The internet of
things in an enterprise context’, in Future Internet Symposium,
pp.14–28, Springer, Berlin, Heidelberg.

Jamal, T., Alam, M. and Umair, M.M. (2017) ‘Detection and
prevention against RTS attacks in wireless LANs’, in 2017
International Conference on Communication, Computing and
Digital Systems (C-CODE), IEEE, pp.152–156.

Jesús, R-L.J., Cristhian, P-V.O., René, R-G.M. and Heberto, F-M.
(2019) ‘How to improve the IoT security implementing IDS/IPS
tool using Raspberry Pi 3B’, Editorial Preface From the Desk
of Managing Editor ..., Vol. 10, No. 9.

Kang, K. and Sezer, S. (2016) ‘Towards a stateful analysis
framework for smart grid network intrusion detection’, in 4th
International Symposium for ICS & SCADA Cyber Security
Research, Vol. 4, pp.124–131.

Khan, R., Albalushi, A., McLaughlin, K., Laverty, D. and
Sezer, S. (2017) ‘Model based intrusion detection system for
synchrophasor applications in smart grid’, in 2017 IEEE Power
& Energy Society General Meeting, IEEE, pp.1–5.

Kolias, C., Kambourakis, G., Stavrou, A. and Voas, J. (2017) ‘DDoS
in the IoT: Mirai and other BotNets’, Computer, Vol. 50, No. 7,
pp.80–84.

Krishna, G.S., Kiran, T.S.R. and Srisaila, A. (2021) ‘Testing
performance of Raspberry Pi as IDS using Snort’, Materials
Today: Proceedings.

A Snort-based secure edge router for smart home 59

Lamping, U. and Warnicke, E. (2004) ‘Wireshark user’s guide’,
Interface, Vol. 4, No. 6, p.1.

Mirkovic, J. and Reiher, P. (2004) ‘A taxonomy of DDoS attack
and DDoS defense mechanisms’, ACM SIGCOMM Computer
Communication Review, Vol. 34, No. 2, pp.39–53.

Nam, K. and Kim, K. (2018) ‘A study on sdn security enhancement
using open source IDS/IPS suricata’, in 2018 International
Conference on Information and Communication Technology
Convergence (ICTC), IEEE, pp.1124–1126.

Noubir, G. and Lin, G. (2003) ‘Low-power DoS attacks in
data wireless LANs and countermeasures’, ACM SIGMOBILE
Mobile Computing and Communications Review, Vol. 7, No. 3,
pp.29–30.

Rebecchi, F., Boite, J., Nardin, P-A., Bouet, M. and Conan, V.
(2019) ‘DDoS protection with stateful software-defined
networking’, International Journal of Network Management,
Vol. 29, No. 1, p.e2042.

Rodas, O. and To, M.A. (2015) ‘A study on network
security monitoring for the hybrid classification-based intrusion
prevention systems’, International Journal of Space-Based and
Situated Computing, Vol. 5, No. 2, pp.115–125.

Roesch, M. et al. (1999) ‘Snort: lightweight intrusion detection for
networks’, in Lisa, Vol. 99, pp.229–238.

Sagala, A. (2015) ‘Automatic Snort IDS rule generation based
on honeypot log’, in 2015 7th International Conference on
Information Technology and Electrical Engineering (ICITEE),
IEEE, pp.576–580.

Sarkar, S., Wankar, R., Srirama, S.N. and Suryadevara, N.K.
(2019) ‘Serverless management of sensing systems for fog
computing framework’, IEEE Sensors Journal, Vol. 20, No. 3,
pp.1564–1572.

Simadiputra, V. and Surantha, N. (2021) ‘Rasefiberry: secure and
efficient Raspberry Pi based gateway for smarthome IoT
architecture’, Bulletin of Electrical Engineering and Informatics,
Vol. 10, No. 2, pp.1035–1045.

Singh, B. (2017) ‘Design of an intrusion detection system to
detect the black hole attack using less energy consumption
in WSN’, An International Journal of Engineering Sciences,
Vol. 9, No. 26, pp.93–102, Vidya Publications.

Stiawan, D., Idris, M., Malik, R.F., Nurmaini, S., Alsharif, N.,
Budiarto, R. et al. (2019) ‘Investigating brute force attack
patterns in IoT network’, Journal of Electrical and Computer
Engineering, Vol. 2019.

TCPDUMP & LIBPCAP (1988) [online] https://www.tcpdump.org/.
Varshney, G., Misra, M. and Atrey, P.K. (2016) ‘A survey and

classification of web phishing detection schemes’, Security and
Communication Networks, Vol. 9, No. 18, pp.6266–6284.

Waliullah, M., Moniruzzaman, A., Rahman, M.S. et al. (2015) ‘An
experimental study analysis of security attacks at IEEE 802.11
wireless local area network’, International Journal of Future
Generation Communication and Networking, Vol. 8, No. 1,
pp.9–18.

Wireshark (1998) [online] https://www.wireshark.org/docs/wsug html/.
Wuu, L-C., Hung, C-H. and Chen, S-F. (2007) ‘Building

intrusion pattern miner for Snort network intrusion detection
system’, Journal of Systems and Software, Vol. 80, No. 10,
pp.1699–1715.

Xie, W., Jiang, Y., Tang, Y., Ding, N. and Gao, Y. (2017)
‘Vulnerability detection in IoT firmware: a survey’, in 2017
IEEE 23rd International Conference on Parallel and Distributed
Systems (ICPADS), IEEE, pp.769–772.

Xu, H., Sgandurra, D., Mayes, K., Li, P. and Wang, R. (2017)
‘Analysing the resilience of the internet of things against
physical and proximity attacks’, in International Conference
on Security, Privacy and Anonymity in Computation,
Communication and Storage, Springer, pp.291–301.

Yu, J., Kim, E., Kim, H. and Huh, J. (2016) ‘A framework
for detecting MAC and IP spoofing attacks with network
characteristics’, in 2016 International Conference on Software
Security and Assurance (ICSSA), IEEE, pp.49–53.

Zhang, H., Cheng, P., Shi, L. and Chen, J. (2015) ‘Optimal DoS
attack scheduling in wireless networked control system’, IEEE
Transactions on Control Systems Technology, Vol. 24, No. 3,
pp.843–852.

