
   

  

   

   
 

   

   

 

   

   156 Int. J. Advanced Intelligence Paradigms, Vol. 24, Nos. 1/2, 2023    
 

   Copyright © 2023 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Nonlinear tensor diffusion filter for the denoising of 
CT/MR images 

S.N. Kumar* 
Department of Electronics and Communication Engineering, 
Sathyabama Institute of Science and Technology, 
Chennai – 600119, Tamilnadu, India 
Email: appu123kumar@gmail.com 
*Corresponding author 

A. Lenin Fred 
School of Computer Science Engineering, 
Mar Ephraem College of Engineering and Technology, 
Elavuvilai – 629171, Marthandam, Tamilnadu, India 
Email: lenifred.a@gmail.com 

H. Ajay Kumar 
School of Electronics and Communication Engineering, 
Mar Ephraem College of Engineering and Technology, 
Elavuvilai – 629171, Marthandam, Tamilnadu, India 
Email: ajayhakkumar@gmail.com 

P. Sebastin Varghese 
Metro Scans and Laboratory, 
Thiruvananthapuram, Kerala – 695011, India 
Email: sebastin464@gmail.com 

Abstract: The partial differential equation based algorithms play a prominent 
role in image processing and computer vision applications. The anisotropic 
diffusion technique was widely used for image enhancement and denoising. 
The Perona-Malika algorithm based on anisotropic diffusion fails to preserve 
sharp edges and fine details in the denoised image. In this paper, the variants of 
Perona-Malika (PM) model, nonlinear scalar diffusion (NLSD) filter and 
nonlinear tensor (NLTD) filter are analysed. The algorithms are analysed on 
sheep phantom image corrupted with Gaussian and Rician noise and results 
were validated by performance metrics like PSNR, MAE, EPI and MSSIM. 
The NLTD filter produces superior results when compared with NLSD and PM 
filter. The NLTD filter was also found to yield efficient restoration results for 
real-time CT/MR images and was validated by entropy measure. 
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1 Introduction 

The role of partial differential equations (PDEs) is inevitable in computer vision and 
image processing especially in the domain of image restoration. The Gaussian filter is a 
linear diffusion approach in which the image is convolved with the Gaussian kernel. The 
concept of nonlinear diffusion evolves with the Perona-Malika restoration model; the 
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object boundaries are preserved while smoothing the image (Bazan and Blomgre, 2008). 
A hybrid diffusion filter comprising of Perona-Malika diffusion and the bilateral filter 
was proposed for the denoising of images corrupted by Gaussian noise (Bazan and 
Blomgre, 2008).The denoising of MR images with intensity in homogeneity and artefacts 
was done by adaptive total variation-based filter and better results were produced (edges 
are also preserved) when compared to the Perona-Malika and total variation filter (Guo 
and Huang, 2009).The novel anisotropic diffusion model was proposed for 3D images 
based on the second derivative to determine the region boundary rather than gradient 
magnitude, efficient results were produced when compared with the gradient based 
techniques (Hossain and Möller, 2010).The modified diffusion model based on 
convection term was found to be efficient for the denoising of SEM and TEM images 
(Slavova and Rashkova, 2011).The variants of gradient denoising schemes; time delayed 
Perona-Malika model and nonlinear anisotropic tensor diffusion were analysed and 
efficient results were produced with edge preservation (Eymard et al., 2011).The fourth 
order PDE based anisotropic diffusion filter was proposed that minimises the staircase 
effect produced by the second order differential equation (Wang et al., 2012). The 
bilateral filter was found to be efficient for the Gaussian noise removal; however, it fails 
for the removal of speckle noise and salt and pepper noise (Bhonsle et al., 2012). The 
nonlinear filter that relies on homomorphic filter characteristics was found to be efficient 
for the denoising of Rican noise in MR images of the particular cartilage (Aarya et al., 
2013). The selection of parameters is vital in anisotropic diffusion filter and various 
techniques were proposed for the selection of conductive coefficient, gradient threshold 
and a number of iterations (Tsiotsios and Petrou, 2013).The weighted anisotropic 
diffusion PDEs produces better restoration results with edge and texture features 
preservation (Prasath and Vorotnikov, 2014).A hybrid denoising scheme comprising of 
dual tree complex wavelet transform (DTCWT) and Wiener filter was proposed for the 
medical images (Naimi et al., 2015).The classical Perona-Malika algorithm was modified 
by a novel adaptive diffusion function for the denoising of medical images corrupted by 
Gaussian noise and Rician noise, and robust results were produced, when compared with 
the Perona-Malika, kernel anisotropic diffusion, non-local orientation diffusion, and 
double well potential algorithms (Heydari and Karami, 2015).The edge preservation is 
poor in the bilateral filter; however, the iterative bilateral filter is robust in the Rician 
noise removal of MR images (Riji et al., 2015). The nonlinear structure sensor based 
diffusion filter preserves the local features in the image restoration (Hahn and Lee, 2009). 

This work proposes nonlinear tensor diffusion (NLTD) filter for the denoising of 
CT/MR images. Section 2 describes the Perona-Malika algorithm and its variants. 
Section 3 highlights the nonlinear scalar diffusion (NLSD) and NLTD filter algorithm 
characteristics and tuning of parameters. In Section 4, results and discussion are 
described; the algorithms are initially tested on Sheep Logan Phantom images corrupted 
by Gaussian and Rician noise of varying variance to determine the efficiency of the 
NLTD approach and then algorithms are also tested on real-time CT/MR images. Finally, 
conclusions are drawn in Section 5. 

2 Related work 

In image processing, a lot of spatial and transform domain filters are there for image 
restoration. Anisotropic filter based on partial differential equation proposed by Perona 
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and Malika effectively reduces noise while preserving the edges (Perona and Malik, 
1987, 1990). The 1D discrete representation of anisotropic filter derived from continuous 
diffusion process is as follows 

( , ) [ ( , ) ( , )]I x t div c x t gradI x t
t

∂ = ∗
∂

 (1) 

 right  left( , ) Δ 1I x t x
t

∂ = − =
∂

φ φ  (2) 

The 2D diffusion filtering is simply the extension of 1D discrete implementation. 

( , ) [ ( , ) ( , )]I x t div c x t gradI x t
t

∂ = ∗
∂

 (3) 

 east  west  north  south( , )I x t
t

∂ = − + −
∂

φ φ φ φ  (4) 

The diffusion strength is regulated by ( , )c x t  represents the spatial coordinates and t is 
the process ordering parameter. 

The two commonly used diffusion coefficients are 
2

1( ) exp xC x
K

   = − 
  

 (5) 

2 2
1( )

1
C x

x
K

=
 +  
 

 (6) 

The diffusion coefficient value depends on the image gradient magnitude and its value 
decreases with increase in gradient magnitude. The homogeneous regions of the images 
are smoothed with the same intensity in all directions. The diffusion coefficient C1(x) has 
better edge preserving capacity than C2(x). The parameter ‘k’ regulates the sensitivity to 
edges and its value is chosen based on the noise characteristics. 

The 2D representation of anisotropic diffusion filter for the image I(x, y) is as follows, 
the diffusion flow is determined only for the adjacent neighbours (four neighbourhood 
connectivity). 

( )1
, ,   S   W

t t
x y x y N NI SI E EI WII I λ+ = + ∇ + ∇ + ∇ + ∇φ φ φ φ  (7) 

The better isotropy can be obtained when the diagonal neighbourhood pixels are also 
taken into account resulting in eight-way neighbourhood connectivity. 

(
)

1
, ,   S   

  S   

t t
x y x y N NI SI E EI W WI

NE NEI E SEI SW WSI NW NWI

I I λ+ = + ∇ + ∇ + ∇ + ∇

+ ∇ + ∇ + + ∇ + + ∇

φ φ φ φ
φ φ φ φ

 (8) 

The 2D diffusion filtering is efficient in the noise removal and edge preservation, but it 
creates staircase effect in the processed image. Perona-Malika equation is nonlinear and 
non-homogenous since the diffusion parameter c(x, y, t) is a function of image data and 
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time. In modified PM model, the input image was smoothed by the Gaussian filter before 
taking the gradient for better filtering results. 

( )( , , )G gI Gσ I x y t∇ = ∇ ∗  (9) 

where σg the standard deviation of Gaussian kernel and can be termed as regularisation 
parameter, which determines the uniform smoothing of the image. 

The diffusion constant (Charbonnier et al., 1994; Blanc-Feraud et al., 1995) is 
expressed as follows 

1
2 2

2
( , , ) 1 GIC x y t

K

−
 ∇= + 
 

 (10) 

The diffusion constant proposed by Weickert (1998) is as follows 

( )2 2

1 ;  if 0 

( , , ) 1 exp ;  if 0 

G

Gm
G

I
CC x y t I

I K

 ∇ =
 − =  − ∇ >   ∇  

α  (11) 

where the coefficient Cα > 0, α = 4 that implies C4 = 3.3148 which gives visually good 
results. 

The Turkeys’ biweight conductance function (Black et al., 1998) as follows 
221 1 ;   ( , , ) 2

10 ;  otherwise

I I SC x y t S

  ∇  − ∇ ≤  =    



 (12) 

where 
2

KS =  

The alpha Perona-Malika and adaptive Perona-Malika were proposed that can control 
the diffusion rate and can preserve the small features in the image (Tsiotsios et al., 2013; 
Guo et al., 2012). 

3 Proposed methodology 

The linear diffusion is a classical restoration model in which the image is convolved with 
the Gaussian kernel. The nonlinear diffusion model relies on the diffusion constant that is 
locally adapted and its effect becomes negligible as object boundaries are approached. 
The underlying principle of nonlinear diffusion is that diffusion stops as the object 
boundaries are reached. The PM is the classical nonlinear diffusion model and NLSD is 
the regularisation of PM model using Gaussian kernel termed as gauss gradient approach. 
The edge preservation is poor in the PM and NLSD models and hence tensor based 
nonlinear diffusion was proposed. The NLTD can be termed as an edge enhancing 
diffusion process that relies on the diffusion tensor for edge preservation. The diffusion 
tensor controls the rate of smoothing such that, across the edges, smoothing is minimised 
and along the edges smoothing is maximised. The NLTD algorithm produces superior 
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results than the NLSD and the classical PM algorithm. The gauss gradient is the basic 
functionality for NLSD and NLTD algorithms. 

3.1 Gauss gradient operation 

In the gauss gradient, approach 1D kernel along x and y-direction are determined from 
the Gaussian function as follows 

22
2

2
1( , )

2

x y
σg x y e

πσ

 +− 
 =  (13) 

where σ represents the scale of diffusion 
The Gaussian function in normalised form is as follows 

( )2/2x x σ
sg e− − ∗ ∗=  (14) 

The first order derivative of the Gaussian function is as follows 

2
s

x s
g xI g
x σ

∂ −= =
∂

 (15) 

Similarly 

2
s

y s
g yI g
y σ

∂ −= =
∂

 (16) 

2 2 2

4
s

s
g x σ g
x σ

∂ −=
∂

 (17) 

The σ value is usually chosen greater than or equal to 1, can be scaled down to 0.7. The 
order of derivative is vital in the gauss gradient technique and up to second order 
derivatives are considered. The Gaussian smoothed image is obtained by the convolution 
with the generated kernel. 

After Gaussian smoothing, the resultant image is represented as follows 

2 2
GI Ix Iy= +  (18) 

where Ix and Iy are the Gaussian smoothed component of the image obtained from the 
convolution of the input image with the respective generated kernel along x and  
y-direction. The smoothed image by the gauss gradient operation is the basic building 
block of NLSD and NLTD restoration model. 

3.2 Nonlinear scalar diffusion 

The NLSD restoration model is represented as follows 

.( )t I C I∂ = ∇ ∇  (19) 

where C is the diffusion coefficient that depends on the gradient norm 
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2
exp GIC

K
 = − 
 

 (20) 

The IG is the Gaussian smoothed image and the edge preservation is influenced by proper 
selection of parameter K. The above partial differential equation in terms of the spatial 
component is represented as follows 

( ) ( )t x x y yI C I C I∂ = ∂ ∂ + ∂ ∂  (20) 

The NLSD restoration model in discrete form is expressed as follows 

( ) ( ) ( ) ( ), , 1 2 3 4, , , ,1, 1, , 1 , 12
t t t t t t t t

i j i j i j i j i j i ji j i j i j i j
λI I C I I C I I C I I C I I+ − + − = + − − − + − − −  (21) 

( )1 , 1,
t t
i j i jC C C += −  (22) 

( )2 ,1,
t t

i ji jC C C−= −  (23) 

( )1 , , 1
t t
i j i jC C C += −  (24) 

( )1 ,, 1
t t

i ji jC C C−= −  (25) 

In the above expressions, the notation Ii, j represents the input image. The variable t 
represents the time and i, j are the spatial coordinates. Similarly, the diffusion coefficient 
is also represented in terms of time and spatial coordinates. The step size ‘λ’ plays a 
crucial role in the restoration result and is chosen lower than 0.25 to obtain a robust 
result. 

3.3 Nonlinear tensor diffusion 

The NLTD restoration model is represented as follows 

.( )t I T I∂ = ∇ ∇  (26) 

where T is a positive semi definite symmetric diffusion sensor. The pre-processing of 2D 
images are considered in this paper, hence T is a 2 × 2 matrix as follows 

A B
T

B C
 

=  
 

 (27) 

where 
2 2

1 2
2

x y

G

c G c G
A

I ε
+

=
+

 (28) 

( )2 1
2

x y

G

c c G G
B

I ε
−

=
+

 (29) 

2 2
1 2

2
y x

G

c G c G
C

I ε
+

=
+

 (30) 
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The term IG represents the Gaussian smoothed version of the input image and Gx, Gy are 
the components of IG. The terms c1 and c2 are the diffusion constants. 

2

1 exp GIc
K

  = −  
  

 (31) 

2 1
1
5

c c= ∗  (32) 

The element of tensors are functions of the image characteristics. The NLTD in terms of 
Cartesian coordinates are as follows 

[ ] x
t x y

y

IA B
I

IB C
∂  

∂ = ∂ ∂    ∂   
 (33) 

[ ] x y
t x y

x y

A I B I
I

B I C I
∂ ∂ 

∂ = ∂ ∂  ∂ ∂ 
 (34) 

( ) ( )t x x y y x yI A I B I B I C I∂ = ∂ ∂ + ∂ + ∂ ∂ + ∂  (35) 

( ) ( ) ( ) ( )t x x x y y x y yI A I B I B I B I∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  (36) 

while comparing this partial differential equation with the NLSD model, two new terms 
arise ∂x(B∂yI) and ∂y(B∂xI). 

The NLTD restoration model in discrete form is as follows 

[

]

1 1, 1 1 , 1 2 1, 1 1 1,, ,

1, , 1, 1, , 1,

, 2 1, 3 1, 1

2 2
2

t λ t
i j i j i j i ji j i j

i j i j i j i j i j i j

i j i j i j

I I λ B I C I B I A I

A A A C C C

I A I B I

+
− + + + + −

− + − +

+ − −

= + + + +

+ + + + + − 
 

+ +

 (37) 

where 

1, ,
1 4

i j i jA B
A − +

=  (38) 

1, ,
2 2

i j i jA A
A + +

=  (39) 

1, , 1
1 4

i j i jB B
B − +− +

=  (40) 

1, , 1
2 4

i j i jB B
B + ++

=  (41) 

1, , 1
3 4

i j i jB B
B − ++

=  (42) 
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, 1 ,
1 2

i j i jC C
C + +

=  (43) 

From the expression, it is clear that all the terms in the right hand side of the equation are 
linear for the values of Ii,j. The discrete form of the NLTD restoration model is 
represented in terms of a quasi-convolution kernel since the values in the 3 × 3 kernel are 
dependent on the elements of the tensor matrix and spatial positions. 

4 Result and discussion 

The pre-processing algorithms are tested on the Sheep Logan phantom images corrupted 
with Gaussian and Rician noise and on real-time abdomen CT/MR medical images. From 
the Sheep Logan phantom image, the noisy input image was generated by adding 
Gaussian noise with the standard deviation (σg) and Rician noise with the standard 
deviation (σR) for the validation of restoration algorithms. The algorithms are developed 
in MATLAB R20101a software running on the Windows PC with core i3 processor, 4 
GB RAM specification. 

The median, bilateral and Gaussian filters are widely used for the removal of noise in 
medical images, however, blur occurs in boundaries and edge preservation is also poor. 
In Hu et al. (2012), it was reported that PM restoration model outperforms median filter 
(kernel size 5 × 5), Wiener filter (kernel size 5 × 5) and Gaussian filter for sheep Logan 
phantom images corrupted by Gaussian noise in terms of Root Mean Square Error 
(RMSE). The results below depicts the efficiency of NLTD filter in terms of PSNR, MSE 
and MAE when compared with the PM and NLSD filtering approaches. The algorithms 
have been tested on real-time CT/MR DICOM images. The images are obtained from the 
Metro Scans and Research Laboratory, Thiruvananthapuram. The CT images of the 
abdomen are obtained from Optima CT machine with a slice thickness of 0.6 mm. The 
two data sets of the abdomen are used in this work and each dataset comprises of  
200 images. The results of typical slices are depicted here. The MR images of knee are 
obtained from GE healthcare 1.5T machine with a slice thickness of 1.2 mm. The two 
data sets of knee are used in this work and the results of typical slices are depicted here. 

The expression for PSNR and MAE are expressed as follows. 
2

0 1
2

0 1

25510log y yPSNR dB
y y

 =   − 
 (44) 

0 1y y
MAE

XY
−

=  (45) 

where y0 and y1 are the input phantom image and the denoised image. Higher value of 
PSNR and lower value of MSE, MAE indicates the efficient of denoising algorithm. The 
tuning of parameters for restoration algorithms are depicted in Table 1. 
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Table 1 Restoration algorithms and tuning of parameters 

Algorithm Parameters 
Perona-Malika filter 1 Number of iterations: 15 

2 Kappa(Gradient Modulus threshold that controls the 
conduction value): 20 ≤ Kappa ≤ 100, Kappa = 30 

3 Step size(λ: integration constant): 0 ≤ λ ≤ 1/7, λ = 0.24 
4 Conduction coefficient: two choices C1(x) and C2(x), C1(x) 

is used which has better edge preservation capacity 
Nonlinear scalar diffusion 
filter 

1 Number of iterations: 15 
2 Edge strength (K): K > 0, larger value of K leads to 

isotropic solution, K = 0.1 
3 λ (Integration Constant): 0 ≤ λ ≤ 1/7, λ = 0.24 

Nonlinear tensor diffusion 
filter 

1 Number of iterations: 15 
2 Edge strength (K): K > 0, larger value of K leads to 

isotropic solution, K = 0.1 
3 λ (Integration Constant): 0 ≤ λ ≤ 1/7, λ = 0.24 
4 Uscale (standard deviation of Gaussian function):  

0.7 ≤ Uscale ≤ 1.4, Uscale = 1.2 

The increase in number of iterations will create a blurring effect in the restored image and 
in this work, 15 iterations are chosen. The higher value of kappa also induces blurring 
effect in the restored image and hence an optimum value of 30 is used in this work. The 
step size (λ) indicates the stability of solution and normally λ = 0.24 to 0.25 is used in 
many cases. The higher value of K will preserve the wider edges only and fine edges are 
neglected. Hence, here in this work, an optimum value of K = 0.1 is used. Table 2 depicts 
the PSNR, MSE and MAE determined between the input and noisy phantom images. The 
performance metrics are determined for the Gaussian and Rician noise distribution with 
the noise variance ranging from 0.01 to 0.20. The performance metrics for Sheep Logan 
Phantom image are depicted in Table 2. 
Table 2 Performance metrics calculated between Sheep Logan phantom input and its noisy 

version 

Noise type Metrics 
Noise variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PSNR 21.1926 20.0229 18.1144 16.2477 14.6176 13.1564 
MSE 0.0076 0.0099 0.0154 0.0237 0.0345 0.0483 
MAE 0.0600 0.0719 0.0960 0.1258 0.1594 0.1955 

Rician 
noise 

PSNR 35.1167 25.7217 19.9201 16.4920 14.0266 12.0787 
MSE 0.0003 0.0027 0.0102 0.0224 0.0396 0.0620 
MAE 0.0117 0.0431 0.0850 0.1259 0.1667 0.2082 

The PSNR comparisons for variants of PM models are represented in Table 3. From the 
table, it is evident that NLTD filter has high PSNR when compared with the PM and 
NLSD filter. Here the PSNR is determined between the input and the denoised input 
image. 
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Table 3 PSNR values for Perona-Malika, NLSD and NLTD restoration models 

Noise type Metrics 
Noise variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PM 21.0960 20.3035 18.6563 18.7191 15.1556 13.592 
NLSD 24.8540 23.1540 20.2951 20.4033 15.6721 13.8665 
NLTD 26.0313 23.8605 20.6441 20.7288 15.7908 13.9454 

Rician 
noise 

PM 21.7043 20.1262 18.5328 16.9644 16.1002 15.3119 
NLSD 23.8239 22.7096 19.8702 17.6478 16.5314 15.5527 
NLTD 24.9145 23.9089 20.4391 17.9522 16.7341 15.6960 

By comparing the PSNR values in Table 3 with the PSNR values in Table 2, there is an 
improvement in the PSNR value, which shows the proficiency of NLTD filter. The MSE 
values of the filtering algorithms in Table 4 also indicates the efficiency of the NLTD 
algorithm. The MSE values significantly decrease when compared with the MSE values 
in Table 2. 
Table 4 MSE values for Perona-Malika, NLSD and NLTD restoration models 

Noise type Metrics 
Noise Variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PM 0.0078 0.0093 0.0136 0.0134 0.0305 0.0437 
NLSD 0.0033 0.0048 0.0093 0.0091 0.0271 0.0411 
NLTD 0.0025 0.0041 0.0086 0.0085 0.0264 0.0403 

Rician 
noise 

PM 0.0068 0.0097 0.0140 0.0201 0.0245 0.0294 
NLSD 0.0021 0.0054 0.0103 0.0172 0.0222 0.0278 
NLTD 0.0010 0.0041 0.0090 0.0160 0.0212 0.0269 

Similarly, the MAE values also indicates that NLTD filter performs better for the filtering 
of Gaussian noise in CT images and Rician noise in MR images. The values of MAE for 
NLTD algorithm are low when compared with the values of MAE in Table 2. 
Table 5 MAE values for Perona-Malika, NLSD and NLTD restoration models 

Noise type Metrics 
Noise variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PM 0.0620 0.0750 0.1001 0.0990 0.1627 0.1981 
NLSD 0.0450 0.0596 0.0888 0.0874 0.1583 0.1963 
NLTD 0.0415 0.0566 0.0867 0.0854 0.1565 0.1947 

Rician 
noise 

PM 0.0471 0.0706 0.0949 0.1179 0.1347 0.1507 
NLSD 0.0276 0.0583 0.0875 0.1144 0.1333 0.1511 
NLTD 0.0218 0.0532 0.0834 0.1113 0.1307 0.1489 

The edge preservation of restoration algorithms was validated by edge preservation index 
(EPI) (Zhu and Rao, 2015).The EPI indicates the edge preservation after the noise 
reduction by applying a restoration algorithm. For perfect edge preservation, EPI value 
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will be ‘1’. Table 6 depicts that, NLTD restoration algorithm is having a higher value of 
EPI when compared with the PM and NLSD algorithms. 

( )( )
( ) ( )

0 0 1 1

2 2
0 0 1 1

Δ Δ Δ Δ

Δ Δ Δ Δ Δ

y y y y
EPI

y y y y

− −
=

− −


 

 

where y0 is the original image, 0y  represents the mean of y0, y1 is the original image, 1y  
represents the mean of y1. 

The EPI values for restoration algorithms are depicited in Table 6. 
Table 6 EPI values for Perona-Malika, NLSD and NLTD restoration models 

Noise type Metrics 
Noise variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PM 0.1112 0.1014 0.0935 0.0935 0.0835 0.0786 
NLSD 0.8556 0.8576 0.8490 0.8328 0.8122 0.7922 
NLTD 0.8655 0.8667 0.8566 0.8408 0.8225 0.8017 

Rician 
noise 

PM 0.4062 0.2449 0.1448 0.0952 0.0753 0.0563 
NLSD 0.9494 0.9329 0.8755 0.7879 0.6931 0.5936 
NLTD 0.9612 0.9379 0.8873 0.8221 0.7487 0.6805 

The multi-scale structural similarity index (MSSIM) represents the similarity between the 
input and the denoised image (Wang et al., 2003). The MSSIM was proposed by Wang 
and Bovik and it incorporates SSIM evaluations at different scale. The higher the value of 
MSSIM (closer to ‘1’) indicates the efficiency of restoration algorithm. 
Table 7 MSSIM values for Perona-Malika, NLSD and NLTD restoration models 

Noise type Metrics 
Noise variance 

0.01 0.04 0.08 0.12 0.16 0.20 
Gaussian 
noise 

PM 0.964 0.968 0.967 0.961 0.967 0.962 
NLSD 0.975 0.972 0.971 0.980 0.977 0.986 
NLTD 0.997 0.994 0.992 0.998 0.991 0.993 

Rician 
noise 

PM 0.959 0.958 0.954 0.964 0.968 0.967 
NLSD 0.969 0.964 0.975 0.971 0.987 0.985 
NLTD 0.995 0.997 0.991 0.989 0.992 0.993 

The MSSIM index is expressed as follows. 

( )
1

MSSIM = SSIM i
M

i
i=
∏ β  

where the value of βi are estimated through psychophysical measurement. 

( ) ( )

( ) ( ) ( )
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The pi,j and qi,j represents jth local image patches at the ith scale, Ni be the number of 
evaluation windows in the scale. 

The L(pi,j, qi,j)C(pi,j, qi,j) and S(pi,j, qi,j) represents the luminance contrast and structural 
similarities. 

The restoration algorithms output for Sheep Logan Phantom image corrupted by 
Gaussian noise is depicted in Figure 1. 

Figure 1 (a) Gaussian noise added Sheep Logan phantom image and its colour map  
(b) PM output and its colour map (c) NLSD output and its colour map  
(d) NTLD output and its colour map (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

Figure 2 (a) Rician noise added Sheep Logan phantom image and its colour map  
(b) PM output and its colour map (c) NLSD output and its colour map  
(d) NTLD output and its colour map (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 
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The restoration algorithms output for Sheep Logan Phantom image corrupted by Rician 
noise is depicted in Figure 2. 

The ID1, ID2 represents the real-timeCT liver datasets and ID3, ID4 represents the 
real-timeMR knee datasets. The NLTD restoration algorithm output for real-time CT/MR 
images are depicted in Figure 3. 

The performance of the filtering of real-time medical images was validated by 
entropy measure. Lower the entropy, better is the restoration algorithm. The NLTD filter 
was found to have lower entropy when compared with the PM and NLSD model. 

Figure 3 (a) Input CT image and its colour map (b) NTLD output and its colour map  
(c) Input MR image and its colour map (d) NTLD output and its colour map  
(see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 
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Figure 4 (a) Input CT image and its colour map (b) NLSD output and its colour map  
(c) Input MR image and its colour map (d) NLSD output and its colour map  
(see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

Table 8 Entropy values for Perona-Malika, NLSD and NLTD restoration models 

Dataset ID Input Perona-Malika NLSD NLTD 
ID1 4.3859 4.7301 4.8233 4.4392 
ID2 5.9926 7.2936 6.6418 6.2525 
ID3 6.8251 6.4098 6.3704 6.3437 
ID4 7.0464 6.6897 6.6097 6.5620 
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5 Conclusions 

This paper proposes variants of PM restoration model for the denoising of CT/MR 
images. The role of denoising is vital for image processing applications like segmentation 
and compression. The performance of the algorithms was evaluated by performance 
metrics like PSNR, MSE, MAE, EPI and MSSIM. The NLTD restoration model was 
found to have high PSNR, high EPI, high MSSIM, low MSE and low MAE for Sheep 
Logan Phantom images corrupted by Gaussian and Rician noise. The NLTD restoration 
model produces satisfactory results for the denoising of real-time CT/MR images with 
good edge preservation. The lower value of entropy reveals the efficiency of NLTD filter 
for the real-time CT/MR images. The future work will be the hardware implementation of 
NLTD filter for telemedicine applications. 
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