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Abstract: The software-defined space-air-ground integrated network (SAGIN) is regarded
as future-generation networking solution due to its wide-area coverage and seamless
communication support for ground networks and resource-intensive application support for
space-air networks. The SDN-based literary works are restricted only to resource management
for space-air or ground networks, not both. The resource scheduling for multi-users caching,
computing and data-transfer task accomplishment over software-defined SAGIN were out
of their investigations by taking proactive local SDN, heterogenous users and applications,
SLA requirements, priority, latency, and users’ budget into account. To outperform the
problems, this paper advocates a proactive SDN-based resource management scheme considering
SLA requirements, latency, priority, and users’ budget for multi-user task completion over
software-defined SAGIN. This paper contributes an analytical model that covers task completion
time, energy expenditure, financial cost, and SLA fulfilment metrics. The performance results
illustrate that proposed scheme produces 72% time and 69% financial gain over the compared
scheme.
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low-latency service requirement satisfaction facilities (Zhou
et al., 2019). The space-air network can complement
the ground network by providing wide-area coverage
(i.e., communication facilities for complex terrains/places
such as mountains and sea), communication opportunities
and infrastructure during emergency scenarios and
natural disasters (i.e., earthquakes), and by lowering
communication delay during mission-critical (i.e., military)
applications (Bi et al., 2019; Cui et al., 2022). Whereas,
the ground network can benefit the space-air network
(i.e., sustainability, power saving, and capability) by

1 Introduction

With the expeditious improvement of the ground network 
and satellite technology, high and low altitude platforms, 
gateways, unmanned aerial vehicle type devices or 
UAVs, terrestrial network devices, and communication 
technologies, the space-air-ground integrated network 
(SAGIN) comes as a suitable solution for many real-time 
applications (i.e., sensing, data transmission, processing, 
navigation) by offering not only the wide range of 
communication services but also both seamless and
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minimising their spectrum scarcity issue and by assisting
their resource-intensive (i.e., high computation load,
storage) applications execution (Zhang et al., 2017). For
example, the computation workload of a space-air network
task such as collaborative monitoring/sensing/navigation
can be offloaded to the powerful cloud device or computing
server (i.e., central or edge-cloud) on the ground network
for processing and result generation.

At present, the fruitful execution of SAGIN real-time
application suffers from a wide range of challenges. The
question of how to coordinate the resources from ground
networks [i.e., mobile users’ (MUs) devices, network
devices, and cloud server resources] and space-air networks
(i.e., satellites and UAV) is one of the noticeable challenges
(Yang et al., 2021). An additional fundamental research
question is how to assign the task of several users
(i.e., MUs, robots, sensors, and vehicles) of SAGIN
to suitable actors or devices for execution by taking
into account heterogeneous devices capability, terrestrial
network technologies (i.e., cellular and Wi-Fi) and cloud
computing resource availability, among others.

To this end, due to its flexibility, control, and
programmability nature, the software-defined networking
(SDN) technology has emerged as a key technology
to resolve resource coordination problems for different
communication paradigms related to real-time application
executions under different networks. Currently, numerous
research challenges exist in the literary works that
considered SDN technology for resource and network
task coordination. Zhang et al. (2020b) incorporated SDN
technology to decide whether the vehicle’s task is offloaded
or transferred to a cloud actor device (i.e., mobile-edge
cloud server or remote server) or another powerful vehicle
for processing in a MEC-empowered vehicular network.
Nazari et al. (2016) utilised SDN technology for multiple
satellite resource sharing and load balancing purposes
in naval networks. In Sheng et al. (2017), the SDN
technology is used to assign multiple resources for different
earth observation missions as well as network device
coordination operations. In Li et al. (2020b), SDN assisted
secured authentication scheme is proposed for IoT-based
healthcare applications.

To address the challenges of a large number of
users/mobile devices, applications, and data in the 5G
era, in Tadros et al. (2020) the network services are
managed by the SDN technology. However, this work
is limited only to ground network and MUs rather than
management of both SAGIN and heterogenous users
(i.e., robots and vehicles) at the same time. To minimise
latency for vehicles moving from one network to another,
Abugabah et al. (2020) proposed SDN based intelligent
traffic engineering facility with a routing path selection
scheme for vehicular networks. To predict and balance the
traffic load of IoT servers, Montazerolghaem et al. (2020)
implemented a heuristic scheme in the SDN controller
which is based on fuzzy logic and time-series data analysis.
To automate the network services, in Nyanteh et al. (2021)

the SDN-based controller is utilised to coordinate both
physical and virtual network infrastructure. However, the
investigations on different types of users and applications
service level agreement (SLA) satisfaction for SAGINs
were out of their consideration. In Nkenyereye et al.
(2021), the SDN controller selects the roadside unit (RSU)
coordinator for vehicle safety message dissemination along
with vehicle road network discovery, cloud computing node
selection, and cluster formation activities, among others.
Zhu et al. (2017) used spectrum sharing and interference
management mechanisms for integrated terrestrial-satellite
networks. However, they did not investigate the role of
SDN technology in task allocation for heterogeneous users.
To manage the workload of cloudlet servers and control
traffic overhead, Nithya et al. (2020) proposed a cyber
foraging framework for resource coordination based on
SDN technology. To optimise the network resource usage
and routing path planning, Ling et al. (2019) formulated an
SDN-based multi-objective optimisation problem. However,
this work is limited only to satellite networks. To improve
the energy usage of sensors, Chen et al. (2020) investigated
an SDN-based resource scheduling scheme based on
particle swarm optimisation. It is perceived that this work
is limited only to sensor network users.

From the previously discussed research studies, it
can be deduced that almost most of the SDN-based
works investigated the resource scheduling scheme either
for ground networks or satellite networks rather than
SDN-based SAGIN. Further, the suitable resource-to-task
mapping for different types of users (i.e., MUs, sensors,
robots, and vehicles) was out of their analysis. The
research question of how resources can be assigned for
different types of SAGIN user’s tasks (i.e., blockchain,
computing, caching and data transmission task) and how
to arrange the scheduling model for resources were out
of their assessment by taking into account different SDN
controller deployment model, different user types with
their priority, latency and SLA requirements, pricing cost
for services, service provider profit, different ground, and
space-air networks nodes capability, nodes status collection,
among others. Moreover, the existing work is mainly
limited only to a centralised SDN (CSDN) controller.
To avoid additional control signal overhead, proper SDN
controller-based network coordination is imperative by
investigating both central and decentralised SDN controller
overhead. The existing literature works did not investigate
any suitable network architecture for SDN-based SAGIN by
considering sensor, robot, vehicle, and human MUs’ device
and their applications at the same time.

To resolve the existing issues, in this paper a
decentralised SDN controller-based superactive resource
scheduling scheme is introduced for SAGIN. The key
features and contributions of this paper are noted below:

• This paper inaugurates a new SDN-based network
architecture for integrated by taking into account
different types of users including sensors, robots,
vehicles, and human users’ devices.
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• This paper introduces a superactive resource
scheduling and task assignment scheme for
software-defined SAGIN applications by investigating
their priority, latency, financial cost, and SLA
requirements along with network devices capability
and heterogeneous types of task (i.e.,
blockchain-based computing task, caching task and
data transmission task). Our proposed scheme based
on SDN technology also investigates proper SDN
controller selection for different types of task and
resource assignment planning, by taking into account
their associated latencies and ability to provide the
best possible solution.

• To determine the proposed superactive resource
management schemes performance, this paper devises
a flexible mathematical model that includes several
performance metrics such as mean task completion
time, mean SLA fulfilment ratio, service provider
profit, time and financial reward ratio (FRR), mean
network throughput, finance cost for users, energy
expenditure cost, among others. The proposed
mathematical model properly incorporates different
types of costs and delays associated with systems
resource allocation and task execution.

• To estimate the efficiency of the proposed superactive
scheme for heterogeneous users’ task execution in the
SDN-based SAGIN, this paper contrasts the proposed
scheme performance with the traditional hybrid
reactive SDN (HRSDN) controller-based FCFS
scheduling and traditional CSDN-controller-based
scheduling.

Next, the key discussion associated with important
literature works is depicted in Section 2. The design,
modelling, and methodology discussion associated with the
proposed superactive resource management scheme and
software-defined SAGIN are explained in Section 3. The
mathematical model associated with the proposed scheme
is delineated in Section 4. The simulation results with
reasoning are presented in Section 5. The findings of this
research paper are outlined in the conclusion of Section 6.

2 Related works

This section details existing literature work on SDN-based
heterogeneous networks with their respective limitations
and merits. Nkenyereye et al. (2021) presented an efficient
RSU selection scheme using a utility function at the SDN
controller for fog-based vehicular networks along with
a cluster head selection scheme. To address the routing
path selection problem, Bano et al. (2021) come up with
a robust routing architecture solution by integrating an
SDN controller and wireless mesh network. Akin et al.
(2019) examined the suitability of static and dynamic link
costs for the existing routing schemes in SDN-assisted

networks. However, to acquire the overall networking
and routing-related information, the authors rely on the
centralised controller. To offload the vehicle’s computation
task to the best available processor, Ali Shah et al.
(2020) discussed an SDN-assisted cooperative computation
offloading scheme by taking both remote and edge
device/cloud into account. To offer intelligent path selection
and other traffic engineering activities, Abugabah et al.
(2020) examined the necessity of a multi-path routing
scheme in SDN-enabled vehicular networks. To improve
the routing performance, Younus et al. (2022) combined
reinforcement learning techniques with SDN technology
in wireless sensor networks. To balance the load on a
different link and lower the packet loss, Chen et al.
(2021) presented a dynamic routing path control and
link selection strategy using both link preference load
balancing in SDN. To improve the network’s bandwidth
utilisation and task completion success percentage, Chen
et al. (2020) introduced a dynamic task mapping and
resource scheduling technique in WSNs. In Alfoudi et al.
(2019), an SDN-based resource assignment mechanism
is presented for each isolated slice in LTE networks.
However, the authors did not consider different types
of users and decentralised controllers. Xia et al. (2020)
select the computing node for IoV’s delay-tolerant data
transfer in the cloud-fog network by using a CSDN
controller-based Markov decision (partially observable)
process. Yuan et al. (2020b) studied a joint offloading
and migration problem for SDN-based wireless body
area networks (WBANs). To get the global view of
cloud, fog servers, and local devices resource values,
the authors used a central SDN controller for offloading
the decision-making process. To improve the network
management and QoS of users, Bi et al. (2019) investigated
the benefits and challenges associated with integrated space
and terrestrial networks with SDN technology. Liu et al.
(2015) discussed a flexible network architecture for future
generation PONs by integrating fibre-wireless convergence
with SDN technology. However, the authors did not
introduce any SDN-based resource management scheme
for different types of users. To maximise social welfare by
satisfying small cell users’ service requirements, Sultana
et al. (2019) discussed a spectrum auction algorithm for
SDN-based C-RAN. The author presented a price charging
and winner selection mechanism, which is inspired by the
well-known VCG auction algorithm. To provide different
slices associated with different 5G applications (i.e., smart
grid and vehicular), Bektas et al. (2018) presented an
end-to-end slicing solution. However, the authors did not
provide any mathematical model or resource scheduling
algorithm. To optimise the network resource usage and to
offer flexible manufacturing data forwarding facility, Wan
et al. (2020) instigated a cross-network resource scheduling
and fusion scheme for CSDN controller-empowered
heterogeneous smart factory networks. However, the
authors did not consider different types of users and
applications other than smart factories. The authors also
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did not investigate the performance difference between
centralised and decentralised SDN controllers. To optimise
the random access for machine-to-machine communication
in SDN-enabled cellular networks, Li et al. (2017) used a
Markov decision (partially observable or POMDP) process.
The authors considered only a single type of user rather
than multiple types. Doan et al. (2020) optimised the
MEC applications state transfer latency problem by using
a meta-heuristic algorithm (i.e., Tabu search). The work
is mainly suitable for moving vehicles/users applications
rather than both static and movable users applications
cost optimisation. Marotta (2019) developed a cooperative
scheme by taking into account the adaptive collaboration
and control of both software-defined mobile and access
networks for the flexible functional split (i.e., distribution
and reconfiguration), wavelength, and bandwidth allocation
in the passive optical networks (i.e., PON front hauling).
Azaly et al. (2020) utilised a CSDN controller for a
dynamic spectrum resource allocation scheme in cognitive
radio networks. The author did not consider several
other users including vehicles, robots, and sensors, among
others. Huang et al. (2018) investigated the performance
of vehicle-to-vehicle data offloading for cellular networks
using the collaboration of SDN and MEC technology. To
reduce the migrated traffic demand and latency, Zhang
et al. (2020a) proposed a suitable ONU assignment scheme
for SDN configurable passive optical networks by taking
global load-balancing criteria into account. Gao et al.
(2020) proposed a load-aware and interference-free medium
access control protocol for VANET using SDN technology.
However, the missing part is that the aforementioned
literature works do not investigate any superactive resource
management scheme for software-defined SAGIN by taking
different users (human users devices, sensors, robots,
vehicles) and different types of tasks (computing, caching,
data transmission) along with users’ SLA requirements,
priority, users budget, and low-latency requirements. The
difference between the proposed scheme and related works
is given in Table 1.

3 Proposed superactive resource management
scheme

3.1 Network architecture and considerations

Figure 1 visualises the overall network architecture for
the proposed software-defined SAGIN. Our proposed
architecture consists of cooperative and integrated network
components such as LEO satellites (space components),
UAV (air network components), mobile devices, cloud
servers (both edge cloud server and remote server),
human users mobile devices, robots, vehicles, cellular
and WLAN network devices (in the ground). The MUs’
task data can be transferred/received to/from the satellites
through the ground backbone networks or UAV devices via
inter-satellite links or ISLs (acting as a relay), similar to Jia
et al. (2021).

Algorithm 1 Proposed superactive algorithm

1: for each local SDN controller in each round do
2: sends the time cycle start Beacon message to its associate

access layer network devices along with their cluster
members’ information.

3: collects the resource information from the nodes under its
coverage and neighbouring nodes.

4: assigns control slots to access layer devices (base station,
Wi-Fi access points) and receives the user’s task and
resource request information from them.

5: exchanges the task information with other SDN controllers
and updates the resource assignment schedule (for users).

6: sorts the user’s task first based on their priority and
rearranges the sorted task request by using their predicted
task completion time first basis while satisfying SLA and
budget requirements.

7: informs the resource slot schedule to users and actors (i.e.,
cloud servers, sensors, robots).

8: monitors and updates the process (if necessary)
9: for each access layer network device do
10: forms the cluster group by exchanging hello and reply

messages with the associated devices/MUs
11: receives the time cycle beacon message from the local

SDN controller and sends the control slot info. to the
users for task info. submission.

12: receives the task info. from users and sends them to the
associated local SDN controller

13: receives the resource assignment slot from the controller
and sends it to the users

14: assists the task data forwarding process (i.e., task input
and task output data)

15: for each actor (cloud server/robot/sensor) do
16: executes the assigned task
17: transfers the task output to the recipient user
18: end for
19: for each user do
20: sends the respective task info. to access layer device

(base station, access point)
21: receives the respective time-slot schedule info (to

transfer/receive task input/output data)
22: end for
23: end for
24: for each blockchain network device do
25: assists the blockchain-based authentication process (i.e.,

registration confirmation, block generation, validation,
smart contract, block confirmation, and data sharing)

26: end for
27: for each ground and satellite device do
28: cooperates with SDN controller
29: receives the request from a user, forwards the task data

(i.e., if selected as forwarding node), and executes the
task (if selected as actor)

30: end for
31: end for

The proposed integrated network model consists of both
space-air network and ground network components. The
ground network consists of several components such as
access layer device (i.e., cellular base station and Wi-Fi
access point), MU devices (smartphones, robots, sensors,
vehicles), backbone network devices, wired and wireless
communication link, OpenFlow switches, mobile-edge
computing (MEC) cloud server, local SDN controller,
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central SDN controller, ground earth station, and remote
cloud/central cloud server. The space network consists
of LEO satellites. The satellites communicate/connects
with the ground network through the ground stations.
The air network consists of UAV types devices (i.e.,
balloons, aerial platforms). With the help of ground
backbone network devices and cellular base stations, the
UAV-type devices can be connected to the ground network.
In this work, the local SDN controller is located near
the cellular base station (i.e., a fibre link is used as
a communication medium). Whereas, the central SDN
controller is placed multiple hops away from the local
SDN controller. Both the local and central SDN controllers
can collect the network nodes’ status information and
cloud server resources information (i.e., via request and
response message). The well-known open flow protocol is
used to transfer data forwarding rules and initiate control
operations (i.e., through the network). The SDN controllers
are connected through the fibre link. In this work, to
get the appropriate resource status (i.e., computing and
communication), the local SDN controller communicates
with other local SDN controllers and the central SDN
controller. The local SDN controller (near the cellular
base station) collects the task information from the MU’s
device (i.e., smartphone) under its coverage and provides
resources (i.e., computing, storage, communication) based
on the priority of each task, SLA requirements, low latency
based selection, users resource usage budget, and resource
availability. Based on the assigned task slot, the MUs
(i.e., human user devices, sensors, vehicles, and robots)
task raw data/result data can be uploaded/downloaded
from the suitable processing server and transferred to the
destination device. Similarly, MUs can access the caching
task data from the selected server and task data can be
transferred from the sender to the receiver. For moving
devices (i.e., vehicles, robots), the local SDN controller
predicts the future location of the moving device (xt+1 =
xt + us ∗ δt) by taking both current location (xt), journey
duration (δt), and moving speed into account (us). In
this work, the MU’s devices (i.e., smartphones, robots,
sensors, vehicles) can be connected with the access layer
devices (i.e., base station, access points) through the
wireless link. The edge network nearby computing server
is placed near the cellular base station and Wi-Fi access
points (i.e., wired/fibre link is used for communication
medium). In this work, we have assumed that the channel,
cloud resources, and time slot information can be updated
through the local SDN controller information exchange
with other network devices. This work also assumed
that the user’s task request information includes the task
workload, task input and output data information, SLA
information, task priority, user movement information, and
budget, among others. The available resources status and
capability information are collected by the local SDN
controller through the control plane before the resource
scheduling for task execution. We have also assumed
that the corresponding local SDN controller can exchange
and update their scheduling information after exchanging
the task and available resource information with other

local and central SDN controllers. In this work, three
different types of tasks are considered computing type task,
caching type task, and only data transfer type task. To
cope with the network’s dynamic nature, the task-related
information, network node status, and resource information
are generated randomly for simulation. The associated input
and output task data values, SLA, workload per task,
and other simulation parameters are discussed more briefly
in Section 5 and Table 2. Moreover, to investigate the
network congestion status and queueing delays during task
completion, we have utilised the M/D/1 queuing model
(Amreen et al., 2017).

By ensuring cooperation among SDN controllers and
managing the task and resource coordination locally, this
local SDN controller can lower the control overhead
and minimise the task completion delay for different
applications. The information collection phase duration is
limited and can be performed through the control plane.
Moreover, the information collection phase is done once
for all arrived application requests before the resource
scheduling phase. Thus, the overhead of the proposed
scheme (local SDN controller-based) communications and
information collection is lower compared with the CSDN
controller-based system. Moreover, the use of multiple local
SDN controllers can support a huge amount of applications
at the network edge. In case of one local SDN controller
failure, the user’s devices application (i.e., MUs, vehicles,
robots computing, data transmission, and caching task) can
be supported by another stable nearby local SDN controller
through the request and reply messages. Thus, the proposed
system is robust and can avoid single point of failure
issues. To avoid any kind of malfunctioning activities,
the user identity information can be checked during the
initial registration process and regularly during task data
transmission time. Similarly, the local SDN controller can
monitor the traffic of the user’s application to avoid issues
like users’ application attempts to get more resources
and providing wrong information. However, we want to
clarify that the detection of malfunctioning users, selfish
applications, or malicious attackers is out of the scope of
this paper and can be considered for future work.

3.2 Task and resource coordination scheme

This subsection contains the task and resource management
process for software-defined SAGIN. In particular, within
a simulation round or time-cycle, the proposed superactive
scheme activities can be categorised into three major parts:

1 task and resource information collection phase

2 resource scheduling and actor assignment phase

3 multi-user task accomplishment phase.

The detailed time frame model is visualised in Figure 2.
Whereas, the proposed superactive resource assignment
decision procedure for multi-user task completion and the
role of the different participants (i.e., users, actors, and
network access layer devices) are outlined in Algorithm 1.
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In this work, network access layer devices are cellular base
stations and Wi-Fi access points. The local SDN controller
decides the best processing actor nodes (i.e., robot, sensor,
and cloud server) for MUs’ tasks. To understand the overall
task execution process, the resource allocation scheme
describes a sequential procedure.

Note that, in our work, the control plane functions are
done in the control plane and data plane operations are
done in the data plane, separately. First, the local SDN
controller sorts the task based on priority, latency, and
SLA requirements (see Algorithm 1). Then, the controller
collects the resource information and determines the delays
based on the analytical model (also checks whether
they satisfy SLA requirements). Then, based on the task
arranging order (lower deadline first basis for multiple task)
and associated predicted delays, the SDN controller can
determine the necessary resources and assign the number
of resources to the user’s task to meet the corresponding
SLA (please see Subsections 3.3, 3.4 and 3.5 along with
Algorithm 1 for more details). To avoid unnecessary delays,
we have collected up-to-date information by setting the
information collection phase time limit. If there is any
failure or problem regarding information collection, the
scheduler can rely on other controller information via
cooperation. In case of server failure, the SDN controller
can monitor the task progress and select another server for
task execution. In this work, only the information gathered
within a time limit from the servers and devices would be
considered.

3.3 Information collection phase

The first phase of the proposed superactive scheme is the
resource and task information collection phase. Initially,
the network access device receives the time cycle initiation
Beacon message from the associated local SDN controller
and sends it to associated devices (i.e., robot, sensor,
smartphone, and vehicle). Next, the local SDN controller
collects the resource information from different nodes
(i.e., edge/remote cloud device, processing server, mobile
device, robot, vehicle, and UAV) within the network via
cooperation along with the associated communication link
status. Later, the SDN controller assigns the control slot
to users under the network access layer devices (i.e.,
cellular base station, and Wi-Fi access points) and the users
send the task information message (i.e., task specifications,
workload, input/output task data information, budget, SLA
requirement, and priority) to the associated local SDN
controller (i.e., placed near the cellular base station). Note
that, some user’s task accomplishment requires only cloud
device processing and some task requires collaboration
from the robot, sensor, and vehicle actors along with cloud
device/server actors. The detail regarding the heterogenous
task types is discussed in the previous sub-section. After
that, the local SDN controller exchanges information with
other SDN controllers regarding collected task requests
and resource status. Next, by getting the best possible
knowledge, the local SDN controller starts the resource

scheduling phase. The computing and cache task (Drolia
et al., 2017) can be executed with the help of a selected
server (local cloud server or remote server) based on
the system capability (e.g., high processing speed of the
available server and available caching task data in the
selected server). The selected server information can be
obtained before the task assignment.

3.4 Resource scheduling and actor assignment

The most important phase of our proposed scheme is the
resource scheduling phase. In this phase, after analysing the
collected tasks associated information along with available
resource information, the local associated SDN controller
first sorts all task requests based on their task priority basis
(high to low). Next, the SDN controller again rearranges the
already sorted task request based on their lower predicted
task completion time first basis while maintaining the
SLA (i.e., required task execution time limit) and budget
cost (per task) requirement satisfaction. The predicted task
completion time calculation is detailed in the analytical
section. All delays regarding task data processing (i.e.,
computation, caching task) in the best actor device, task
data transfer and reception activities, blockchain operation,
control, and waiting overhead are included in the task
completion delay calculation. Before the task completion
delay calculation, the local SDN controller chooses the
best available actor (i.e., edge/remote computing cloud
device, robots, sensors) for each task completion with
minimum latency, best routing path, and best preferable
communication link for each task data transfer. After
the completion of multiple received task request sorting
processes, the local SDN controller schedules time slot
order for the completion of all tasks by including actors’
task processing period, data transfer time (i.e., input and
output) period, and predicted additional overhead period.
After the completion of the slot assignment process per
task, the local SDN controller informs the users (i.e., human
users devices, vehicles) about its slot duration (i.e., slot
for transfer input and receiving output data) along with the
network access layer device (i.e., for forwarding task data)
and actors (i.e., for processing and transferring task data).

3.5 Multi-user task accomplishment phase

The final phase is the multi-user task accomplishment
phase. In this phase, the users send their associative
task information (i.e., input data) to the selected task
processing actors. The task processing actors (i.e., cloud
device, robot, and sensor) executes the task and finally send
the result to users during their respective slot schedule.
Note that, in this work for human users (i.e., smartphone
users), three different types of tasks are considered.
These are blockchain-based computation and information
processing type tasks (i.e., word counter in a passage
and face identification from image), caching type tasks
(i.e., streaming video), and only E2E data transfer type
tasks (i.e., end-to-end sender to receiver message transfer).
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Note that, the first step of all types of users task is a
blockchain-based authentication process. Any computation,
caching, and data transfer type tasks users need to be
authenticated to ensure security. Initially, when the users
send the transaction request, a block generation (i.e.,
transaction creation) is completed by the actor device (i.e.,
cloud/local edge server) along with the user registration,
authentication key delivery process (i.e., actors to users
for validation), and smart-contract creation process. Next,
the created block information is transferred to all other
actors and network devices. After the completion of the
transaction validation by all participants (i.e., actors and
network devices), the task workload (i.e., computation,
caching, data transfer) is executed by the actors. Then,
the users receive the transaction completion data. After
the data sharing/transfer, the blockchain is updated by the
actor’s node and updated data can be transferred to other
participants. Note that, other than the blockchain part, the
general computation task consists of task data transfer
(i.e., from the sender user device to the actors processing
node), uploaded task instructions/data processing (i.e., by an
actor), and output/actor processed data transfer (i.e., from
actors to user device). Whereas, the caching task consists of
users’ task information transfer to the actor (i.e., edge-cloud
device), delay associated with actors cache search (i.e., for
a match) or look up delay, and caching task data transfer
delay (i.e., from actors cache server to users device).

Note that, for the sensor actor associated task, the cluster
head of associated sensor actors collects the sensing type
data from sensor actors. Next, the cluster head (i.e., sensor
node) transfers the sensing type task data to the selected
device/actor (i.e., cloud device/actor for sensing type data
processing) for processing the remaining computation task.
Later, the human user’s device receives the processed task
result (i.e., the output after processing sensing type data)
from the selected actor/cloud device. For the robot actors’
associated task, two different types are considered (i.e.,
computation and data transfer task). For the first type of
robotic task, a suitable robot actor (i.e., selected by the local
SDN controller based on task requirements) first processes
the workload (i.e., packaging in the manufacturing factory)
of the task by itself after receiving the human user’s
instruction. Next, after task completion, the robot actor
transfers the confirmation data to the human user’s device.
For the second type of robotic task, each associated robot
actor partially completes the task (i.e., taking some pictures
using the camera at a certain location) and transfers the
captured data to the cloud actor (i.e., edge/remote server)
for the completion of remaining sub-part of the task
(i.e., useful information extraction from image). Later the
task result would be transferred from the cloud actors to
human users’ devices (i.e., smart-phone) via the selected
communication link. For the vehicle-associated task, three
different types of tasks (i.e., computing, caching, and data
transmission) are examined. Vehicle users can request a
computing type task and receive the task output result after
assigned actor (i.e, edge/central cloud computing device)
processing. Similarly, the vehicle users can access the
caching type task data (i.e., audio/video file) from the

selected actors (i.e., cloud actor/server) via the proposed
network infrastructures. Similarly, data transfer type tasks
for vehicle users (i.e., one device to another) can be
possible by using the proposed algorithm. Note that, all the
actors (i.e., for task execution), routing path (i.e., sender to
receiver), and communication link selection for each task
are selected by the associated local SDN controller.

4 Numerical performance analysis model

This section assimilates the numerical analysis model.
The numerical analysis can help us to determine system
performance quickly with multiple performance metrics,
deeper understanding of the systems, find approximate
accurate results properly with real-time systems settings,
and easily compared with other performance analysis. The
model contains some important and well-known metrics
including mean task completion time, energy expenditure,
mean network throughput, mean SLA fulfilment ratio,
service provider profit, financial expenditure, time reward
ratio (TRR) or TRR, and finance reward ratio or FRR,
among others. In this work, the analytical model is used
only to show the calculation process. Note that, the result
determination process via simulation is not static due to
varying data size, link rate, task processing capability, and
workload, among others. We have considered the fact that
the bandwidth is not fixed and can be changed with time.
To cope with the dynamic network scenarios, we have used
the varying communication link rate via random selection
during the simulation and selected the best possible link for
communication purposes. Thus, transfer delays are different
during the data transfer process due to varying link status,
data size, queuing delays, etc. Similarly, the task data size,
task processing capability of actor nodes and workload per
task are selected via random selection. The general users
can reproduce the results by simulating the steps mentioned
in Algorithm 1 and the analytical model can be used
to determine different performance metrics. The necessary
assumptions regarding tasks, users, networks, and resources
are given in Subsection 3.1 and Section 5. The simulation
notations and values can be found in Table 2.

4.1 Mean task completion time

The mean task completion time (ϕumd,i =
∑n

i=1 ϕu
ad,i

n ) can be
computed by taking the ratio of all users task completion
time (ϕuad,i) sum value and users task count number (n).
The task completion time includes all delays associate with
different users (i.e., human users device, robot, sensors,
and vehicles under the local SDN controller) computing
(ϕuco,i), caching (ϕuca,i), and data transmission (ϕudt,i) type
task completion delay along with initial resource allocation
phase delay (ϕucp,i) and blockchain operation (ϕubc,i) delay.
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Table 1 Comparison of the proposed scheme with related works

Scheme Main features Task types and
user types SDN type Network type Priority, SLA, low-latency-based

resource scheduling
Zhang et al.
(2020b)

SDN-based task
offloading for

vehicular network

Only single type
user and task

Centralised Only ground
network

not considered (all)

Zhou et al.
(2019)

Bidirectional
offloading for mobile

users task

Only single type
task and users

Centralised SAGIN
network

Not considered (all)

Huang et al.
(2018)

V2V data offloading
using SDN and MEC

Only single type Centralised Only ground
network

Not considered (all)

Abugabah
et al. (2020)

Intelligent traffic
engineering using
multi-path routing

Single type Centralised Only ground Not considered (all)

Li et al.
(2020b)

Secured framework
for healthcare system

using MEC

Single type Centralised Only ground Not considered (all)

Yuan et al.
(2020b)

SDN-based
offloading/migration

for WBAN

Single type Centralised Only ground Only priority-based

Ali Shah et al.
(2020)

Cooperative
approach for
vehicular task
offloading

Single type Decentralised
(reactive)

Only ground Not considered (all)

Montazerolghaem
et al. (2020)

Load
balancing-based IoT
task execution using
ILP formulation

Only computing
and physical task

Centralised Only ground Only QoS-aware

Nazari et al.
(2016)

SDN-based satellite
communication

Single type Centralised Only space
and ground

Not considered (all)

Tadros et al.
(2020)

SDN-based network
management for 5G

services

Single type Decentralised
(reactive)

Only ground Not considered (all)

Sultana et al.
(2019)

SDN-based spectrum
auction

Single type Centralised Only ground Not considered (all)

Wang et al.
(2022)

Prediction of
network traffic based
on learning approach

Single type Centralised Only ground Not considered (all)

Cao et al.
(2021)

Resource allocation
for IoV using SDN

and MEC

Single type Decentralised
(reactive)

Only ground Not considered (all)

Our proposed
superactive
approach

Priority, latency, and
SLA-aware resource
management scheme

Multiple types of
users and tasks

Hybrid
SDN

(proactive)

Space, air,
and ground
integrated
networks

Considered with the suitable
task scheduling order

ϕumd,i calculation can be estimated as follows:

ϕumd,i =

∑n
i=1 ϕ

u
co,i + ϕuca,i + ϕudt,i + ϕucp,i + ϕubc,i

n
(1)

where n is the total users task count and u is the user type
(i.e., human user device, robot, sensor, vehicle).

The task completion (ϕhdco,i) delay for human
device-cloud device (i.e., actor) cooperation-based
computing task is ascertained as follows:

ϕhdco,i = ϕhdrt,i + ϕhdft,i + ϕhdwc,i + ϕhdqd,i + ϕhdpt,i

=
Ωhd

os,i ∗ dhdha
σhd
hd→a

+
Ωhd

fs,i ∗ dhdha
σhd
a→hd

+
Πhd

wl,i

λhda,i

+ ϕhdqd,i + ϕhdpt,i (2)

where ϕhdrt,i, ϕhdft,i, ϕhdwc,i, ϕhdqd,i, ϕhdpt,i are humans users
computing task input file/data transfer communication delay
(i.e., human user device to cloud device/actor), output
file/data transfer delay (i.e., actor to human user device),
task instruction (i.e., workload) computing/process delay in
the actor server (i.e., to produce output data from input),
delay associated with queuing, delay associated with task
data propagation latency, respectively. Note that, in this
work, we have incorporated the M/D/1 queuing model for
queuing delay calculation (Amreen et al., 2017). If the
traffic load of the system (ρ) and service rate (υ) are known,
the queuing delay can be calculated as follows: ϕhdqd,i =

ρ
2υ(1−ρ) . Ω

hd
os,i and Ωhd

fs,i are the input (i.e., offload data)
and output (i.e., actor processed data) data file size of
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computing task, respectively. dhdha is the distance between
the human user’s device and the actor device/server.
σhd
hd→a/σ

hd
a→hd is the link rate (i.e., human users device to

actor and vice versa) of computing task data transfer. Πhd
wl,i

and λhda,i are the computing task instructions (i.e., workload)
count and actors processing power, respectively.

The caching task completion (ϕhdca,i) delay for human
user device-cloud device (i.e., actor) cooperation-based task
is assessed by:

ϕhdca,i = ϕhdrt,i + ϕhdacd,i + ϕhddd,i + ϕhdcqd,i + ϕhdcpt,i (3)

where ϕhdrt,i is the caching task request data transfer
(i.e., from human users device to actor/cloud device)
delay (ϕhdrc,i =

Ωhd
rc,i∗d

hd
ha

σhd
hd→a

). Ωhd
rc,i caching type task request

(i.e., instructions) size. ϕhdacd,i is the delay associated
with cache searching operation (i.e., actors). (lhdcd,i + zcm ∗
(lhdald + lhdnld)). lhdcd,i is the looking overhead delay associated
with actors cache searching process. The delays associated
with caching process is similar as Drolia et al. (2017). zcm
is the ratio associated with cache data search failure or miss.
lhdald and lhdnld are latency associated with actors look-up
operation (cache search) and network communication (i.e.,
data transfer) latency. ϕhddd,i is the cached file (i.e.,
audio/video data) download (i.e., from actor to humn user
device) delay (ϕhddd,i =

Ωhd
fc,i∗d

hd
ha

σhd
a→hd

). Ωhd
fc,i is the downloaded

file (i.e., cached data) size. ϕhdcqd,i and ϕhdcpt,i are queuing
and propagation latency associated with caching type task,
respectively.

Next, only data transfer type task completion delay (i.e.,
end-to-end only data transfer from sender to receiver) is
assessed as follows:

ϕhddt,i =
Ωhd

dts,i ∗ dhdhe
σhd
hd→en

+ τ ∗
Ωhd

dts,i ∗ dhdenr
σhd
en→re

+
Ωhd

dts,i ∗ dhdfer
σhd
fn→re

+ ϕhddqd,i + ϕhddpt,i (4)

Ωhd
dts,i is the end-to-end delivery (sender to receiver) data

size or data amount. τ is the communication hop number
distance between (sender network access device to receiver
network access device). In this work, the network access
device is either cellular base station or Wi-Fi access
point. dhdhe , dhdfer, and dhdenr are communication distance
(human user device to senders network edge device),
communication distance (final receiver associated network
edge device to receiver users device), and communication
distance (sender network edge device to receiver associated
network edge device), respectively. σhd

hd→en, σhd
en→re, and

σhd
fn→re are communication link (human user device to

senders network edge device) associated data transfer rate,
communication link rate (sender associated network edge
device to receiver associated network edge device), and
communication link rate (receiver associated network edge
device to receiver users device), respectively.

Whereas, the task completion (ϕrco,i) delay for
robot-based computing task execution by using human
device-robot actor cooperation (ϕrco,i = ϕrrco,i) and
human-robot actor-cloud actor device (ϕrco,i = ϕraco,i)
cooperation is enumerated as follows:

ϕraco,i = ϕrrt,i + ϕrrwc,i + ϕrot,i + ϕrawc,i

+ ϕraft,i + ϕraqd,i + ϕrapt,i

=
Ωr

rt,i ∗ drhr
σhd
hd→r

+
Πr

rwl,i

λrr,i
+

Ωr
os,i ∗ drra
σr
r→a

+
Πr

awl,i

λra,i
+

Ωr
fs,i ∗ drah
σr
a→hd

+ ϕraqd,i + ϕrapt,i (5)

where ϕrrt,i, ϕrrwc,i, ϕrot,i, ϕrawc,i, ϕraft,i, ϕraqd,i, ϕrapt,i
are task request transfer delay, robot-based task
instruction/workload execution/computation, robot actor
to cloud actor task data upload delay, cloud actor
workload/task instruction processing (i.e., from uploaded
data), and cloud actor to human device output data (i.e.,
cloud actor processed data) transfer delay, associated
queuing, and propagation delay for robot-cloud associated
task, respectively.

ϕrrco,i = ϕrrt,i + ϕrrwc,i + ϕrft,i + ϕrqd,i + ϕrpt,i

=
Ωr

rt,i ∗ drhr
σhd
hd→r

+
Πr

rwl,i

λrr,i
+

Ωr
fs,i ∗ drrh
σr
r→hd

+ ϕrqd,i + ϕrpt,i (6)

ϕrft,i is the robot processed task final data (output) transfer
delay (i.e., robot actor to human device). ϕrqd,i and ϕrpt,i are
associated queuing and propagation delay (i.e., overall task
completion), respectively.

Further, the computing task completion (ϕsco,i) delay
by using human device-sensor actor-cloud actor device
cooperation is measured by:

ϕsco,i = ϕsrt,i + ϕsswc,i + ϕsot,i + ϕsawc,i

+ ϕsaft,i + ϕsqd,i + ϕspt,i

=
Ωs

rt,i ∗ dshs
σs
hd→s

+
Πs

swl,i

λss,i
+

Ωs
os,i ∗ dssa
σs
s→a

+
Πs

awl,i

λsa,i
+

Ωs
fs,i ∗ dsah
σhd
a→hd

+ ϕsqd,i + ϕspt,i (7)

ϕsrt,i, ϕsswc,i, ϕsot,i, ϕsawc,i, ϕsaft,i, ϕsqd,i, and ϕspt,i are
human users device to sensors task request/instruction
transfer delay, sensor-based task workload/instruction
processing, sensor actor to cloud actor data (i.e.,
sensors processed) upload delay, cloud actor workload/task
instruction processing (i.e., processing of sensors data)
delay, and cloud actor to human device final output data
(i.e., cloud actor processing of sensors uploaded data)
transfer delay, associated queuing, and propagation delay
for sensor-cloud collaborative task, respectively.
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Figure 1 Proposed software defined SAGIN architecture (see online version for colours)

Figure 2 Proposed superactive resource allocation timeframe for multi-user task execution (see online version for colours)

Similarly, the computing (ϕvco,i) and caching (ϕvca,i)
task completion delay calculation by using human
device-vehicle-cloud actor cooperation is ascertained by:

ϕvco,i = ϕvrt,i + ϕvvwc,i + ϕvot,i + ϕvawc,i

+ ϕvaft,i + ϕvqd,i + ϕvpt,i

=
Ωv

rt,i ∗ dvhv
σv
hd→v

+
Πv

vwl,i

λvv,i
+

Ωv
os,i ∗ dvva
σv
v→a

+
Πv

awl,i

λva,i
+

Ωv
fs,i ∗ dvah
σhd
a→hd

+ ϕvqd,i + ϕvpt,i (8)

The caching task completion (ϕvca,i) delay by using human
user device-vehicle-cloud device cooperation is assessed by:
ϕvca,i = ϕvrt,i + ϕvacd,i + ϕvdd,i + ϕvcqd,i + ϕvcpt,i (9)

where ϕvrt,i, ϕvacd,i, ϕvdd,i, ϕvcqd,i, ϕvcpt,i are the caching
request transfer (from human device to cloud actor via
vehicle device) delay, cache search delay by cloud actors,
cache file download delay (from actor to user device
via vehicle), overall queuing, and propagation delay,
respectively.

Whereas, the vehicle-based data transfer (ϕvdt,i) task
completion delay (i.e., from vehicle sender to human device
receiver) calculation is devised as follows:

ϕvdt,i = ϕvrd,i +
Ωv

dts,i ∗ dvve
σv
v→en

+ τ ∗
Ωv

dts,i ∗ dvenr
σv
en→re

+
Ωv

dts,i ∗ dvfer
σv
fn→re

+ ϕvdqd,i + ϕvdpt,i (10)
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where ϕvrd,i, ϕvdqd,i, and ϕvdpt,i are the data transfer request
communication (from human device to vehicle device)
delay, overall queuing, and propagation delay, respectively.

Ωv
dts,i is the transferred task data amount (sender vehicle

to nearby access layer network device). dvve, dvfer, and
dvenr are communication distance (sender vehicle device
to nearby network access device), communication distance
(receiver associated network access device to receiver users
device), and communication distance (sender associated
network access layer device to receiver associated network
access layer device), respectively. σv

v→en, σv
en→re, and

σv
fn→re are communication link rates between vehicle

device to senders network access layer device, between
sender associated access layer device to a receiver
associated network access device, and between receiver
associated network access layer device to receiver user
device, respectively.

4.2 Resource allocation phase and blockchain delay
time

The resource allocation phase delay (ϕucp,i) is estimated by
taking the sum of delays associated with beacon tranfer
delay (ϕubtd,i), resource information collection from different
service provider nodes (ϕuric,i), users request regarding
task information collection (ϕuurc,i), inter SDN information
exchange delay (ϕuisc,i), users request (i.e., task information)
sorting delay (ϕuursd,i) based on SLA, latency, priority,
and budget, resource slot assignment (i.e., from local
SDN controller to access layer network device) message
delay (ϕursa,i), and slot schedule announcement (i.e., from
network access layer device to users device) delay (ϕussa,i).

Whereas, the users blockchain delay (ϕubc,i) associated
with the task accomplishment is figured out by taking the
sum of delays associated with users registration process
confirmation (ϕuurpc,i), block (i.e., transaction) creation
and validation (ϕubcv,i), smart contract process completion
(ϕuscpc,i), block shiftment process to other service providers
(ϕubspc,i), block confirmation process by service providers
(ϕubcp,i), access permission completion process (ϕucap,i). This
blockchain process completion is necessary in order to
ensure user authentication before data sharing, computation,
caching task execution process.

4.3 Energy expenditure value calculation

In this work, energy expenditure value is another crucial
parameter for SDN-based systems performance evaluation
(Fang et al., 2022; Li et al., 2020a). The energy expenditure
value for the user’s task accomplishment is presented
in this subsection. The users total energy expenditure
calculation (ψu

ad,i) consists of users (i.e., human user
device, robot, vehicles, sensors) energy expenditure during
resource scheduling or control phase (ψu

cp,i), blockchain
phase (ψu

bc,i), computation (ψu
co,i), caching (ψu

ca,i), and only
data transfer type (ψu

dt,i) task execution. Users generally
dissipate energy for their task data transmission, data

reception, workload/task instruction processing, and idle
listening type operation. ψu

ad,i is articulated by:

ψu
ad,i =

n∑
i=1

ψu
co,i + ψu

ca,i + ψu
dt,i + ψu

cp,i + ψu
bc,i (11)

where n and u are the total users (i.e., task number) request
and type of users (i.e., human users device, robot, vehicles,
sensors), respectively. The energy expenditure value (ψhd

co,i)
value for human device-cloud device cooperation-based
computing task execution is conveyed by:

ψhd
co,i = ωhd

tr,i ∗ (ϕhdrt,i + ϕhdpt,i) + ωhd
rp,i ∗ ϕhdft,i

+ ωhd
it,i ∗ ϕhdwc,i + ωhd

it,i ∗ ϕhdqd,i (12)

where ωhd
tr,i, ωhd

rp,i, and ωhd
it,i are the average energy

expenditure value (per second) during human users device
data transmission operation, receive, and idle (i.e., waiting)
operation, respectively. The other notations are different
delays (i.e., ϕhdrt,i, ϕhdpt,i, ϕhdft,i, ϕhdwc,i, ϕ

hd
qd,i) associated with

human-cloud actor device coopearation-based computing
task completion [i.e., see equation (2) for details].

The energy expenditure (ψhd
ca,i) value for human users

caching task completion based on human user device-cloud
device/actor cooperation is assessed by:

ψhd
ca,i = ωhd

tr,i ∗ (ϕhdrt,i + ϕhdcpt,i) + ωhd
it,i ∗ ϕhdacd,i

+ ωhd
rp,i ∗ ϕhddd,i + ωhd

it,i ∗ ϕhdcqd,i (13)

The average energy expenditure notations (i.e., ωhd
tr,i, ωhd

rp,i,
and ωhd

it,i) are discussed earlier [see equation (12)]. Whereas,
other notations (i.e., ϕhdrt,i, ϕhdcpt,i, ϕhddd,i, ϕhdacd,i, ϕhdcqd,i)
indicate different delays associated with caching task
completion [see equation (3) for more details].

Next, the energy expenditure value (ψhd
dt,i) associated

with human users only data transfer type task completion
(i.e., from sender to receiver) is estimated by:

ψhd
dt,i = ωhd

tr,i ∗

(
Ωhd

dts,i ∗ dhdhe
σhd
hd→en

+ ϕhddpt,i

)
+ ωhd

it,i

∗

(
τ ∗

Ωhd
dts,i ∗ dhdenr
σhd
en→re

+ ϕhddqd,i

)
+ ωhd

rp,i

∗

(
Ωhd

dts,i ∗ dhdfer
σhd
fn→re

)
(14)

The average transmit, receive, idle energy expenditure
notations (i.e., ωhd

tr,i, ωhd
rp,i, and ωhd

it,i) are discussed
earlier [see equation (12)]. Whereas, other notations
indicate different delays associated with data transfer task
completion [see equation (4) for more details].

The energy expenditure (ψr
co,i) cost for computing task

execution by using human device-robot actor (ψr
co,i =

ψr
rco,i) and human-robot actor-cloud actor device (ψr

co,i =
ψr
aco,i) cooperation is denoted by:

ψr
aco,i = ωhd

tr,i ∗ (ϕrrt,i + ϕrapt,i) + ωr
op,i ∗ ϕrrwc,i

+ ωr
tr,i ∗ ϕrot,i + ωhd

it,i ∗ (ϕrawc,i + ϕraqd,i)

+ ωhd
rp,i ∗ ϕraft,i (15)
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ψr
rco,i is determined by using the following equation:

ψr
rco,i = ωhd

tr,i ∗ (ϕrrt,i + ϕrpt,i) + ωr
op,i ∗ ϕrrwc,i

+ ωhd
rp,i ∗ ϕrft,i + ωhd

it,i ∗ ϕrqd,i (16)

where ωr
op,i, ωr

tr,i, and ωhd
it,i are the average energy

expenditure cost (per second) for robots task instruction
processing, robots data transmission, and human devices
idle waiting operation, respectively. The associated delay
notations definition can be found in equations (5) and (6).

Further, the energy expenditure (ψs
co,i) cost calculation

for human device-sensor actor-cloud actor device
cooperation-based computation task completion is
delineated by:

ψs
co,i = ωhd

tr,i ∗ (ϕsrt,i + ϕspt,i) + ωs
op,i ∗ ϕsswc,i

+ ωs
tr,i ∗ ϕsot,i + ωhd

it,i ∗ (ϕsawc,i + ϕsqd,i)ω
hd
rp,i

∗ ϕsaft,i (17)

where ωs
op,i and ωs

tr,i are the average energy expenditure
cost for sensors task instruction processing and data
transmission operation, respectively. The readers may be
referred to equation (7) for other remaining delay notation
definitions.

Similarly, the user’s energy expenditure value for
computing (ψv

co,i) and caching (ψv
ca,i) task completion

by using human device-vehicle-cloud actor cooperation is
ascertained by:

ψv
co,i = ωhd

tr,i ∗ (ϕvrt,i + ϕvpt,i) + ωv
op,i ∗ ϕvvwc,i

+ ωv
tr,i ∗ ϕvot,i + ωhd

it,i ∗ (ϕvawc,i + ϕvqd,i)

+ ωhd
rp,i ∗ ϕvaft,i (18)

ψv
ca,i = ωhd

tr,i ∗ (ϕvrt,i + ϕvcpt,i) + ωhd
it,i

∗ (ϕvacd,i + ϕvcqd,i) + ωhd
rp,i ∗ ϕvdd,i (19)

where ωv
op,i and ωv

tr,i are the average energy expenditure
cost (per second) for vehicles task instruction processing
and data transmission operation, respectively. The other
remaining delay notations definition can be found in
equations (8) and (9).

Users energy expenditure value calculation for vehicles
data transfer (ψv

dt,i) task completion (i.e., vehicle sender to
human device receiver) is devised by:

ψv
dt,i = ωhd

tr,i ∗ (ϕvrd,i + ϕvdpt,i) + ωv
tr,i ∗

Ωv
dts,i ∗ dvve
σv
v→en

+ ωhd
it,i ∗

(
τ ∗

Ωv
dts,i ∗ dvenr
σv
en→re

+ ϕvdqd,i

)
+ ωhd

rp,i ∗
Ωv

dts,i ∗ dvfer
σv
fn→re

(20)

where ωhd
tr,i, ωv

tr,i, ωhd
it,i, ωhd

rp,i are the average energy
expenditure (per second) during the human users device
data transmission, vehicle users data transmission, idle

status due to waiting, and data receive operation,
respectively. The other remaining delay notations definition
can be found in equation (10).

The energy expenditure for resource allocation phase
(ψu

cp,i) is estimated by taking the sum of energy expenditure
values associated with beacon reception (ωhd

rp,i ∗ ϕubtd,i),
SDN controllers resource information collection (ωhd

it,i ∗
ϕuric,i), users request (task information) transfer (ωhd

tr,i ∗
ϕuurc,i), inter SDN controller information exchange (ωhd

it,i ∗
ϕuisc,i), users request (task) sorting (ωhd

it,i ∗ ϕuursd,i), resource
slot assignment (ωhd

it,i ∗ ϕursa,i), and slot schedule message
duration (ωhd

rp,i ∗ ϕussa,i).
The energy expenditure cost for users blockchain

phase (ψu
bc,i) is figured out by taking the sum value

of energy cost (i.e., due to transmission, reception,
idle duration) associated with users registration process
(ωhd

tr,i ∗ ϕuutrpc,i + ωhd
rp,i ∗ ϕuurrpc,i + ωhd

it,i ∗ ϕuuirpc,i), block
creation and validation (ωhd

tr,i ∗ ϕubtcv,i + ωhd
rp,i ∗ ϕubrcv,i +

ωhd
it,i ∗ ϕubicv,i), smart contract process completion (ωhd

it,i ∗
ϕuscpc,i), block shiftment to other service providers (ωhd

it,i ∗
ϕubspc,i), block confirmation by service providers (ωhd

tr,i ∗
ϕubtcp,i + ωhd

rp,i ∗ ϕubrcp,i + ωhd
it,i ∗ ϕubicp,i), access permission

completion process (ωhd
rp,i ∗ ϕucap,i).

4.4 Mean network throughput

The mean network throughput is another crucial metric
for the evaluation of SDN-based network performance
(Zhang et al., 2022; Tadros et al., 2020). The network
throughput is determined by using the ratio value of the
total received packet (ζusu→ru) number at the receiver and
task data transfer (from sender to receiver) completion
time (Φu

su→ru). Whereas, the mean throughput (µu
ntut,i) is

assessed by the ratio of the total net. throughput value and
the total number of users requested task (n).

µu
ntut,i =

ζusu→ru

n ∗ Φu
su→ru

=
1

n
∗
∑n

i=1 ξ
u
su→ru

Φu
su→ru

(21)

where ξusu→ru is the received packet (at the receiver)
number associated with one user’s task.

4.5 Mean SLA fulfilment ratio

The mean SLA requirement fulfilment ratio (ηusla,i) is
determined by dividing the successful number (λst) of the
task that satisfies the given time limit for task completion
with total users (i.e., human device, sensors, robot, vehicle)
requested task number (λtt).

ηusla,i =
λst
λtt

=
λtt − λft

λtt
(22)

where λft is the user’s task that is unsatisfied with the SLA
requirement (i.e., the time limit for task completion).
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Table 2 Simulation notations and values

Notations Name, values, and units
ωu
tr,i, ωu

rp,i, ωu
it,i, ωu

op,i User device (u ∈ r, v, hd, s) average (one second cost) transmit (0.37 W),
receive (0.31 W), idle state (0.005 W), task instruction processing (0.5 W)

energy expenditure
ϵuacu,i/ϵubwu,i/ϵucpo,i/ϵubco,i, ϵuidw,i, αu

spc,i Users avg. payment (i.e., per minute) for actors/bandwidth/control phase, and
blockchain phase resources (USD0.4 for time sensitive/USD0.3 for delay

tolerant task), waiting time/idle time operation (USD0.1), service provider avg.
cost (USD0.25 for resource usage)

Ωu
os,i/Ω

u
fs,i, Πu

wl/rwl/awl/swl/vwl,i, λ
u
i , ϕhd

acd,i, ϕu
rt,i,

dus→r

Transferred data size for offload input/output (5–100 KB for computation,
1–20 KB for caching, 5–50 KB for data transfer task), workload (1 K cycle
per bit processing), actor/user device processing speed (max. 3 GHz for cloud
device, 1 GHz for vehicle/robot/human device, 500 MHz for sensor), cache
search delay (ms), request transfer delay (ms), varied distance between sender

to receiver (1–1,000 m)
σu
s→r, ϕ

u
qd/aqd/cqd/dqd,i, ϕ

u
pt/apt/cpt/dpt,i, τ Data rate per link value (for Wi-Fi connection 100–300 Mbps, for cellular link

30–100 Mbps, for fibre link max. 1 Gbps, satellite associated link 1–10 Mbps,
UAV associated link 1–25 Mbps), queuing delay (ms), propagation delay (ms),

varied intermediate hop (sender to receiver) number (1–5)
ϕu
btd,i, ϕu

ric,i, ϕu
urc,i, ϕu

isc,i, ϕu
ursd,i, ϕu

rsa,i, ϕu
ssa,i Beacon transfer delay (ms), resource information collection delay (1–5 ms),

users request/task info. collection delay (ms), inter sdn controller information
exchange delay (1–10 ms), user request sorting delay (ms), slot assignment

message delay (ms), schedule announcement delay (ms)
n, ϕu

urpc,i, ϕu
bcv,i/ϕu

scpc,i, ϕu
bspc,i/ϕu

bcp,i, ϕu
cap,i,

distance between network access device and cloud,
users to network access device, network access device
to local SDN controller, local to remote SDN controller,
moving speed of robot/human user, vehicle

Total users (vary), blockchain user registration completion delay (1–5 ms),
block creation, validation/smart contract arrangement delay (1–50 ms), block
shifment/confirmation delay (1–10 ms), access permission delay (1–10 ms),
100 m− 1Km, 1–100 m, 100 m−1Km, 1–5 Km, 1–10 m/s, 1–20 m/s

ϕu
md,i, ψu

ad,i, µu
ntut,i, ηusla,i, θufc,i, βu

spp,i Mean task completion time (ms, vary), energy expenditure value (mW, vary),
mean network throughput (Kbps), mean SLA fulfilment ratio (%), users
financial payment cost (USD), profit value for service provider (USD)

4.6 Users financial payment value

The users total financial payment value (θufc,i) is determined
by summing up the financial cost value for actor resource
usage (δuac,i), network (i.e., bandwith/storage/forwarding)
resource usage (δubw,i) for task data transfer, control
phase scheduling (δuco,i), blockchain operation (δubo,i), idle
waiting time (δuiu,i) during computing, caching, and data
transmission task. θufc,i calculation is estimated by:

θufc,i = δuac,i + δubw,i + δuiu,i + δuco,i + δubo,i

=
n∑

i=1

ϕuacu,i ∗ ϵuacu,i + ϕubwu,i ∗ ϵubwu,i + ϕuidw,i

∗ ϵuidw,i + ϕucpo,i ∗ ϵucpo,i + ϕubco,i ∗ ϵubco,i (23)

where ϵuacu,i, ϵubwu,i, ϵuidw,i, ϵucpo,i, and ϵubco,i are the average
payment value (i.e., per minute service) for actors (e.g.,
cloud device) resource usage (i.e., processing/transfer),
bandwidth resource (e.g., for upload, download data
transfer) usage, idle waiting (i.e., for service) time, control
phase opeartion, and blockchain operation, respectively.

4.7 Service provider profit value

In this work, the service provider profit value is estimated
by taking the difference value between the collected
revenue (i.e., users’ financial cost for service) and

service providers’ cost (i.e., associated with deployment,
maintenance, and resource buying). If αu

cr,i is the collected
revenue from users and αu

spc,i is the service provider cost
(i.e., perusers task execution service), then service provider
profit value (βu

spp,i) is ascertained by:

βu
spp,i =

n∑
i=1

(αu
cr,i − αu

spc,i) (24)

4.8 Time reward ratio

The TRR can be ascertained by using the ratio value
between the total task accomplishment time gain (i.e.,
difference between the task completion time and time limit
value) value (κutg,i) and task time limit value (κutl,i) for task
completion.

TRR =
κutg,i
κutl,i

=
n∑

i=1

(κutl,i − ϕuad,i)

κutl,i
(25)

where ϕuad,i is the user’s task completion time and n is the
task (i.e., users task) number.
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Figure 3 Mean task completion time and energy expenditure cost (see online version for colours)

(a) (b)

Figure 4 Mean network throughput and SLA fulfilment ratio results (see online version for colours)

(a) (b)

Figure 5 Service provider profit and users financial cost for service results (see online version for colours)

(a) (b)



Superactive 37

Figure 6 Users time and FRR results (see online version for colours)

(a) (b)

4.9 Financial reward ratio

The FRR is figured out by using the ratio value between
the total financial cost gain (i.e., the difference between
the user’s budget and users’ required financial cost for task
execution) value (θufg,i) and users budget value (θubg,i) for
task completion.

FRR =
θufg,i
θubg,i

=

n∑
i=1

(θubg,i − θufc,i)

θubg,i
(26)

where θufc,i is the users financial (i.e., payment value) cost
for task completion (i.e., resource usage).

5 Results and performance analysis

This section illustrates the performance results of the
superactive resource management scheme along with the
the traditional CSDN scheme based on CSDN controller
and first come first served service (e.g., Abugabah et al.,
2020; Gao et al., 2020; Zhang et al., 2020c; Wang et al.,
2022) and traditional HRSDN or hybrid reactive SDN
controller-based and first come-first served-based service
(e.g., Nkenyereye et al., 2021; Ali Shah et al., 2020; Cao
et al., 2021).

For simulation, three different types of users task
(i.e., only blockchain-based computation, caching, and data
transmission task) are considered in our MATLAB-based
simulation process. The user’s task amount is chosen
between the 12 to 100 number range based on an
incremental basis. The computation task offloaded (i.e.,
input/output) data range is selected randomly between 5 KB
to 100 KB range. The caching task data range (i.e.,
random selection) is selected between the 1 KB to 20 KB
range. The data transmission (i.e., transferred from sender
to receiver) data range is within (i.e., which is selected
randomly for each task) the 1–50 KB range. In this work,
the typical example of the computing task is an event

or human face detection or identification from a captured
image by a camera (installed in the human user’s device or
robots, vehicles). Another computing type task is the result
generated from the sensory data (i.e., pollution detection).
A typical example of the caching type task is a video
download from a selected server. In this work, we have
assumed that the task (computing and caching) workload
is the total number of CPU cycles or instructions required
to process the transferred data (per computing and caching
task) by selected servers. Note that, the corresponding task
input data (captured image or sensor data) is transferred
or offloaded to the server for workload processing (i.e.,
result generation from the input data) by the corresponding
device (i.e., mobile device, robot, sensor, and vehicle). In
this work, the task workload is related to the task data
input size (i.e., workload count is 1,000 cycles per bit
processing). The workload count per requested task is thus
varied between the 5 M cycle to 100 M cycle range.
Other performance parameters and values associated with
the numerical model calculation and results are given in
Table 2. In the following this paper discusses important
results consisting of mean task completion time, energy
expenditure value, mean throughput, mean SLA fulfilment
ratio, profit for the service provider, and financial payment
cost (users) metrics, among others. For some example
regarding the computing and caching type task data and
workload selection, the readers may refer to Zhang et al.
(2015b), Yuan et al. (2020a), Zhang et al. (2015a) and
Drolia et al. (2017).

Figures 3(a) and 3(b) plot the mean task completion
time and energy expenditure performance of the proposed
superactive scheme, respectively. Figures 3(a) and 3(b)
indicate an increasing trend of mean task completion time
value and energy expenditure value with the increasing
user’s task amount value, respectively. The mean task
completion time and energy expenditure cost increment
with a large task execution number are expected due to a
large number of workload processing and communication
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overhead latency compared with its small number of task
execution counterparts.

Importantly, the proposed superactive resource
allocation scheme achieves lower mean task completion
time and energy expenditure cost for multiple types of
task execution over software-defined SAGIN networks
than the traditional scheme based on CSDN controller
and first come first served service and traditional HRSDN
controller-based scheme with FCFS service, respectively.
The underlying reason for such a result is that the
proposed superactive scheme uses a suitable local SDN
controller for decision-making by taking into account
the low communication and computation overhead of
centralised and local decentralised controllers (i.e., located
near the users). Moreover, the proposed superactive
decision-making process assigns resources to users by
taking into account collaboration opportunities with
different SDN controllers, different devices capability (i.e.,
both space-air and ground networks), available resources,
best possible communication link selection for a different
task, incorporation of suitable task sorting strategy based
on users priority, low latency, budget and financial cost
associated with the services, and SLA requirements, among
others. The traditional CSDN scheme suffers from worse
energy expenditure and mean task completion results
than others. This is obvious as the traditional CSDN
scheme causes higher control overhead for central SDN
controller-based decision making for resource allocation.
The traditional HRSDN controller-based scheme achieves
second-best results in terms of energy expenditure and
mean task completion results. The underlying reason is that
the traditional HRSDN scheme relies on a decentralised
controller for local task execution. Whereas, the traditional
HRSDN scheme depends on the decentralised controller
for local and centralised controller for non-local task
execution and resource assignment process. Moreover,
the decision-making process is reactive, not proactive.
Further, the traditional HRSDN scheme experience higher
waiting latency due to its first-come-first-served or FCFS
manner-based task sorting process rather than the proposed
schemes users’ priority and SLA requirement basis.
Different from the other schemes, the proposed scheme
coordinates the decision-making process by collecting prior
information on different users’ statuses and other nearby
SDN controllers. Figure 3(a) reveals that for 60 users
(i.e., vehicles, sensors, robots, MU’s blockchain-based
computing, caching, data transfer) task amount, the mean
task completion time cost for the proposed superactive
scheme, traditional HRSDN, and traditional CSDN are
201.86 ms, 430 ms, and 714 ms, respectively.

Figure 4(a) investigates the mean network throughput
for increasing heterogeneous task amount under three
different schemes (i.e., proposed superactive, traditional
HRSDN, and traditional CSDN scheme). The higher
network throughput results for small and large task
number execution validate the supremacy of the proposed
superactive scheme over others. Due to increasing
control overhead and task processing delay, the network
throughput can be decreased slightly with the increment

of heterogenous task amount. The figure notifies that due
to higher control overhead and additional waiting time
overhead, the traditional HRSDN and traditional CSDN
scheme secures the second-best and worse task execution
scheme in terms of higher mean network throughput. In
Figure 4(a) when the task amount reaches 36, the mean
network throughput for the proposed superactive SDN
controller-based resource allocation scheme, traditional
CSDN, and traditional HRSDN scheme are approximately
75 Kbps, 25 Kbps, and 40 Kbps, respectively.

The experimental results in Figure 4(b) visualises
the mean SLA fulfilment ratio value of the proposed
scheme along with its counterpart schemes for varying task
completion time limit value. In all three schemes, the mean
SLA fulfilment ratio value raises as the time limit value
for task execution increases. As shown in Figure 4(b),
due to user priority, low latency, and service execution
requirement (per task) based on resource allocation, the
mean SLA fulfilment ratio of the proposed superactive
scheme is higher than the traditional CSDN and traditional
HRSDN scheme. In both traditional CSDN and traditional
HRSDN schemes, the resource allocation is based on an
FCFS basis rather than multiple tasks with low latency,
priority, and tasks service execution requirement basis.
However, due to lower control, waiting, and communication
overhead, the traditional HRSDN scheme can slightly
improve the SLA fulfilment ratio of the traditional CSDN
controller-based scheme. For example in Figure 4(b),
when the time limit for task execution is 500 ms, the
mean SLA fulfilment ratio of the proposed superactive
scheme, traditional HRSDN, and traditional CSDN are
approximately 91.58%, 55%, 31%, respectively.

The results in Figure 5(a) hint that the proposed
superactive scheme can offer higher service provider profit
than the compared traditional HRSDN and traditional
CSDN schemes. Note that, the service provider’s profit
value depends on the revenue from the users (i.e., users’
financial payment cost) and the service provider cost value
difference. The figure also demonstrates that a large amount
of service provider profit can be achieved in all compared
schemes when the task execution request number is large.
By contrast, with the decrease in the task amount, the
service provider profit of the proposed superactive scheme,
traditional HRSDN, and traditional CSDN scheme almost
highlight a downward trend. It is highly desirable as the
service provider profit reduces in the traditional HRSDN
and traditional CSDN schemes due to higher waiting
time during execution and control overhead. Whereas the
waiting time and control overhead are relatively lower in
the proposed superactive scheme, thus generating more
profit for the service providers. The service provider profit
is comparably lowest in the traditional CSDN scheme
due to its inefficient resource allocation policy, large
waiting delay, and higher control message exchange time
overhead. In Figure 5(a), when the task number execution
reaches 100, the service provider profit value for the
proposed superactive resource allocation scheme, traditional
CSDN, and traditional HRSDN schemes are approximately
USD7.81, USD3.42 and USD4.01, respectively.
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The results in Figure 5(b) display the financial cost
for user upgrades with a higher number of participant
users’ task execution. This implies that more resources
are required to complete a large number of task execution
than the small amount of task execution. The figure
also specifies that due to an efficient resource allocation
policy, the proposed superactive scheme requires lower task
completion delay (i.e., resource usage) and thus offers a
small amount of financial cost than the compared traditional
CSDN, and traditional HRSDN scheme. The traditional
CSDN scheme requires a large amount of financial cost due
to its additional task completion time and resource usage. In
Figure 5(b), when the participant users task amount is 100,
the user’s financial cost (i.e., service provider revenue) for
the proposed superactive scheme, traditional HRSDN, and
traditional CSDN scheme task execution are approximately
USD30.53, USD50.14 and USD98.72, respectively.

The contrast between the TRR results and users’ task
execution number is depicted in Figure 6(a) for the
proposed superactive SDN controller scheme based on
priority, latency, and SLA-awareness along with traditional
CSDN and traditional HRSDN scheme. Note that the TRR
is determined by taking the ratio of task execution time
difference value (i.e., the time difference between the task
completion time and task execution time limit) and task
execution time limit value. The results in Figure 6(a) clearly
denote that the TRR gradually upgrades to a large number
with the addition of the task execution number value. That
is TRR value for small task execution numbers can not
outperform a large number of task execution counterparts.
Hence, for varying user task amount values, the TRR ratio
of the proposed superactive scheme is highest than the
traditional CSDN and traditional HRSDN schemes. Due
to the maximal task completion time value, the traditional
CSDN scheme affords the smallest TRR ratio value than
others. Whereas, the second-highest TRR ratio is obtained
in the traditional HRSDN scheme due to its comparatively
lower control overhead and latency than the traditional
CSDN scheme. Figure 5(b) exemplifies that if the user
task request is 100, the user TRR ratio for the proposed
superactive scheme, traditional HRSDN, and traditional
CSDN scheme are approximately 5.18, 3.69, and 1.20,
respectively.

Figure 6(b) outlines the contrast between the FRR
and total end-to-end transferred data amount for users’
task execution. The FRR ratio value can be acquired
by taking the ratio of monetary cost difference value
(i.e., between the user’s budget and actual financial
cost for task completion) and the user’s budget value.
Figure 6(b) notifies that a large data transfer amount
value (i.e, data size) generates a higher FRR ratio than
the smaller data transfer size value. It shows that due to
smaller user financial cost value for task completion and
resource usage, the proposed (superactive SDN) scheme
can attain a higher FRR ratio than the traditional CSDN
and traditional HRSDN schemes. Whereas, the traditional
CSDN scheme achieves the smallest FRR ratio due to its
highest user monetary expense/financial cost for services
(i.e., resources and task execution). The traditional HRSDN

scheme requires the second-lowest financial expense for
services, thus producing a moderately higher FRR ratio
(i.e., second-best) than the traditional CSDN scheme.
Figure 6(b) specifies that when the transferred data amount
(i.e., transferred data size) is 1,490 KB, the FRR ratio
for the proposed superactive scheme, traditional HRSDN,
and traditional CSDN scheme are approximately 4.29, 3.20,
and 0.94, respectively. The simulation results demonstrate
the beneficiary nature of the proposed superactive scheme
for heterogeneous users’ multiple task execution over
software-defined SAGIN.

6 Conclusions

This paper introduces a superactive resource management
scheme for software-defined SAGIN-based applications.
The proposed superactive scheme assigns resources for
different users’ task accomplishments based on priority
(i.e., whether the task is time-sensitive or delay-tolerant),
SLA requirement and budget satisfaction, and low latency.
To achieve the highest gain in terms of task completion
delay, energy dissipation, and financial payment cost,
this superactive resource management scheme investigates
not only the most efficient actor/task processing (i.e.,
robot, cloud device, sensor, and vehicle) device selection
but also best-preferred communication link selection for
task completion. This works also presents a superactive
resource assignment algorithm and timing model along with
a network architecture model that coordinates local and
remote SDN controller, ground network device, space and
air network device, cloud device, and users device, among
others. This paper briefly discusses a numerical analysis
model that contains some salient metrics such as mean task
completion delay, energy expenditure calculation model,
financial payment cost, mean network throughput, task
execution and resource service providers profit value, ratio
regarding time, and financial reward, among others. The
performance investigation and result regarding 60 users’
task execution reveal that the proposed superactive scheme
attains approximately 53.05% and 71.72% more mean
task completion time gain than the traditional HRSDN,
and traditional CSDN scheme, respectively. Whereas, the
performance investigation and result also indicate that
the proposed superactive scheme brings approximately
39.11% and 69.07% more financial payment cost gain than
the traditional HRSDN, and traditional CSDN schemes,
respectively. The future extension of this research would
incorporate the congestion control and security threat
prediction scheme using advanced deep learning/artificial
intelligence techniques along with the convergence of SDN
and network function virtualisation (NFV) technology for
both physical and virtual resource assignment.
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