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Abstract: For the double inverted pendulum system with limited guide rails, a self-starting 
pendulum control scheme by combining the passivity-based control (PBC) and operator-based 
robust right coprime factorisation (ORRCF) method is proposed. A three-step hierarchical swing 
control scheme is designed, and the control method of each step and the switching rules between 
each step are given. The passivity and robustness of the system are improved by the control 
scheme of PBC combined with ORRCF method, and the entire self-lifting and stabilisation 
process is controlled. The influence of external disturbance during the switching process of the 
swing control and the state change of the pendulum rod on the displacement of the car is 
overcome. The effectiveness of the control scheme has been verified by the simulation results. 
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1 Introduction 
As a typical unstable nonlinear system, the inverted 
pendulum is the simplest model for many control objects 
(Liu et al., 2021; Bi et al., 2015). Its research mainly 
involves two aspects: steady swing control and start swing 
control. Commonly used slew control methods include LQR 
method (Zhou, 2020), improved PID parameter method (He 
et al., 2021), and adaptive fault-tolerant fuzzy control 
method (Henmi et al., 2003). Commonly used swing control 
includes energy control (Henmi et al., 2005), genetic 
algorithm control (Henmi et al., 2014) and sliding mode 
predictive variable structure control (Deng et al., 2006). The 
annular inverted pendulum system in the above literature 
does not have the problem of limited guide rails. However, 
the control of the linear inverted pendulum system will 
reduce the success rate of the start-up of the inverted 
pendulum due to the limited guide rails. Furthermore, the 
limitations of above control strategies lead to insufficient 
robustness and adaptability of the system after oscillation 
stabilisation. 

The inverted pendulum is a complex nonlinear system 
with multiple degrees of freedom, and its swing-up input is 
considered as a disturbance. Thus, the requirements for 
achieving stable pendulum are more stringent. Compared 
with the energy control method based on Lyapunov function 
(Henmi et al., 2010), passive energy control has more 
practical significance in engineering design. The core idea 
of the passivity theory is to control the target physical 
quantity by controlling the energy (Bu and Deng, 2016; 
Deng and Bu, 2012, 2016). The ORRCF method has strong 
robustness to nonlinear systems with perturbation, including 
the following three advantages (Bu et al., 2020, 2021; Chen 
and Qian, 2021; Takasu et al., 2020; Deng et al., 2009, 
2011): 

1 Only the input-output model is used, avoiding the 
measurement of the real system state. 

2 The extended Banach space is more suitable for system 
control theory and engineering. 

3 The robust stability of nonlinear systems can be 
achieved by a Bezout identity and a norm inequalities. 
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Based on the problems existing in the above research, a  
self-swing control scheme combining ORRCF method and 
PBC is proposed. The purpose of controlling the 
displacement of the car and the angle of the pendulum rod is 
realised through energy control. The control scheme 
consists of three steps. The first step is to design the 
switching control law based on the Lyapunov direct method. 
Swing the first-stage pendulum into a vertical inverted 
position while coordinating the swings of the  
two pendulums. In the second step, the PBC method based 
on operator theory ensures that the first-stage pendulum is 
stable in the inverted position. Then we use the quasi-car 
method to swing the second-stage pendulum rod and 
combine the energy control to make it smoothly enter the 
inverted position. In the third step, the control scheme of 
combining ORRCF method and PBC is used to stabilise the 
two pendulums in the inverted position at the same time. 
The scheme can overcome the influence of external 
perturbation during the switching process and weaken the 
influence of the pendulum swing amplitude change on the 
displacement of the car. Finally, the passiveness and 
robustness of the system are guaranteed, and the swing and 
stable control of the double inverted pendulum is realised. 

2 Preliminaries 
2.1 Robust right coprime factorisation 
The definition of the operator is on the linear space of the 
extended Banach space, which is more suitable for practical 
applications than the general linear space. Moreover, it has a 
wide range of applications. It is not affected by linearity or 
nonlinearity, and is not limited by dimensionality. Robust 
right coprime factorisation can quickly ensure the robust 
stability of the system when dealing with systems with 
uncertainty. 

Definition 1: The operator P: U → Y is a stable nonlinear 
operator with a right factorisation denoted as P = ND–1. If 
there are two stable operator A: Y → U and B: U → U, 
where B is reversible. The unimodular operator M ∈ (W, U), 
satisfies the Bezout identity: 

AN BD M+ =  (1) 

Thus, the operator P in the system shown in Figure 1 has a 
right coprime factorisation over the domain of definition, 
wherein W is called a quasi-state space. Since the Bezout 
identity is satisfied for the operator A, N, B, D, the nonlinear 
feedback system in Figure 1 can be equivalent to Figure 2. 

Figure 1 Nonlinear feedback control system 
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Figure 2 Equivalent diagram of Figure 1 
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2.2 Passivity-based operator theory 
Passive control is an inherently stable nonlinear control 
method, which can achieve global stability of the system. 
The nonlinear system Ω described in this paper by the 
operator form is expressed as follows: 

1( ) ( )( )
Ω :

( ) ( )( )
ω t D u t
y t N ω t

−=
 =

 (2) 

where u ∈ U, ω ∈ W, y ∈ Y are the control input, quasi-state 
and system output, respectively. 

Definition 2 (Deng and Bu, 2012): If the nonlinear system 
Ω is a passive system, there exists a non-negative function  
V : W → R+ (R+ is any non-negative real number), called a 
stored function, which satisfies the following conditions: 

( )0
0

( ) ( ) ( )
t

V ω V ω y s u s ds− ≤   (3) 

where ∀u ∈ U, ω0 ∈ W, t ≥ 0, and y(s)u(s) is called the 
supply energy function. 

If the non-negative function V is differential, then the 
passive inequality (3) is equivalent to 

( ) ( ) ( )V ω y t u t≤  (4) 

3 Inverted pendulum model 
This part adopts the Lagrange method for modelling. The 
physical model of the double inverted pendulum is shown in 
Figure 3, and the specific physical parameters are shown in 
Table 1. In addition, FN(N) is the external force acting on 
the system, x(m) is the displacement of the car, and θ1(rad), 
θ2(rad) is the angle of the pendulum rod. The existing 
literature (Zhang et al., 2011) ignores the influence of the 
mass m3 at the link point between the cascade pendulum 
rods during modelling. However, this effect needs to be 
considered in the actual system. Therefore, this paper takes 
it into account in the system modelling analysis, making it 
more in line with the actual control of the inverted 
pendulum system. 

Table 1 Physical parameters 

Parameter name Parameter Value 

The weight of the car m0 1.32 kg 
The mass of swing rod 1 m1 0.04 kg 
Rotation radius of swing rod 1 l1 0.0775 m 
The mass of swing rod 2 m2 0.132 kg 
Rotation radius of swing rod 2 l2 0.25 m 
The mass of the mass block m3 0.208 kg 
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Figure 3 Physical model of double inverted pendulum 
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The total kinetic energy and total potential energy of the 
double inverted pendulum are expressed as follows: 

( )( )

( )

m0 m1 m2 m3

2 2 2
0 1 1 1 1 1 1 1 1

2
2 1 1 2 2 2

2 2 2 2
2 1 2 1 2 2 11 1 2 2

2 2 2
3 3 1 1 1 3 1 1

1 1 2cos
2 2 3
1 2 2 cos
2
1 44 4 cos
2 3
1 2 cos 2
2

T T T T T

m x m x m l xθ θ m l θ

m x x l θ l θ θ

m l θ l θ l l θ θ θ θ

m x m l xθ θ m l θ

= + + +

= + − +

+ − +

 + + + − 
 

+ − +

   

  

   

  

 (5) 

( )

0 1 2 3

1 1 1 3 1 1

2 1 1 2 2

0 cos 2 cos
2 cos cos

m m m mV V V V V
m gl θ m gl θ

m g l θ l θ

= + + +
= + +
+ +

 (6) 

Equations (5)–(6) are modelled by the Lagrangian method, 
and the dynamic equation of the double inverted pendulum 
is obtained. 

( ) ( )

( )

( )

1 1 2 1 3 1 1 1

2
1 2 3 1 1 2 1 2 2 2 1

2
2 1 2 2 12

2 2 cos sin
4 4 4 2 cos
3

2 sin 0

m l m l m l x θ g θ

m m m l θ m l l θ θ θ

m l l θ θ θ

− + + +

 + + + + − 
 

− − =



 



 (7) 

( )

( ) ( ){ }

2
2 2 2 2 2 22

2
2 1 2 1 2 1 2 11

4cos sin
3

2 sin cos 0

m l x θ g θ m l θ

m l l θ θ θ θ θ θ

− + +

+ − + − =



 
 (8) 

Meanwhile, the acceleration control method is adopted 

u x=   (9) 

4 Switch control scheme 
The swing control of the double inverted pendulum is 
accomplished by swinging the pendulum rods one by one. 
Assume that the clockwise direction of the pendulum swing 
is positive, that is, the angular velocity 0 ( 1, 2).iθ i> =  The 
control scheme is divided into three steps. Based on the 

state of the system, the control scheme of each step and the 
switching rules between each step are given. 

4.1 The swing of the first-stage pendulum 
This part is mainly to swing the first-stage pendulum to near 
the inverted position, while coordinating the pacing of the 
two pendulums. For the swing-up control, the switching 
control law u1 is designed using the energy control method 
of the Lyapunov function. The kinetic equation degenerated 
from the double inverted pendulum models (7)–(9) to a 
first-stage inverted pendulum is expressed as: 

( )( )1 1 3 1 1 1

2
1 3 1 1

2 cos sin
4 4
3

m l m l x θ g θ

m m l θ

u x

 + +

  = +  

 
 =







 (10) 

First of all, the energy of the first-stage pendulum rod is 
expressed as follows: 

( )( )2
1 1 3 1 1 3 1 11

1 4= 4 2 cos 1
2 3

E m m θ m gl m gl θ + + + − 
 

  (11) 

where it is agreed that the inverted position of the first-stage 
pendulum rod is zero potential energy point. 

When the pendulum is in an unstable equilibrium 
position, i.e., θ1 = 0 and 1=0,θ  then E1 = 0. When the 
pendulum is in a natural equilibrium position, i.e., θ1 = π 
and 1=0,θ  then E1 = –2m1gl1. Compute the derivative of E1: 

( )1
1 1 3 1 1 12 cosdEE m m l uθ θ

dt
= − +    (12) 

Define function 2
1 11 2 .V E  Then using Lyapunov’s direct 

method and compute its differential: 

( )1 1 1 3 1 1 12 cosV E m m l uθ θ= − +   (13) 

In order to ensure 1 0,V ≤  u1 can be designed according to 
the following rules. The design control input is expressed as 
follows: 

( )1 1 1 1 1sign cosu u λ E θ θ=   (14) 

where λ1 > 0 is the parameter that needs to be designed. The 
switching method includes two situations: 

1 when the swing angle is θ1 ∈ (π/2, π) or θ1 ∈ (–π, –π/2) 
and the pendulum swings clockwise, the control input 
is –λ1; when it swings counter-clockwise, it is switched 
to λ1 

2 when the swing angle is θ1 ∈ (0, π/2) or θ1 ∈ (–π/2, 0) 
and the pendulum swings clockwise, the control input 
is λ1; When it swings counter-clockwise, it switches to 
–λ1. 

Due to the strong coupling between the two pendulums, the 
energy of the first-stage inverted pendulum is always lost 
due to the viscous friction during the swinging of the 
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pendulum. The effect of the second pendulum on the first 
pendulum can be in two ways. It may cause it to lose 
energy, or it may accumulate energy. Therefore, we assume 
that the motion poses of the two pendulums can be 
coordinated by changing the input gain. 

4.2 Swing the second-stage pendulum while 
stabilising the first-stage pendulum 

The control scheme given in the second step is to make the 
second pendulum swing upward on the basis of ensuring the 
stability of the first pendulum. The proposed control method 
consists of two control laws u = u21 + u22. The control 
scheme combining ORRCF method and PBC is used to 
ensure that the first-stage pendulum is stable at the unstable 
equilibrium point. The control law of this part is denoted by 
u21. The model analysis is carried out by the quasi-car 
method, and the second-stage pendulum is swung up to the 
inverted position in combination with the energy control 
method. The control law of this part is denoted by u22. 

4.2.1 Steady control of first-stage inverted pendulum 
The system model is obtained from the first-stage inverted 
pendulum dynamic equation (10): 

1
1

1
1

tan
cosθ
θu c g θ
θ

= −


 (15) 

where θ1 ≠ ±π/2 (i.e., the pendulum is not controllable when 
the pendulum is in a horizontal position), c = 0.15, and the 
gravitational acceleration is g = 9.8 m/s2. 

Figure 1 shows the right coprime factorisation of the 
research object of the nonlinear system, and Figure 2 is its 
equivalent figure. The corresponding symbol of the  
first-stage inverted pendulum control system is represented 
by {P1, N1, D1, M1, A1, B1, e1}. First, the ORRCF method is 
used to factorise the operator model of the system: 

( ) ( )1
1 1

1 1 1 11 1 : θP D N y θ x u− −= →   (16) 

Based on the idea of isomorphism (Bu and Deng, 2011), the 
factorisation of the mathematical model of the first-stage 
inverted pendulum system is realised. Operators N1 and D1 
can be represented as follows: 

( )

( )

1 1 1 1

1
1 1 1

1

( ) ( )( ) ( )
( )( ) tan ( )

cos ( )

N θ t I θ t θ t
θ tD θ t c g θ t
θ t

= =

= −
  (17) 

Then, the PBC method is adopted to ensure the passiveness 
of the inverted pendulum system. Storage function VP1(ω)(t) 
is designed as follows: 

1 1 1 1 1
0

( )( ) ( )( ) , ( )( ) ( )( )
t

PV ω t M D ω s ds M ω t N ω t= ≤  (18) 

The differential 1( )( )P ωV t  representation of the stored 
function is as follows: 

1 1 1 1 1( )( ) ( )( ), ( )( ) ( )( )PV ω t M D ω t M ω t N ω t= ≤  (19) 

According to the properties of the operator, the Bezout 
identity A1N1 + B1D1 = M1 needs to be satisfied. The 
designed stable controllers A1 and B1 are expressed as 
follows: 

( )

( )1 1

1
1 1 1 1 1

1 1

1
1

1 ( )( ) ( ) tan ( )
cos ( )

1( ) ( )θ θ

θ tA θ t θ t c g θ t
θ t

B u t u t

 
= − − 

 

=


α

β

β

 (20) 

where 0 < α1 ≤ 1, β1 > 0 are the parameters to be designed. 
Then, M1 = A1N1 + B1D1 = α1θ1(t) = α1I(θ1(t)) can be 

obtained from equations (17) and (20). It can be seen that 
M1 is a unimodular operator, which can ensure the stability 
of the nonlinear feedback system. Meanwhile, it also 
satisfies the passive condition: 

11 1( )( ) ( ) ( )P θV ω t y t u t≤  (21) 

where 11 1 1( ) ( ) ( )( ) ( )( ).θy t u t N ω t D ω t=  Then it also shows 
that the designed controller guarantees the passivity of the 
system with storage function. 

Therefore, the control scheme guarantees the stability 
and passivity of the inverted pendulum system. According 
to the right factorisation principle shown in Figure 1, the 
control switching law of the first-stage inverted pendulum 
can be designed as: 

( ) ( )1
21 1 1 11 sign signu B e e−= = β  (22) 

where e1(|e1| ≤ δ) is the error of convergence to the desired 
angle in the first-stage inverted pendulum control. 

4.2.2 Swing the second-stage pendulum by using the 
quasi-car method 

Firstly, the quasi-car method is used to analyse the model of 
the second-stage inverted pendulum. Then, the second-stage 
pendulum rod is swung up by the same method as the first 
step, and the control law u22 of the swing is designed. 

Figure 4 Geometric description of the quasi-car swing-up 
principle 
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As shown in Figure 4, the concept of ‘quasi-car’ is 
introduced, that is, the car, the first-stage pendulum and the 
mass at the pivot are regarded as a whole. In this way, the 
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acceleration a on the link point O2 can be regarded as being 
directly exerted on it by the ‘quasi-car’. In addition, O1 
represents the link point of the first-stage pendulum rod and 
the car, O2 represents the link point of the first-stage and 
second-stage pendulum rods, O2F1 represents the swing 
position of the second-stage pendulum rod, a represents the 
external force acceleration at O2, and the friction between 
the pendulum rod and the connection with the car is 
ignored. 

Suppose there are three swing strategies (Åström and 
Furuta, 2000): 

1 The second-stage pendulum swings from O2F1. Under 
the influence of gravitational acceleration g and 
external force acceleration a (a > 0), the second-stage 
pendulum will swing to O2F2 with the y-axis as the 
symmetry axis. Its swing angle is 2θ0. 

2 When the pendulum is in the O2F2 position, the 
pendulum rod changes the swing direction, that is, the 
direction of the acceleration is reversed to a′ (a′ = –a). 
Under the combined action of this acceleration and the 
acceleration of gravity g, the pendulum swings to O2F3. 
Its swing angle is 3θ0. 

3 Then the pendulum rod reverses the direction again and 
swings to the O2F4 position with O2F2 as the axis of 
symmetry. Its swing angle is 6θ0. At this point, the 
pendulum rod reaches near the unstable equilibrium 
point. 

The above swinging process is repeated until the  
second-stage swing bar obtains the required energy, so that 
the two swing angles gradually converge to the inverted 
position. 

The a shown in Figure 4 is equal to the acceleration u22 
applied by the car on the link point O1 but in the opposite 
direction. Assume that the clockwise rotation angle and the 
acceleration to the right are positive. The following control 
law is designed: 

22 21 2 2( ),u a sign θ θ σ= − = − >β  (23) 

where σ > 0, β21 > 0, are parameters that need to be 
designed. 

In the case where the second-stage pendulum swings to 
a certain angle (i.e., ε2 ≤ θ2 ≤ σ), u22 is designed by using the 
energy method similar to the first step. The specific design 
method is shown in Section 3.1. From the principle of the 
quasi-car method and formula (14), we can get 

( )22 22 2 2 2 2sign cos ,u a E θ θ θ σ= − = − ≤β  (24) 

where β22 > 0 is the parameter to be designed. 

4.3 Stability control of double inverted pendulum 
When the second-stage pendulum rod swings to the vicinity 
of the vertical inverted position, the control law is switched 
to the swing control law of the second-stage pendulum rod. 
At this stage, the control scheme of combining the ORRCF 
method and PBC described above is still adopted. The 

corresponding symbol for the control of the secondary 
inverted pendulum system is denoted by {Pi, Ni, Di, Mi, Ai, 
Bi, e3i}. The Taylor series of equations (7)–(9) around the 
equilibrium point are expanded and linearised. Then, by 
substituting the parameters in Table 1, the mathematical 
model of the double inverted pendulum system can be 
further simplified: 

 =H Gu H+ +  θθ θ θ u  

where uθ = [6.64 –0.088]Tu, θ(t) = [θ1(t) θ2(t)]T, and  
H, G are coefficient matrices. 

The specific design method is shown in Section 3.2.1 of 
this paper. The control law of the secondary inverted 
pendulum is designed according to formula (22): 

( ) ( )1
3 3 3 3i i iiu B sign e sign e−= = β  (26) 

where β3i = [β31 β32]T is the parameters to be designed.  
|e3i| ≤ δ (i = 1, 2) is the error that the pendulum rod 1 and the 
pendulum rod 2 converging to the desired angle in the 
swing control. 

In summary, the overall control scheme of the secondary 
inverted pendulum system is summarised as follows: 

( )

( )
( )
( )

( )

1 1 1 1 1 1 1

2 21 22 1 1 2 2

21 1 1

221 2
22

222 2 2 2

3 3 3 1 1 2 2

cos ,
, ,

,

,

cos ,
, ,i i

u λ sign E θ θ θ ε
u u u θ ε θ ε

u sign e
u

θ σsign θ
u

θ σsign E θ θ
u sign e θ ε θ ε

 = >


= + ≤ >
 ==   >−  =  ≤− 
 = ≤ ≤







β

β

β
β

 (27) 

5 Simulation results 
In order to verify the effectiveness of the control scheme in 
this paper, the parameters are selected as follows: α1 = 1/3, 
β1 = 1/6, α3i = [1/3 1/3]T, β3i = [1/6 1/6]T, ε1 = 0.19 (rad), ε2 
= 0.113 (rad), σ = 1.049 (rad), and simulation experiments 
are carried out corresponding to the above parameters. 
According to formula (27), we have plotted the response 
curve of the control input signal as shown in Figure 5. 
Figures 6 and 7 are the simulation curve of the double 
inverted pendulum automatic swing control. The results 
show that the control scheme in this paper can successfully 
realise the self-swing control and swing the two pendulum 
rods to the inverted position in a short time. 

First of all, under the action of control input u1, the 
pendulum rod 1 starts to swing from the vertical downward 
position (i.e., θ1 = π), and swings to near the inverted 
position at 6s. Then switch to control input u2. Under the 
action of the control input u21, the oscillation of the swing 
angle θ1 converges around zero (i.e., |θ1| ≤ ε1). At the same 
time, the pendulum rod 2 is swing up to achieve the purpose 
of coordinating the pace between the two pendulum rods: 

1 when |θ2| > σ, the u22 designed by the quasi-car method 
gathers energy for the second-stage pendulum rod to 
achieve the desired height of the swing 
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2 when |θ2| ≤ σ, the u22 designed by the energy method 
can avoid energy dissipation and lead to control failure. 

Notice: if u22 is too large, the buffeting of the system will be 
serious, then the first pendulum will not be able to stabilise 
in the vertical position; if u22 is too small, the system will 
not be able to provide enough energy for the second 
pendulum. Therefore, the value of u22 cannot be too large or 
too small, so that the pendulum rod 1 can be vertically 
inverted and the pendulum rod 2 can be smoothly swung up. 
That is to say, the value of u22 limits the displacement of the 
car to a certain extent, which also satisfies the condition that 
the guide rail is limited. In the end, when the angle of 
pendulum 2 is within a certain range (i.e., ε2 ≤ θ2 ≤ σ), it 
switches to the control input u3, at which time θ2 gradually 
oscillates and converges to near zero. 

Figure 5 Control input signal u (see online version for colours) 

 

Figure 6 Response curve of pendulum 1 angle θ1 (see online 
version for colours) 

 

It can be clearly seen from the simulation curve that the 
ORRCF method combined with the PBC control scheme 
adopted in this paper makes the two swing angles converge 
to zero within 10s during the response time of the entire 
control process. At the same time, the two pendulum rods 
are stably maintained in the vertical upward position. The 
existing literature (Zhang et al., 2011) adopts a control 
method based on variable gain LQR, which makes the two 

pendulums converge to zero in 14 s. That is to say, the 
control scheme designed in this paper shortens the 
convergence time of the whole control process by 4s, and its 
control effect is better. Therefore, the control scheme 
designed in this paper has the characteristics of fast 
convergence speed and strong robustness for the inverted 
pendulum system. 

Figure 7 Response curve of pendulum 2 angle θ2 (see online 
version for colours) 

 

6 Conclusions 
Aiming at the characteristics of multiple degrees of 
freedom, strong coupling and complex nonlinearity of the 
inverted pendulum system with limited guide rails, this 
paper combines the PBC method with the ORRCF method 
to design a control scheme, which improves passivity and 
robustness of the inverted pendulum system. It effectively 
overcomes the influence of external interference during the 
switching process of the swing control and the limited guide 
rail. The step-by-step start-up and steady-swing control of 
the double inverted pendulum system is realised. Moreover, 
the application of the PBC method is more practical in 
engineering design than the previous energy control 
methods, and has a certain value for the control of the actual 
inverted pendulum system. 
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