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Abstract: Abundance of data makes privacy more vulnerable than ever as it 
increases the attackers’ ability to infer confidential data from multiple data 
sources. Anonymisation protects data privacy by ensuring that critical data are 
non-unique to any individual so that we can conceal the individual’s identity. 
Existing techniques aim to minimally alter the original data so that either the 
anonymised data or its analytical results (e.g., classification) will not disclose 
certain privacy. Our research aims both. This paper presents HeuristicMin, an 
anonymisation approach that applies generalisations to satisfy user-specified 
anonymity requirements while maximising data retention (for analysis 
purposes). Unlike others, by exploiting monotonicity property of generalisation 
and simple heuristics for pruning, HeuristicMin provides an efficient 
exhaustive search for optimal generalised data. The paper articulates different 
meanings of optimality in anonymisation and compares HeuristicMin with 
well-known approaches analytically and empirically. HeuristicMin produces 
competitive results on the classification obtained from the anonymised data. 
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This paper is a revised and expanded version of a paper entitled ‘Realizing data 
anonymization as search with optimal guarantee’ presented at Workshop on AI 
for Privacy (AI4P 2020) in conjunction with European AI Conference, Spain,  
4 September 2020. 

 

1 Introduction 

The concept of privacy has existed throughout the human history in different degrees, 
forms and contexts (Clearwater and Hughes, 2013). Privacy is not about having 
something to hide but having a choice to control what to share. Issues on privacy have 
recently received a lot of attentions due to the rapid growth of information economy and 
advanced technologies that allow data to be (automatically) collected, stored, analysed 
and readily available. As these technologies become more sophisticated, users may end 
up losing more controls of their data without knowing making privacy protection more 
difficult. 

The problem is compounded by malicious acts. An abundance of data information 
makes data privacy more vulnerable, as attackers can infer confidential data from 
different query sources. For example, by linking attribute values of ZIP code, gender and 
birth date from anonymous data (or de-identified data) to those of other public data, 
Sweeney (1998) has shown that 87% of US population can be uniquely identified (or  
re-identified) to a certain degree. To achieve absolute privacy, one can accomplish this 
easily by simply not sharing or publishing the data. However, this is not possible as long 
as we need to make use of the data. Anonymisation addresses the issue of data privacy by 
making sure that each set of ‘critical’ data values belongs to more than one individual so 
that the identity of the individual can be protected. 

Much research on anonymisation techniques has been performed (Bayardo and 
Agrawal, 2005; Fung et al., 2009, 2007, 2005; Hundepool and Willenborg, 1996; 
Iyengar, 2002; LeFevre et al., 2005, 2006; Li et al., 2007; Machanavajjhala et al., 2006; 
Samarati, 2001; Sweeney, 1998, 2002a, 2002b; Wang et al., 2004). Basic approaches use 
generalisation to transform the original data, according to its taxonomies, into a 
generalised table that complies with anonymity requirements (Samarati, 2001; Sweeney, 
2002a, 2002b). Some approaches are theoretically feasible but not practical (Sweeney, 
2002b). Many techniques have focused on minimising generalisations to enhance 
computational efficiency. Several use the same term (e.g., minimal generalisation) with 
different details. Not all optimal techniques mean the same and that can mislead  
the selection of appropriate technique. On the other hand, excess manipulation in 
generalisation to provide anonymity can corrupt important information that the data  
may convey. As a result, the data become less informative and may give wrong  
decision-making or inaccurate inferences. It is important for anonymisation to strike these 
balances. 

Because of a trade-off between data privacy and the usefulness of the information that 
the data provide, recent anonymisation techniques take contents of the generalised table 
into account. These techniques can be divided roughly into two groups: those that lay 
formal grounds to minimise changes of the data (or data distortion) (e.g., Li et al., 2007; 
Sweeney, 2002b) and those that maximise data for a specific use, typically for 
classification (e.g., Fung et al., 2007, 2005; Wang et al., 2004). These techniques are 
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useful. However, the first group may not be practical due to its high computational cost 
while the purpose of the second group can be too limited. There has been no attempt to 
explore if a solution from one group can be effective for the purpose of the other. 
Although techniques for anonymisation have been studied extensively, most have  
been designed to address each of these specific goals (e.g., efficient generalisation, 
classification) as opposed to an integrated design for a general-purpose solution. 

The contribution of this paper includes: 

1 articulation and comparison of various aspects of privacy objectives for anonymising 
the identity of the individuals associated with given data 

2 HeuristicMin, a new anonymisation approach that applies generalisations along with 
optimal artificial intelligence search to securing privacy by satisfying user-specified 
anonymity requirements while maximising information preservation. 

Unlike prior approaches, HeuristicMin aims to find an integrated anonymisation system 
solution for computational efficiency, optimality and general data usage. HeuristicMin 
exploits monotonicity property of generalisation along with heuristics to search for 
optimal generalised data that comply with anonymity requirements. By using simple 
heuristics and appropriate grain size of generalisations, HeuristicMin prunes and narrows 
down the search space to enhance efficiency in its optimal search and prefers 
generalisation that keeps maximum data for general usage (as opposed to for 
classification). The paper also contributes to the analysis that expresses distinctions of the 
term ‘optimality’ as well as comparison studies among representative approaches. 

The rest of the paper is organised as follows. Section 2 describes related work and 
Section 3 defines terms, notations and background concepts. Section 4 gives the problem 
statement and the proposed approach of HeuristicMin along with an illustration and 
complexity analysis. Section 5 presents analytical comparison studies of HeuristicMin 
with other optimal anonymisation techniques as well as empirical comparisons with other 
anonymisation techniques for classification. Section 6 concludes the paper. 

2 Related work 

Research in privacy has been studied extensively in various aspects including privacy 
with rationality and decisions (Acquisti and Grossklags, 2005), protection and 
preservation of privacy (Bayardo and Agrawal, 2005; Dwork, 2006; Iyengar, 2002; 
LeFevre et al., 2005, 2006; Samarati, 2001; Sweeney, 1998, 2002a, 2002; Wang et al., 
2004). Most current privacy protection techniques are stemmed from the two notorious 
pioneer concepts of Dwork’s (2006) differential privacy and Sweeney’s (2002a)  
k-anonymity. Both aim to protect identity of the individuals associated with the data. 

Differential privacy provides objectives to ensure that the probability of statistical 
query results from the data with or without an individual’s information are (nearly) the 
same. If the individual’s data does not have a significant effect on the query outcome, 
then releasing his data does not harm his privacy. To do this, differential privacy injects 
random noise (e.g., noise from Laplace or Gaussian distribution) to the query results to 
mask the individual’s identity. Consequently, the query results become less accurate. The 
more accurate the query result is, the less privacy protection we have. 
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Alternatively, k-anonymity (Sweeney, 2002a) aims to guarantee that each group of 
unique critical attribute (or quasi identifier) values must have at least k records in order to 
prevent them from being personally identifiable (or de-identified). Mechanisms for 
achieving k-anonymity are generalisation and suppression, which involve replacement of 
a current value by its corresponding more abstract value or general form, respectively. 
The problem of finding optimal k-anonymisation is NP-hard (Meyerson and Williams, 
2004). To better protect against attribute disclosure, the k-anonymity concept has been 
extended to l-diversity (Machanavajjhala et al., 2006) to make sure each sensitive 
attribute has at least l well-represented values and to t-closeness (Li et al., 2007) to ensure 
the distribution of a sensitive attribute in each group is close to the distribution of the 
attribute in an overall database. Our work focuses on k-anonymity anonymisation; not its 
extensions nor the differential privacy. 

Most approaches dealing with k-anonymity focus on minimal k-anonymisations (i.e., 
minimal number of generalisations/supressions satisfying the k-anonymity requirements) 
(Samarati, 2001; Sweeney, 2002a, 2002b). Sweeney’s (2002a, 2002b) MinGen algorithm 
uses exhaustive search to find the minimal k-anonymisation with minimal distortion. The 
algorithm searches for optimal solution on a cell level, which makes it impractical for 
scalability due to a large search space. However, MinGen is an early work that provides a 
concrete formal model for minimal k-anonymisation. Based on binary search, Samarati’s 
(2001) AllMin algorithm searches for k-anonymisations, where the generalisation is not 
on a cell but attribute level. Thus, AllMin has reduced search space. Nevertheless, since 
binary search is a blind search, computational cost can still pose a problem since AllMin 
searches for all possible k-generalisations (i.e., no pruning). Our proposed approach is 
similar to the above approach in searching for an optimal k-anonymisation. However, we 
apply heuristics for efficient search as well as maximal data content. We also note that 
these approaches that yield optimal results have different implications on the term 
optimality. 

Other heuristic techniques include Datafly (Sweeney, 1998), the μ-argus system 
(Hundepool and Willenborg, 1996) and Mondrian (LeFevre et al., 2006). The core 
Datafly employs a heuristic based on the number of distinct attribute values to select an 
attribute for generalisation with additional suppressions to obtain data that satisfy  
k-anonymity requirements. The μ-argus system is similar to Datafly in basic structure of 
the algorithm. However, it uses heuristics based on user-specified ratings of sensitive 
attributes and unsafe combinations of attributes to test for elimination by generalisation 
and suppression. The multidimensional algorithm Mondrian follows a greedy approach to 
partition the data space into regions with at least k value. The method considers a  
top-down approach where it starts with the most general attribute value and partitions 
recursively as long as the anonymity requirement is satisfied. Since the approach uses a 
greedy method the optimality is not guaranteed. Datafly, μ-argus and Mondrian improve 
efficiency. Unlike our approach, they do not guarantee optimal results in terms of 
minimal k-anonymisation and the μ-argus system may also fail to satisfy k-anonymity 
(Sweeney, 2002b). 

It is clear that generalisation and suppression increase the degree of anonymity. 
However, the more data are anonymised, the less specific information they retain. 
Explosive applications of machine learning to analyse data have generated a relatively 
new research direction of anonymisation by not only satisfying k-anonymity but also 
aiming for the data to still be useful for data analysis (Fung et al., 2009, 2007, 2005). All 
these approaches use the resulting anonymised data for classification except the approach 
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in Fung et al. (2009) that modifies the algorithm for clustering. Our approach is similar to 
Wang et al. (2004) in that we use generalisation as a mechanism for k-anonymisations 
and thus, a bottom up search, whereas approaches in Fung et al. (2009, 2007, 2005) rely 
on specialisation mechanism and thus, a top-down search for data to comply with  
k-anonymity. Unlike these approaches that focus on the resulting data for modelling 
specific task for data analysis, our approach optimises the data con-tent (to be as close  
as possible to the original data) for general use. Furthermore, none of these data  
analysis-focused approaches result in optimal solution but ours does. 

Work by Iyengar (2002) and Bayardo and Agrawal (2005) address performance of 
search for minimal k-anonymisations. Using genetic algorithm, the former represents 
(table) data to be string-like and evolves them toward optimal solution. The latter uses the 
same data framework and extends to general cost metrics. Similar to these approaches, 
our approach aims to produce resulting data that accounts for a trade-off between 
anonymisation and quality data preservation. Unlike these approaches that focus on 
empirically optimal efficient approaches for anonymisation, our approach focuses on 
efficiently producing optimal resulting data (will be explained in detail in Section 4). 

3 Preliminary concepts 

This section describes relevant terms, notations and concepts. 

3.1 Data table and anonymity requirements 

A table T(A1, A2, …, An) represents a relational database with a schema A of attributes A1, 
A2, …, An. Each data record is an instance of a tuple of the data table of the form (a1, a2, 
…, an), where data entry ai is a domain value of attribute Ai [i.e., ai ∈ dom(Ai)] for all i. A 
table can contain multiple records (or instances) of a tuple. For compactness, each row of 
the table represents a distinct tuple followed by a column representing its corresponding 
number of records. For example, the first (distinct) row of Table 1 represents five records 
of a tuple (undergrad, female, 3.2). 
Table 1 An illustration of anonymity requirement 

Status Gender Age #Records 
Undergrad Female 3.2 5 
Undergrad Male 3.2 6 
Undergrad Female 3.6 2 
Graduate Male 3.6 3 
Graduate Female 3.8 1 
Graduate Male 3.8 2 

An anonymity requirement specifies an anonymity degree required on a certain subset of 
attributes in the table schema, called anonymity shield [or referred in Sweeney (2002a) as 
quasi-identifiers). More specifically, for a subschema B ⊆ A, a k-anonymity requirement 
on shield B, denoted by <B, k>, states that a table projection on B results in a set of  
B-projected tuples, each of which has a minimum of k records. We write [t, rt] to 
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represent a pair of a tuple t and its corresponding number of records rt. Thus, <B, k> is 
violated if there is [b, rb] for some B-projected tuple b such that rb < k. 

As an example, consider Table 1 with a given anonymity requirement <{education, 
gender}, 4>. Here, dom(gender) = {female, male} and dom(education) = {undergrad, 
graduate}. Thus, there are four combinations of domain values of the tuple projection on 
{education, gender}. First, for a projected tuple b = (undergrad, female), Rows 1 and 3 
of Table 1 give a total number of records, rb = 7. Thus, we have [(undergrad, female), 7], 
which satisfies the required anonymity degree of four. Similarly, for the rest three tuples, 
we have [(undergrad, male), 6], [(graduate, male), 5] and [(graduate, female), 1]. The 
last case violates the anonymity requirement since a minimum of four records is required. 
Therefore, the anonymity requirement <{education, gender}, 4> is not satisfied. 

Intuitively, the anonymity requirement protects the privacy of a record holder by 
ensuring that for each tuple projected on a shield, the number of records that share the 
same tuple values must be large enough to help ‘hide’ the individual identity/information. 
Thus, the larger the degree of the anonymity is, the harder it is to identify the identity of 
the record holder. In general, for a given table, one can define more than one anonymity 
requirement, each of which can have a different anonymity degree and a shield. In 
practice, the data provider or the data user specifies the anonymity requirement. 

Different shield sets are useful when there are many attributes that can be critical to 
identification of record holders. To determine one single shield may not be practical or 
easily selected as it depends on different contexts of data usage (e.g., {Zipcode} may not 
be a shield that is as critical for restaurant customers as those for hospital patients 
because there are likely to have more restaurants than hospitals in a given zipcode). The 
choice of anonymity degree and a shield (set of projected attributes) in anonymity 
requirement can impact data inferences that lead to privacy breaches. If the anonymity 
degree is too low, the shield may or may not be able to protect the individual identity 
(e.g., when the projected tuple becomes personally identifiable). For example, anonymity 
requirement <{education}, 1> and <{education, gender}, 1> would allow publishing 
every row in Table 1. While the shield {education} can protect individual identity of a 
student based on their educational information [since there are 13 (undergrad) and  
6 (graduate) records)], the shield {education, gender} results in one record of (graduate, 
female). If we are looking for a female graduate student, because there is only one record 
of such a person (as shown in Table 1), we can directly infer that she has a GPA of 3.8. 
Here, the shield {education, gender} yields a personally identifiable tuple. 

On the other hand, if we set the anonymity degree too high, none of the data can 
satisfy the requirement and as a result, there is no data release for privacy becomes over 
protected. For example, applying anonymity requirement <{education, gender, GPA}, 7> 
to Table 1, none of the projected tuples (e.g., (undergrad, female, 3.2), (undergrad, male, 
3.2)) would satisfy the requirement. Even if we lower the anonymity degree to 4, some of 
the projected tuples, e.g., (undergrad, female, 3.6), (graduate, male, 3.6), (graduate, 
female, 3.8), and (graduate, male, 3.8) would all violate the requirements for data 
publishing/sharing. Instead of excluding such data completely to protect privacy, a 
compromising alternative is to publish data in a less informative way. This leads to the 
concept of generalisation and specialisation that we will describe next. 
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3.2 Anonymity via generalisation and specialisation 

Generalisation replaces an attribute value by a more general but semantically consistent 
value (e.g., generalise a city by its state). This increases the number of tuples that share 
the same attribute value, and consequently increases a number of records, and anonymity 
degree, to hide individual identities. Generalisation provides several advantages to 
preserve data privacy including consistent interpretation, traceability and minimal content 
distortion (Sweeney, 2002a). Specialisation is, however, a reverse of generalisation. 

By using the taxonomy (or hierarchy) of the corresponding attribute tree, 
generalisation replaces the attribute value by its parent node to protect privacy. For 
example, Figure 1 shows three taxonomies of three attributes: education, gender and 
GPA. As shown in Table 2(a), since there is only one record of a student with GPA 3.9 
and GPA 2.5, we can identify gender and education of each of these students. Since both 
are females, applying generalisation to GPA cells that correspond to female students will 
give a resulting Table 2(b), where we can no longer identify the education and gender of 
the student with GPA 3.9 (as we have [(undergrad, female, [3, 4]), 6], i.e., we hide them 
among six students with GPA in [3, 4]). However, we can still infer information about the 
student with a GPA 2.5 (last row). 
Table 2 Cell-wise generalisation and effects on anonymity (see online version for colours) 

Education Gender GPA #Rec  Education Gender GPA #Rec 
(a) Initial table  (b) Generalise on GPA cells 

Undergrad Female 3.5 5  Undergrad Female [3, 4] 5 
Undergrad Male 3.6 6  Undergrad Male 3.6 6 
Undergrad Female 3.9 1  Undergrad Female [3, 4] 1 
Graduate Male 2.9 2  Graduate Male 2.9 2 
Graduate Female 2.5 1  Graduate Female [0, 3) 1 

(c) Generalise on gender, GPA cells  (d) Final table 
Undergrad Female [3, 4] 5  Undergrad Female [3, 4] 6 
Undergrad Male 3.6 6  Undergrad Male 3.6 6 
Undergrad Female [3, 4] 1  Graduate Any [0, 3] 3 
Graduate Any [0, 3) 2      
Graduate Any [0, 3) 1      

Figure 1 Taxonomy tress of three attributes 

 

To hide information of this student, we can generalise her gender, using taxonomies in 
Figure 1, to any giving [(graduate, any, [0, 3)), 1]. Next, we generalise the row above it 
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by replacing the GPA 2.9 to [0, 3) as well as replacing male to any giving [(graduate, 
any, (0, 3]), 2]. The result is shown in Table 2(c). Table 2(d) shows a final table after 
merging the rows with the same tuples. Thus, the gender and education of the student 
with GPA 2.5 is protected. If the anonymity degree required on all of the three attributes 
is two, generalisation transforms Table 2(a) that violates the anonymity requirement into 
Table 2(d) that complies with the anonymity requirements. 

Note that there are many ways one can generalise. Table 2 shows generalisation at a 
cell level (i.e., a data entry of a specific row and column of a table) (e.g., Sweeney, 
2002b). Some simplify the grain size and perform generalisation by column, where 
generalisation is applied to data entry of each row under the same attribute column (e.g., 
Samarati, 2001). Another type of generalisation is performed at a height level (or by 
attribute). In this case, for a given taxonomy tree of an attribute, if we generalise a child 
to its parent, we also generalise all siblings of the child to the parent as well. This will 
apply to all occurrences of the child and siblings in Table 2 so that all entries of the same 
level in the table are generalised to the next level at the same time in order to improve 
efficiency in finding anonymity compliant rows. Thus, when T is generalised on attribute 
A, the generalisation is applied only to the table rows that contain the child and its 
siblings. For example, consider Table 2(a). Generalising female enforces generalising 
male. Both are replaced by any (generalising from height 0 to height 1) on all of their 
occurrences (rows) in Table 2. This gives Table 2 where every row has value any under 
the column gender. On the other hand, if we generalise 2.5 in Table 2(a) on GPA, the 
resulting table would look like Table 2(a) except the data entries under GPA of the last 
two rows of Table 2 are replaced by [0. 3) since 2.9 is the only sibling of 2.5. Generalised 
by column is more general than that by attribute. 

4 Problem and proposed approach 

4.1 Problem statement 

The paper addresses the problem of how to protect privacy of the owners of the 
shared/public data. This aims to protect the individual identities and their corresponding 
data. Although the ultimate privacy can be achieved by generalising the data to the 
highest level of hierarchy, this results in making every individual’s information the same. 
To the lesser extent of generality, the data will not be specific enough to be useful. Since 
privacy works against sharing information, a more practical question should be how to 
protect data privacy while keeping the shared data as informative as possible. Our 
criterion is to satisfy user-specified anonymity requirements while the amount of  
non-redundant data released measures the degree of data preservation. 

More formally, let T(A1, A2, …, An) (or T when attributes are implicitly defined) be a 
data table of a schema A = {A1, A2, …, An} and taxonomy trees of each attribute Ai. Let R 
be a set of anonymity requirements <Ri, ki>, for shield Ri ⊆ A and anonymity degree  
ki > 0 for i = 1, …, m. We say that T satisfies <Ri, ki> if every Ri-projected tuple has a 
minimum of ki records and T satisfies R if T satisfies <Ri, ki> for all i = 1, …, m. 

The problem can be stated as follows. For a given table T, its corresponding 
taxonomy trees and a set of anonymity requirements R, find an optimal table T′ that 
satisfies R. By optimality, we mean that T′ preserves the most information of T. 
Specifically, T′ is a generalised table of T such that T′ has a maximum number of rows 
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among all T’s generalised tables that satisfy R. Recall each table row represents a distinct 
tuple that can have one or more instances of records. Thus, the highest number of rows 
represents the most non-redundant information from data. Thus, we use the number of 
rows (or the table size) to capture non-redundant information. 

4.2 Proposed anonymisation 

Our research aims to mask the sensitive information on the table while preserving as 
much information as possible. We propose a hybrid approach that combines artificial 
intelligence’s heuristic search concepts with a classic anonymisation technique to 
guarantee optimal informativeness as well as compliance with anonymity requirements. 
The resulting table is optimal in that it preserves as many rows of the anonymised table as 
the anonymity requirement allows. Specifically, we use generalisation for anonymisation. 
Thus, our approach is a bottom-up heuristic approach. Figure 2 provides a general 
overview of the proposed algorithm. 

Figure 2 Proposed algorithm 

 

As shown in Figure 2, the proposed algorithm has three inputs: a data table T with a set of 
attributes A, a taxonomy tree for each attribute, and a set of anonymity requirements R 
with a set of anonymity shield attributes S ⊆ A. Note that, as described in the input 
specification and Line 1, the algorithm is also applicable to multiple requirements, each 
of which may have a different shield set as well as a different anonymity degree. We 
assume that T does not satisfy R, otherwise there is nothing to be done and T is our 
optimal table. 
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The algorithm iteratively generalises a table on an appropriate attribute using its 
corresponding taxonomy tree to increase anonymity degree. In Lines 1–4, a generalised 
table of T on each attribute in S is generated and maintained in set W. Each generalised 
table keeps track of two key heuristics: the number of rows that violate R and the total 
number of rows on the table. The former tells how close we are to finding the table that 
satisfies the anonymity requirements R while the latter measures how much  
non-redundant data is preserved. As shown in Figure 2, Line 6, we select, among 
generalised tables in W, a table that has the highest number of rows with the lowest 
violation number of rows to be further generalised (Lines 7–10). Each selected table will 
be removed from W (Line 11). As shown in Lines 5-12, this generalisation process 
repeats until there is no more tables left in W or no tables in W has the number of rows  
> the number of rows of a table that satisfies R. In the latter case, all the tables in W either 
have: 

1 zero number of rows that violate R 

2 non-zero number of rows that violate R out of the total number of rows that is 
smaller than those tables in Case 1. 

In other words, we stop expanding the search when we find a table that satisfies R or a 
table that is smaller than the biggest table that satisfies R found so far (even though it 
violates R). The principle rationale behinds this is the monotonicity behaviour of 
generalisation. As we increase the generalisation steps, the table can never grow in size. 
Because our goal is to maximise the size of the table that satisfies R, the algorithm only 
further generalises the table that is larger than those found to satisfy R so far. If a table 
violates R but is already smaller than the biggest table found so far to satisfy R, further 
generalising it would not result in a larger table that satisfies R. 

As shown in Line 13 of Figure 2, the algorithm selects the largest table among the 
tables in W with no anonymity requirements violation. Note that it is possible to have 
more than one of such table of the same size. In such a case, the algorithm selects the first 
one found as it represents the table that has the least number of generalised steps. In other 
words, it retains most specific data that are closest to the given data table. 

Since generalisation procedure monotonically decreases the number of rows, our 
approach uses this property to prune the fruitless path of an exhaustive search. Thus, it 
finds an optimal solution of a table that maximises the information preserved (i.e., the 
table size) from the original table while hiding sufficient privacy by satisfying anonymity 
requirements (i.e., zero violation rows). 

4.3 Illustration 

Figure 3 shows the three taxonomy trees of attributes corresponding to a given table T on 
top of Figure 4. Given the anonymity requirements set R as {<{education, sex, hours}, 
4>}. Each of rows 3, 6 and 7 of T has two records and thus, violates R that requires a 
minimum of four records. (Note that if R contains multiple requirements, Line 1 would 
collect all violating rows. For example, if R includes an additional requirement of <sex, 
20> then Line 1 would have included rows 4–7 as violating rows.) We now apply the 
proposed approach. Let T(n, m) represent a generalised table T generated with n number 
of rows that violate R out of m total number of rows in T. The rows that violate R in each 
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table are indicated by colour highlight. The column class will be used for comparison 
later and should be ignored for now, as it is not directly a part of our approach. 

Figure 3 Taxonomy trees 

 

Figure 4 Example of our proposed anonymisation approach (see online version for colours) 

 

As shown in Figure 4, starting from T(3, 7), by applying Lines 1–3 of the algorithm, we 
generalise T on education, sex, and hours and obtain T1(0, 4), T2(2, 6) and T3(3,7), 
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respectively. Looking more closely, for example for T1, by generalising T on education to 
T1, all rows in T1 share the same value of high under column education. 

Thus, a total number of rows in T1 is 4, due to four combinations of two values of sex 
and two of hours in T. For example, rows 2 and 3 both represent a tuple (high, M, 30) 
with 4 and 2 records, respectively. Both rows are merged to row 2 of T1 with a combined 
number of records as 6. The rest is similar, and we obtain T1(0, 4) with four rows, none of 
which violate R. On the other hand, by generalising T on sex results in T2 where now 
rows 3 and 4 are the same and the number of records can be combined giving T2(2, 6) 
with a reduced number of violation rows to 2 and size of the table to 6. For T3, by 
generalising T on hours, a data entry of each row under column hours in T is replaced by 
either [1, 40) or [40, 99) depending on its value and appropriate generalisation governed 
by the corresponding taxonomy [e.g., 30 is replaced by [1, 40)]. As a result, T3 still 
maintains the same number of rows (i.e., 7) and violation rows (i.e., 3). 

Applying Line 6 of the algorithm to W = {T1, T2, T3}, we stop generalising T1 (as it 
satisfies R and further generalisation will only shorten the table). As among tables that do 
not satisfy R, namely T2 and T3, T3 has a larger size. Therefore, T3 is next selected for 
further generalisation. Generalising T3 on education, sex, and hours and obtain T4(0, 4), 
T5(2, 6) and T6(1, 4), respectively. Update W = {T1, T2, T4, T5, T6}. 

We stop generalising T1(0, 4), T4(0, 4) and T6(1, 4) (as generalising them would 
obtain smaller tables). Thus, T2 is selected for generalisation. Since we cannot generalise 
T2 further on sex, only generalisation on education and hours remain. 

Here, generalising T2 on education and hours results in T7 and T5, respectively. The 
rest of the process continues in a similar fashion. Figure 4 only shows a partial detailed 
generalisation of our approach. It should be noted that tables of the same two key 
heuristic values may not be the same. For example, T2 and T5 both have two violation 
rows out of six rows. T1 and T4 are similar. Thus, the solutions may not be unique (see 
later on how we select a unique optimal solution). 

We can represent the approach as a search tree where each node represents an ordered 
pair (n, m) where n and m are previously defined as in T(n, m). Figure 5 shows a 
complete search tree resulting from our approach. 

As shown in Figure 5, the search starts from the root node (3, 7) of a given table T 
and follows the same step as illustrated in Figure 4. By generalising T on each of the 
three attributes, (3, 7) branches to three children, namely (0, 4), (2, 6) and (3, 7) 
corresponding to tables T1, T2 and T3 in Figure 4. 

Figure 5 A complete search tree for optimal generalised table 
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As mentioned above, we stop generalising node (0, 4) as it would only shorten the table. 
Among (2, 6) and (3, 7), node (3, 7) is selected to be generalised on education, sex and 
hours to (0, 4), (2, 6) and (1, 4), respectively. At this point among frontier nodes (0, 4), 
(2, 6), (0, 4), (2, 6) and (1, 4), the first node (2, 6) is selected for further generalisation 
producing nodes (0, 2) and (2, 6). So far, all the leave nodes (corresponding to tables in 
W) include two (0, 4) nodes, (0, 2), (2, 6) and (1, 4). Because node (1, 4) represents a 
table of size 4, which is not larger than those of nodes (0, 4). Thus, as shown in Figure 5, 
both (1, 4) and (0, 4) will have no further generalisation leaving (2, 6) to be generalised to 
(0, 2) and (0, 3). Furthermore, tables with n = 0 (i.e., satisfy anonymity requirements R), 
has maximum m = 4 (i.e., non-redundant data preserved). The search stops when there is 
no node for further generalisation that will yield a bigger table. Thus, all the leave nodes 
of the tree either have n = 0, or non-zero n with m < 4 [e.g., (1, 4) as shown in Figure 5]. 
At this point, there are nodes with zero violations and there are no other nodes where 
number of rows is greater than the ones with zero violations. Because there are two 
optimal (0, 4) nodes (as shown in bold in Figure 5), the algorithm returns the first one 
generated, i.e., the one that is of level 1 [i.e., T1(0, 4) as opposed to T4(0, 4) of level 2 
because its data information is closer to the original table (less generalisation steps)]. This 
can be easily verified that T1 is more specific than T4. Thus, the algorithm returns an 
optimal table T1. 

4.4 Complexity analysis 

The algorithm searches for an optimal table in that it minimally generalises the given 
table to obtain a table with maximum size among all the tables that do not violate the 
anonymity requirements. It uses heuristics based on the monotonicity of generalisation to 
prune away some fruitless paths to improve efficiency. However, in theory in the worst 
case, the algorithm exhaustively finds all generalised tables in order to determine the 
optimal table. Our analysis gives an upper bound that may not be as tight as possible to 
simplify the analysis and to give an idea of the time complexity of our approach. 

Let n be the number of records of a table tuple of k attributes, each of which has at 
most m domain values. The time it takes the algorithm to search for a solution depends  
on the number of generalisations, each of which depends on the structure of the 
corresponding taxonomy tree. For each generalisation on each attribute, the number of 
ways to generalise m values, from the bottom-up, is one in the best case (i.e., when all 
values have the same parent) and at most m / 2 in the worst case. This is because each 
generalisation has a branching factor ranging from 2 (binary tree) to m. The maximum 
branching factor m gives a minimum of one possible generalisation whereas the 
minimum branching factor two gives a maximum of m / 2 possible generalisations. Since 
there are k attributes, there are at most km / 2 possible generalisations. For each attribute 
of m values, the number of generalisation steps is m – 1 in the worst case (e.g., from the 
top of the binary tree with m leaf nodes). Since there are k attributes, the longest 
generalised path is at most k(m – 1). Thus, each data entry value in each record requires 
O(bd) time for all possible generalisation, where b = km / 2 and d = k(m – 1). Since there 
are n records, the algorithm takes O(nbd) (i.e., O(n(km / 2)k(m–1)). 
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5 Analytical and experimental comparisons 

In this section, we illustrate different approaches with examples and compare the results 
on anonymity, data preservation and data utility for classification modelling. We consider 
two comparison sections. On the first section, we do the comparison with techniques that 
aims for optimality with different meanings, MinGen (Sweeney, 2002b) and AllMin 
(Samarati, 2001). On the second one, we compare our method with two anonymisation 
techniques that are for classification, top-down specialisation (TDS) (Fung et al., 2005) 
and bottom-up generalisation (BUG) (Wang et al., 2004). 

5.1 Anonymisation for optimality 

This section analyses the three ‘optimal’ approaches including Sweeney’s (2002b) 
MinGen, Samarati’s (2001) AllMin and ours, HeuristicMin. All achieve anonymity by 
complying with given anonymity requirements. All find the ‘optimal’ solution by 
searching for a generalised table with minimal generalisations. However, it is not clear 
how each of these solutions and approaches differ. By observing details of these 
approaches on a specific example, we aim to gain understanding of their differences and 
the real meaning of optimality. In Section 4, we show how HeuristicMin works and 
obtain its optimal generalised table. We next apply MinGen and AllMin to the same 
example in details before we provide comparison analysis. 

5.1.1 MinGen approach 
MinGen uses generalisation to produce a table that satisfy k-anonymity with minimal 
distortion. The generalisation is performed at a cell level. MinGen exhaustively searches 
on each cell for generalised tables with minimum number of generalisations that comply 
with k-anonymity degree requirement (or k-minimal generalisations). In our example,  
k = 4. We now apply MinGen, to table T of Figure 4. For convenience, we display T again 
in Figure 6(a). Rows 3, 6 and 7 violate anonymity requirements R. There are numerous 
ways to generalise T cell-wise. For example, for each record in each row, there are 6  
(3 × 1 × 2) generalisations based on a taxonomy height of each attribute. Thus, table T 
has a total of 240 possible generalisations. 

To produce a generalised table that complies with R, one option is to generalise T on 
education cell of rows 2 and 3 allowing them to be merged to one row of six records. 
Thus, this eliminates row 3 violation. Similarly, generalising T on education cell of  
rows 4 and 6 to be merged as well as those of rows 5 and 7 produces table T8 as shown in 
Figure 6(b). Overall, a total number of generalisations at cell level required to generalise 
T8 is 20 (i.e., 1 × 6 + 1 × 6 + 1 × 8 for generalising on education of rows 2 and 3, 4 and 6, 
and 5 and 7, respectively). Another option is to generalise education cell of rows 2 and 3 
to be merged as in T8 but also generalising two levels on hours cell of rows 6 and 7. This 
produces a generalised table T9, as shown in Figure 6(c), which requires 14 cell level 
generalisations. Similarly, we can obtain T10, as shown in Figure 6(c), which also requires 
14 cell level generalisations. Both T9 and T10 require minimal generalisations at cell level 
of 14 in order to satisfy the four-anonymity requirement R. 
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Figure 6 Sweeney’s MinGen approach, (a) an initial table T (b) generalised T to T8 (c) minimal 
generalised T to T9 (d) minimal generalised T to T10 (see online version for colours) 

 Row Edu Sex Hrs #Rec 
1 10th M 40 20 
2 10th M 30 4 
3 9th M 30 2 
4 9th F 30 4 
5 9th F 40 6 
6 12th F 30 2 
7 12th F 40 2 

(a) 

Row Old  Edu Sex Hrs #Rec 
1 1 10th M 40 20 
2 2, 3 High M 30 6 
3 4, 6 High F 30 6 
4 5, 7 High F 40 8 

(b) 

Row Old  Edu Sex Hrs #Rec 
1 1 10th M 40 20 
2 2, 3 High M 30 6 
3 4 9th F 30 4 
4 5 9th F 40 6 
5 6, 7 12th F Any 4 

(c) 

Row Old  Edu Sex Hrs #Rec 
1 1 10th M 40 20 
2 2 10th M 30 4 
3 3, 4 9th Any 30 6 
4 5 9th F 40 6 
5 6, 7 12th F Any 4 

(d) 
 

As we can see, non-unique minimal generalised tables that satisfy R may exist (e.g., T9 
and T10). Moreover, such tables do not necessary contain the same in-formation and thus, 
have different degree of distortion. Intuitively, the cell’s distortion depends on a 
proportion of generalised data. Comparing row 2 of T9 and row 3 of T10, the proportion of 
generalised data on education of the former is about 1/3 (1 out of 3 possible 
generalisation steps) whereas that on sex of the latter is about 1/1. Thus, T9 is less 
distorted and should be preferred. MinGen uses the preference metric Prec, to measure a 
precision of a table, where a ratio of each cell’s generalisation level over the total number 
of levels (height) in a corresponding taxonomy tree is used to represent the cell’s 
distortion. The less distortion the table is, the more ‘precise’ the table becomes in terms 
of its closeness of the generalised data to its original. Prec of a generalised table is 
defined by subtracting all normalised cell distortions from one. Specifically, let T be a 
generalised table with number of attributes n, and number of records m. For each cell tij 
of attribute i and instance j, let l(tij) and h(tij) be its corresponding taxonomy level and 
height (i.e., taxonomy tree of attribute i). We then define Prec (or P) as follows: 

( )
( )1 1

11
n m

ij

iji j

l t
P

nm h t= =

= −   

Applying the formula to T9, the normalised sum of cell distortions is 0.05 [i.e., 1/120  
(6 × 1/3 + 4 × 2/2), where the first amount in the sum indicates distortion on education 
and the second indicates distortion on hours for all relevant cells]. This gives a precision 
of T9 to be 0.95. Similarly, we obtain T10’s precision to be 0.92. Thus, by the preference 
criterion, MinGen returns T9 as an optimal generalised table. 

5.1.2 AllMin approach 
Samarati’s AllMin uses a binary search indexing by a total number of generalisations 
Gen, which is a sum of a taxonomy level of each generalised data on each shield 
attributes. In our example, since there are three attributes, search state [i, j, k] represents a 
taxonomy level i, j and k on attribute education, sex and hours, respectively. Recall each 
of the given three taxonomy trees in Figure 3 has height 3, 1, and 2 on education, sex and 
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hours, respectively. Thus, a state with maximum generalisations is [3, 1, 2], where Gen is 
6, and an initial table has an initial state [0, 0, 0]. AllMin generalises by column. 

Based on binary search, AllMin starts looking for anonymity compliance generalised 
tables with minimal Gen at level ⌊6/2⌋, since Gen of [3, 1, 2] is 6. There are  
six generalised tables at level 3, namely [2, 1, 0], [1, 1, 1], [1, 0, 2], [2, 0, 1], [3, 0, 0] and 
[0, 1, 2]. As shown in Figure 7, all of them satisfy R. AllMin moves to a more specific 
level (i.e., level 2) and repeats checking all generalised tables in this level, namely  
[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 0, 0] and [0, 0, 2] in a similar manner. 

Figure 7 AllMin’s generalised tables corresponding to states in level 3 (see online version  
for colours) 

 

Figure 8 AllMin’s generalisation states at all levels (see online version for colours) 

 

Figure 8 shows the two levels of generalised tables that AllMin has evaluated so far. As a 
result, [0, 1, 1] and [0, 0, 2] do not satisfy R but the rest do. Thus, candidates for 
generalised tables with minimal Gen at level 2 are [1, 1, 0], [1, 0, 1] and [2, 0, 0]. If  
none of the specialised (i.e., a reverse of generalised) tables (in level 1) of these  
three candidates satisfies R then they are indeed the optimal solutions. As seen from 
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Figure 8, these relevant generalised tables correspond to states in level 1. Thus, AllMin 
checks if: 

1 [1, 0, 0] (specialised table of [1, 1, 0], [1, 0, 1] and [2, 0, 0]) 

2 [0, 1, 0] (specialised table of [1, 1, 0]) 

3 [0, 0, 1] (specialised table of [1, 0, 1]) satisfies R. 

The results shown in Figures 9(a)–9(c) indicate that only [1, 0, 0] satisfies R. Since a 
lower level state [0, 0, 0] corresponds to an initial table, which does not satisfy R, 
therefore the generalised table corresponding to [1, 0, 0] as shown in Figure 9(a) is an 
optimal generalised table produced by AllMin. 

Figure 9 AllMin’s generalisations in level 1, (a) [1, 0, 0] (b) [0, 1, 0]) (c) [0, 0, 1]) (see online 
version for colours) 

 Row Edu Sex Hrs #Rec 
1 High M 40 20 
2 High M 30 6 
3 High F 30 6 
4 High F 40 8 

 

Row Edu Sex Hrs #Rec 
1 10th Any 40 20 
2 10th Any 30 4 
3 9th Any 30 6 
5 9th Any 40 6 
6 12th Any 30 2 
7 12th Any 40 2 

 

Row Edu Sex Hrs #Rec 
1 10th M [40, 99) 20 
2 10th M [1, 40) 4 
3 9th M [1, 40) 2 
4 9th F [1, 40) 4 
5 9th F [40, 99) 6 
6 12th F [1, 40) 2 
7 12th F [40, 99) 2  

(a) (b) (c) 

5.1.3 Comparative analysis 
Figure 10 summarises our findings from this example. As shown in Figure 10(a), 
MinGen’s resulting table [i.e., T9 of Figure 6(c)] clearly retains the data closer to the 
original than that of AllMin’s and ours, which, as shown in Figure 10(b), happens to be 
the same [i.e., T1(0, 4) in Figure 4 and the table of state [1, 0, 0] in Figure 9(a)]. The 
observation is verified by the precisions 0.95 and 0.89 of the two tables as shown in 
Figure 10(c). This is to be expected since MinGen aims to find a table with minimal 
generalisations to satisfy anonymity requirements R with minimal distortion. On the size 
of the resulting tables, MinGen produces a slightly larger table than that of the rest. This 
is reasonable since both HeuristicMin and AllMin apply generalisation on a larger grain 
size than MinGen (i.e., rows on a certain attribute column as opposed to record cells). 
Thus, the minimum number of generalisations obtained by MinGen (i.e., 14) is double of 
that of AllMin and HeuristicMin (i.e., 7 from generalising seven rows of the initial table T 
on education). Because of this generalisation gran size, the solution space of 240 possible 
generalisations of MinGen is significantly higher than 24 [i.e., sum of all states in  
Figure 8] of the other two approaches. The main difference between HeuristicMin and 
AllMin is the optimal criteria and the effort in searching for optimal solution (due to 
heuristics that help pruning in HeuristicMin). 
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Figure 10 Summary of results on generalising table T by all three methods, (a) MinGen (b) ours 
and AllMin (c) comparisons on this specific example (see online version for colours) 

Edu Sex Hrs #Rec 

10th M 40 20 
High M 30 6 

9th F 30 4 
9th F 40 6 

12th F Any 4 
(a) 

Edu Sex Hrs #Rec 
High M 40 20 
High M 30 6 
High F 30 6 
High F 40 8 

(b) 

Characteristics MinGen AllMin 
Heuristic 

Min 
(Ours) 

Precision of the resulting table  0.95 0.89 0.89 
No. of rows in the resulting table 5 4 4 
No. of generalisations in the resulting table 14 7 7 
Generalisation by Cell Column Attribute 
No. of generalisations to find solutions Trial/Error 14 9 
Size of solution space (all generalisations) 240 24 24 

(c)  

 

As a result, in this example, the number of generalisations to find solutions is 9 for 
HeuristicMin (see all states generated in Figure 5) and 14 for AllMin (see a total number 
of states in levels 1–3 in Figure 8). 

To summarise, MinGen’s optimality means a minimum number of cell-wise 
generalisations that satisfy anonymity requirement and minimise data distortion (i.e., 
changes of original data). 

AllMin’s optimality means a minimum number of column-wise generalisations that 
satisfy anonymity requirement. HeuristicMin’s optimality means a minimum number  
of attribute-wise generalisations that satisfy anonymity requirement and maximise  
non-redundant data information (i.e., number of rows). 

On solution criteria, HeuristicMin is similar to MinGen in that their optimal solutions 
must meet two criteria: 

1 satisfying anonymity requirements with minimal generalisations 

2 maximise data preservation of the given table. 

On the other hand, AllMin’s optimal solution only needs to meet only the first criterion. 
On generalisation, MinGen generalises by cells, AllMin by column and HeuristicMin by 
attribute. Thus, MinGen’s generalisation is the finest grain size, while AllMin’s is the 
coarsest and HeuristicMin’s compromises between the two. Because of this, MinGen 
produces the optimal table with best precision but at the same time it has a large search 
space. Therefore, MinGen serves as a good formal approach but not feasibly practical 
(Sweeney, 2002b). To remedy this, Sweeney (1998) has developed Datafly, a heuristic 
approach that is computationally feasible. However, because it does not guarantee 
optimal generalisations, we exclude it from our comparison. 

Although the results obtained from AllMin and HeuristicMin are the same in this 
example, it is not necessary the same in general. Both of their generalisations are based 
on the attribute column but HeuristicMin’s generalisation applies to certain table rows 
(i.e., those contain attribute values violating anonymity requirements and its sibling), 
which, in the worst case, could be all rows as in AllMin. In searching for optimal 
solutions, AllMin exploits a binary search, which is a blind search, whereas HeuristicMin 
uses heuristics on the number of rows violating the anonymity requirements and the table 
size. By using the monotonicity property of generalisation, HeuristicMin is an admissible 
A* search, giving an optimal solution (Russell and Norvig, 2010). Note that the search 
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may not find a unique optimal solution. In such a case, MinGen and HeuristicMin apply a 
preference metric to select a unique solution, while AllMin does not but gives possible 
criteria. Finally, both MinGen and AllMin include suppression (not releasing or masking) 
in generalisation. For example, generalising the zip string 12345 to 1234* has the same 
effect as masking the last zip digit value. HeuristicMin could do the same. 

These comparisons show that our HeuristicMin approach is simple and effective in 
that it produces a practical and useful optimal result comparable to those of other 
methods that likely have higher computational cost or not realistically realisable. 

5.2 Anonymisations for classification 

Several existing data privacy approaches aim to find a generalised data table that not only 
satisfies a given anonymity requirements to mask sensitive information but also preserves 
data useful for modelling classification. TDS (Fung et al., 2005) and BUG (Wang et al., 
2004) are designed for this purpose. Specifically, the resulting data tables aim to 
maximise accuracy of the classification models. This section compares TDS, BUG and 
our HeuristicMin (even though HeuristicMin is not designed for classification purpose). 

Starting from the most general table, TDS searches for its table solutions by 
repeatedly performing appropriate specialisations until no further applicable 
specialisation exists. That is, it either violates the anonymity requirements or does not 
increase useful information for classification [or information gain (MacKay, 2003; 
Mitchell, 1997; Russell and Norvig, 2010)]. TDS selects an attribute with a maximum 
metric score to be specialised using its corresponding taxonomy tree. The scoring metric 
is defined as a ratio of information gain to anonymity loss. 

In our context, information gain from a given attribute tells us how well specialisation 
of the attribute helps us gain better classification. The classification quality depends on 
the ‘mix’ of classes, which is measured by entropy (MacKay, 2003; Russell and Norvig, 
2010). The less mix the classes are (e.g., frequency of one class dominates the rest), the 
easier it is to classify because the separation of classes are more distinct. Thus, 
information gain uses entropy to measure the mix of classes before and after 
specialisation. Good specialisation increases information gain and reduces the mix of 
class. Note that specialisation on an attribute that involves records of one single class will 
not increase information gain and thus, such specialisation is inapplicable. 

TDS’s anonymity loss on a given attribute A is defined as an average of anonymity 
loss before and after specialisation on A overall requirements containing A. The 
anonymity loss on A for each requirement is measured from the largest difference (i.e., 
the worst case) of the number of records before and after specialisation. In other words, 
we compare the record number of the parent node with that of the child node with 
minimum number of records. If the difference is high, then the anonymity loss is also 
high, but the score will be low. In sum, the metric score is high when information gain is 
high (to increase classification quality) and/or anonymity loss is low (i.e., low distance to 
satisfy anonymity requirements) (see more details in Fung et al., 2005). 

BUG addresses the same problem as TDS but searches for the solution in a bottom-up 
manner. Being developed by the same researchers as those of TDS, BUG uses a similar 
scoring metric. Since BUG applies generalisation rather than specialisation, BUG’s score 
is a reverse of TDS’s score, which is a ratio of information loss to anonymity gain. Here, 
we apply generalisation on the attribute with a minimum score (i.e., either low 
information loss or high anonymity gain) (see more details in Wang et al., 2004). 
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Next we compare our approach, HeuristicMin, on four examples with TDS and for the 
sake of simplicity, compare all three approaches only on one of those four examples. To 
evaluate the results on classification modelling we use naive Bayesian classifier with  
ten-fold cross-validation on the resultant tables of the four examples. On the comparison 
tables, we consider the number of distinct rows and classification accuracy. 

Figure 11 Comparison of TDS and HeuristicMin on classification Case 1, (a) initial table  
(b) HeuristicMin's result (c) TDS’s result (d) comparisons (see online version  
for colours) 

Row Edu Sex WorkHrs Class #Rec 
1 10th M 40 A 20 
2 10th M 30 B 4 
3 9th M 30 B 2 
4 9th F 30 B 4 
5 9th F 40 B 6 
6 8th F 30 B 2 
7 8th F 40 B 2 

(a) 

Row Edu Sex WorkHrs Class #Rec 
1 High M 40 A 20 
2 High M 30 B 6 
3 High F 30 B 6 
4 High F 40 B 8 

(b) 

Row Edu Sex WorkHrs Class #Rec 
1 Any M [40, 99) A 20 
2 Any M [1, 40) B 6 
3 Any F [1, 40) B 6 
4 Any F [40, 99) B 8 

(c) 

 # Rows 
Input 

# Rows 
Result 

% Acc 

HM 7 4 100% 

TDS 7 4 100% 

(d)  

5.2.1 Case 1: HeuristicMin vs. TDS on single requirements 
Consider an illustration in Section 4.3, where an initial table is shown again here in 
Figure 11(a) with the anonymity requirements set R as {<{education, sex, hours}, 4>}. 
The results obtained from our HeuristicMin (HM) and TDS is shown in Figures 11(b)  
and 11(c), respectively. 

Figure 11(d) gives a summary of comparisons between a specialised table obtained 
from TDS and a generalised table obtained from HM. Both algorithms preserved the same 
number of rows and have the same result for classification. However, HeuristicMin 
produces a table with data closer to the original than the data of TDS [e.g., original work 
hours of 40 is generalised to [40, 99) and education attribute value high is closer to the 
original than any]. Thus, on the criterion of informativeness, HeuristicMin performs 
better than TDS in this case. 

5.2.2 Case 2: HeuristicMin vs. TDS on two requirements 
Consider an example given in Fung et al. (2005), where the taxonomy trees are shown in 
Figure 12 and an initial table is shown in Figure 13(a). Some rows have multiple classes. 
For example, for row 3, a tuple (11th, M, 35) has five records, 2 of which are of class A 
and 3 are of class B. In this example, a set of anonymity requirements R = {R1, R2}, 
where R1 = <{education, sex}, 4>, and R2 = <{sex, WorkHrs}, 11>}. The data projected 
on the shield attributes of R1 and R2 are surrounded by the two boxes shown separately in 
Figure 13(a) for R1 and Figure 13(b) for R2. Recall that we write [t, rt] for a pair of a  
tuple t and its corresponding number of records rt. Thus, we can represent R1-projected 
tuple in row 1 as [(9th, M), 3]. 
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Figure 12 Taxonomy trees of Case 2 

 

Figure 13 Comparison of TDS and HeuristicMin on classification Case 2, (a) initial table 
showing R1 violation (b) initial table showing R2 violation (see online version  
for colours) 

 Row Edu Sex WorkHrs Class #Rec 
1 9th M 30 B 3 
2 10th M 32 B 4 
3 11th M 35 A, B 2, 3 
4 12th F 37 A, B 3, 1 
5 Bac F 42 A, B 4, 2 
6 Bac F 44 A 4 
7 Mas M 44 A 4 
8 Mas F 44 A 3 
9 Doc F 44 A 1 

Row Edu Sex WorkHrs Class #Rec 
1 9th M 30 B 3 
2 10th M 32 B 4 
3 11th M 35 A, B 2, 3 
4 12th F 37 A, B 3, 1 
5 Bac F 42 A, B 4, 2 
6 Bac F 44 A 4 
7 Mas M 44 A 4 
8 Mas F 44 A 3 
9 Doc F 44 A 1 

 
(a)     (b) 

On anonymity requirements R1 with shield {education, sex}, rows 1, 8 and 9 violate R1. 
On the other hand, for R2, we have [(F, 44), 8] from rows 6, 8 and 9. Each of the rest of 
the rows represents a unique tuple that violates R2’s anonymity requirements of 11. Thus, 
none of the rows satisfy R2. 

Figure 14 shows an execution of specialisations in TDS. Starting from the most 
general table shown in Figure 14(a), TDS computes scores of each attribute and selects 
the attribute with a maximum score (i.e., WorkHrs, in this case) to specialise. Using the 
taxonomy tree of work in Figure 12, TDS replaces [1–99) by its children: [1–37) and  
[37–99) and uses the initial table to count the corresponding records resulting in the table 
shown in Figure 14(b). The same process repeats. Each specialisation generates a more 
detailed table that does not violate the anonymity requirements R. As shown in Figure 14, 
TDS next continues specialising on education, secondary, senior and university and 
obtains tables shown in Figures 14(c)–14(d), respectively. 

Figure 14(f) shows the specialisations of the tables produced by TDS. Further 
specialising junior in Figure 14(f), will split its first row into rows 1 and 2 of Figure 
14(g), where [(9th, any), 3], in row 1, violates R1. Further specialising sex in Figure 14(f), 
will split its last row into row 7 and rows 8-9 of Figure 14(h), where we have [(M, [1–
37)), 12] and [(F, [37–99)), 18] satisfying R2 but [(M, [37–99)), 4], in row 7, violate R2. 
Further specialising [1-37) in Figure 14(f), will result in Figure 14(i), where [(any, [1–
35)), 7] and [(any, [35–37)), 5], in its first two rows, violate R2. Similarly, further 
specialising graduate will result in R1 violation. 
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Figure 14 TDS’s specialisations to its solution, (a) initial TDS table (b) specialise on WorkHrs  
(c) specialise on education (d) specialise on secondary (e) specialise on senior  
(f) specialise on university (g) specialise on junior (h) specialise on sex (i) specialise on 
[1–37) (see online version for colours) 

Rows Edu Sex Hrs #Rec 
1-9 Any Any [1-99) 34 

(a) 

Rows Edu Sex Hrs #Rec 
1-3 Any Any [1-37) 12 
4-9 Any Any [37-99) 22 

(b)  

Rows Edu Sex Hrs #Rec 
1-3 Sec Any [1-37) 12 
4 Sec Any [37-99) 4 

5-9 Uni Any [37-99) 18 
(c)  

Rows Edu Sex Hrs #Rec 
1-2 Jr Any [1-37) 7 
3 Sr Any [1-37) 5 
4 Sr Any [37-99) 4 

5-9 Uni Any [37-99) 18 
(d)  

Rows Edu Sex Hrs #Rec 
1-2 Jr Any [1-37) 7 
3 11th Any [1-37) 5 
4 12th Any [37-99) 4 

5-9 Uni Any [37-99) 18 
(e)  

Rows Edu Sex Hrs #Rec 
1-2 Jr Any [1-37) 7 
3 11th Any [1-37) 5 
4 12th Any [37-99) 4 

5-6 Bac Any [37-99) 10 
7-9 G Any [37-99) 8 

(f)  

Rows Edu Sex Hrs #Rec 
1 9th Any [1-37) 3 
2 10th Any [1-37) 4 
3 11th Any [1-37) 5 
4 12th Any [37-99) 4 

5-6 Bac Any [37-99) 10 
7-9 G Any [37-99) 8 

(g) 

Rows Edu Sex Hrs #Rec 
1-2 Jr M [1-37) 7 
3 11th M [1-37) 5 
4 12th F [37-99) 4 

5-6 Bac F [37-99) 10 
7 G M [37-99) 4 

8-9 G F [37-99) 4 
(h) 

Rows Edu Sex Hrs #Rec 
1-2 Jr Any [1-35) 7 
3 11th Any [35-37) 5 
4 12th Any [37-99) 4 

5-6 Bac Any [37-99) 10 
7-9 G Any [37-99) 8 

(i) 

 

Figure 15 HeuristicMin’s generalisations toward its optimal solution, (a) initial table  
(b) generalise on education, R1 is satisfied but not R2 (c) generalise on WorkHrs, R1 is 
satisfied but not R2 (d) generalise on Sex, R1 is satisfied but not R2 (see online version 
for colours) 

 Row Edu Sex Hrs Class #Rec 
1 9th M 30 B 3 
2 10th M 32 B 4 
3 11th M 35 A, B 2, 3 
4 12th F 37 A, B 3, 1 
5 Bac F 42 A, B 4, 2 
6 Bac F 44 A 4 
7 Mas M 44 A 4 
8 Mas F 44 A 3 
9 Doc F 44 A 1 

Row Edu Sex Hrs Class #Rec 
1 Jr M 30 B 3 
2 Jr M 32 B 4 
3 11th M 35 A, B 2, 3 
4 12th F 37 A, B 3, 1 
5 Bac F 42 A, B 4, 2 
6 Bac F 44 A 4 
7 G M 44 A 4 
8 G F 44 A 3 
9 G F 44 A 1  

(a)     (b) 

 Row Edu Sex Hrs Class #Rec 
1 Jr M [1, 35) B 3 
2 Jr M [1, 35) B 4 
3 11th M [35, 37) A, B 2, 3 
4 12th F [37,99) A, B 3, 1 
5 Bac F [37,99) A, B 4, 2 
6 Bac F [37,99) A 4 
7 G M [37,99) A 4 
8 G F [37,99) A 3 
9 G F [37,99) A 1 

Row Edu Sex Hrs Class #Rec 
1 Jr Any [1, 35) B 3 
2 Jr Any [1, 35) B 4 
3 11th Any [35, 37) A, B 2, 3 
4 12th Any [37,99) A, B 3, 1 
5 Bac Any [37,99) A, B 4, 2 
6 Bac Any [37,99) A 4 
7 G Any [37,99) A 4 
8 G Any [37,99) A 3 
9 G Any [37,99) A 1  

(c)     (d) 
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Thus, considering all possible specialisations (i.e., specialisation that has not reached the 
leaves of the taxonomy trees) of Figure 14(f), none results in a table that satisfies 
anonymity requirements R. TDS terminates with Figure 14(f) as a solution. 

Applying HeuristicMin to the initial table, Figure 15 shows resulting tables and 
violations obtained by each generalisation. For example, generalising on education of 
violating rows 1, 8, 9 results in replacement of education data values of rows 1–2 by 
junior (Jr) and those of rows 7–9 by graduate (G) as shown in Figure 15(b). The 
generalisation continues as shown in Figures 15(c) and 15(d), where generalising table in 
Figure 15(d) on rows 1–3 on WorkHrs results in an optimal table that complies with 
anonymity requirements as shown in Figure 16(a). 

Using the resulting table for classification, of course, gives the same result as shown 
in Figure 16(b). In Case 2, the accuracy obtained is 80% [Figure 16(b)]. 

Figure 16 Resulting solution of (a) TDS and HeuristicMin and (b) comparison (see online version 
for colours) 

 Row Edu Sex WorkHrs Class #Rec 
1 Jr Any [1-37) B 7 
2 11th Any [1-37) A, B 2, 3 
3 12th Any [37-99) A, B 3, 1 
4 Bac Any [37-99) A, B 8, 2 
5 Grad Any [37-99) A 8 

 # Rows 
Input 

# Rows 
Result 

% Acc 

HM 9 5 80% 

TDS 9 5 80% 
 

(a)     (b) 

So far, the classification results obtained from solution tables from TDS and HeuristicMin 
in both Cases 1 and 2 have the same accuracy even though the data tables are different (in 
Case 1) or the same (in Case 2). In all, even HeuristicMin is not designed for 
classification; it produces the same classification results. 

5.2.3 Case 3: HeuristicMin vs. TDS and BUG 

Consider an initial table as given in Figure 18(a) where its corresponding taxonomy  
trees are shown in Figure 18(b). The data table represents the Walmart cashier job 
applications, where class A refers to applicants with references from previous jobs and 
class B, otherwise. In this scenario, the anonymity requirements R = <{application, sex}, 
25>. 

Figure 17 Given inputs of Case 3, (a) initial table (b) taxonomy trees of the three attributes  
(see online version for colours) 

  
 

(a) (b) 
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As shown in the initial table of Figure 17(a), we use Acc (for accepted) and Rej (for 
rejected) for attribute values of application. Here, we have [(Rej, M), 25] (rows 6, 10), 
and [(Rej, F), 25] (rows 7–9) that satisfy anonymity R. However, [(Acc, F), 24],  
(rows 1–3) and [(Acc, M), 9] (rows 4–5) violate R. Thus, the original state in 
HeuristicMin is (5, 10) (i.e., 5 out of 10 rows violate R). 

Figure 18 Results obtained from HeuristicMin on Case 3, (a) generalise on application: (0, 7)  
(b) generalise on sex: (0, 8) (c) HeuristicMin’s search tree (see online version  
for colours) 

 
(a) (b) (c) 

Based on the violating rows, HeuristicMin applies generalisation to Acc and its sibling 
Rej on application. The resulting table is shown in Figure 18(a), where we have [(any, F), 
49], [(any, M), 34]. Thus, it satisfies R and is represented by state (0, 7). Similarly, 
HeuristicMin also applies generalisation to M and F on sex of Figure 18(a) giving a 
resulting table with state (0, 8) as shown in Figure 18(b). Since there are no more 
violations, the algorithm stops searching [as shown in Figure 18(c)] and returns the table 
corresponding to node (0, 8) because its number of rows is higher than that of the table 
corresponding to node (0, 7). In other words, by our heuristic to select a bigger table to 
maximise data information, HeuristicMin selects Figure 18(b) as an optimal solution. 

Applying TDS to the most general form, TDS calculates the score of each attribute 
and chooses to specialise application and continues specialising on age until 
specialisation yields anonymity violation. TDS then stops and returns the resulting table 
as shown in Figure 19(a). Applying BUG to the initial table, BUG uses the same scoring 
metric as that used by TDS to select the attribute to generalise. Consequently, BUG 
generalises ‘by attribute’ on application and the resulting table of Figure 19(b) is 
obtained. Figure 19(c) shows the result obtained from HeuristicMin, where generalisation 
on sex was applied as shown earlier in Figures 19(b) and 19(c). Figure 19(d) shows 
comparison results of the three approaches. Our HeuristicMin gives the highest 
output/input (i.e., O/I) ratio between the table size after and before anonymisation of 0.8, 
while TDS’s ratio is 0.4, the lowest. HeuristicMin preserves twice as many rows as those 
of TDS. This is to be expected because HeuristicMin aims to maintain the size of the 
table to maximise data preservation while obtaining a table that satisfies anonymity 
requirements. When we use the precision measure to indicate how much the 
anonymisation process via generalisation/specialisation manages to keep the data 
undistorted, both HeuristicMin and BUG have the same precision of 0.67 whereas TDS’s 
precision of 0.5 is considerably less. This is because precision measures are based on 
ratios of taxonomy levels. However, comparing the attribute values of resulting tables of 
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all the three techniques, our HeuristicMin keeps the table contents closest to the original 
table. 

Figure 19 Comparison results obtained from all methods on Case 3, (a) result from TDS (b) result 
from BUG (c) result from HeuristicMin (d) comparisons (see online version  
for colours) 

 Rows App Sex Age Class #Rec 
1,2, 
7,9 Any F [0, 40) A 41 
3,8 Any F [40,99) A 8 
4-6 Any M [0, 40) B 19 
10 Any M [40,99) B 15 

(a)  

Rows App Sex Age Class #Rec 
1, 5 Acc Any 30 A, B 5, 5 
2 Acc Any 20 A 16 
3 Acc Any 40 A 3 
4 Acc Any 25 B 4 

6, 7 Rej Any 30 A, B 15,10 
8 Rej Any 50 A 5 
9 Rej Any 20 A 5 
10 Rej Any 70 B 15 

(c)  

 Rows App Sex Age Class #Rec 
1, 7 Any F 30 A 20 
2, 9 Any F 20 A 21 

3 Any F 40 A 3 
4 Any M 25 B 4 

5, 6 Any M 30 B 15 
8 Any F 50 A 5 
10 Any M 70 B 15 

(b)  

 O/I Row 
Ratio 

Prec. % Acc 

HM 8/10 0.67 63% 
TDS 4/10 0.5 100% 
BUG 7/10 0.67 100% 

(d) 
 

On classification, TDS and BUG perform equally well and outperform HeuristicMin as to 
be expected as they both are designed for classification use. Looking more closely, both 
TDS and BUG use the scoring metric that depends on a ratio of the information loss over 
anonymity gain. The information loss refers to the effects of the class mixing (which 
effects the classification accuracy), while the anonymity gain refers to the effects  
of record aggregation (which increases the degree of anonymity). As shown on  
Figures 19(a) and 19(b), both resulting tables from TDS and BUG do not have class 
mixing, whereas heuristic’s solution shown in Figure 19(c) does, particularly the first and 
fifth rows. When choosing which generalisation to apply, HeuristicMin chooses to 
generalise on the attribute that creates a big table size, BUG on the other hand chooses 
the attribute that creates a table that does not mixes the classification labels. As a result, 
ours choose the attribute sex and BUG chooses application attributes. This explains our 
results that are guided by the heuristic measured applied. 

In summary of Case 3, HeuristicMin preserves twice as many rows as those of TDS. 
However, the result of the classification is not as good as TDS and BUG that aim to 
preserve data for classification. BUG performs as well as TDS in classification as 
expected and preserves more information than TDS but not as good as HeuristicMin.  
The performances on this case reflect the design and heuristics used in each of these 
approaches. 

5.2.4 Case 4: HeuristicMin vs. TDS 
Given a table representing gym data records with three attributes: activity, duration and 
price. The account of a gym member becomes inactive if he/she does not attend more 
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than two weeks. Gym members pay extra for special classes such as spinning or yoga. 
Classes include those with (class A) or without (class B) individual gym instructors. The 
data table and corresponding taxonomy of the attributes are shown in Figure 20. We write 
Inact and Act for inactive and active attribute values, respectively. Similarly, M is for 
monthly and Y for yearly. 

Figure 20 Given inputs of Case 4, (a) initial table (b) taxonomy trees of the three attributes  
(see online version for colours) 

 
(a)     (b) 

Given the anonymity requirements R to be <{activity, duration}, 25>. It is clear that  
rows 1–3 give [(Inact, M), 24] and rows 4–5 give [(Inact, Y), 9] both of which violate R. 
The results obtained from HeuristicMin, and TDS are shown in Figures 21(a) and 21(b), 
respectively. 

Figure 21 Comparison results obtained on Case 4, (a) HeuristicMin’s result (b) TDS’s result  
(c) comparisons (see online version for colours) 

(c) 

(a) 

(b)

 

Applying HeuristicMin (HM) to the initial table, the optimal table is obtained  
[Figure 21(a)] by generalising on activity on rows 1–5 that cause the violation and  
rows 6–10 that contain associated sibling attribute values. Applying TDS to the initial 
table, the resulting table obtained through top-down specialising is shown in  
Figure 21(b). Figure 21(c) compares characteristics and accuracy obtained from the 
resulting tables. The result shows that our HeuristicMin preserves more information than 
TDS with number of rows 80% of the original while TDS preserves only 40% of the 
original. Both achieve the same classification accuracy of 100%. This comparison of 
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Case 4 indicates that even though HeuristicMin’s information preserving metric is not 
specifically designed for classification like TDS, it can still generate reasonable results to 
be used for classification. 

In summary, our empirical experiments in all four cases in this section show that  
each approach performs accordingly to its design criteria and the metrics or heuristic 
employed. Both TDS and BUG aim to produce tables that satisfy anonymity requirements 
while preserving information for the best quality of the classifiers produced by the 
anonymised data. HeuristicMin aims to anonymise data while keeping data as 
informative and close to the original data as much as possible. The interesting 
observation from these experiments is that even though HeuristicMin is not designed for 
classification use, it performs just as well as TDS and BUG in 3 out of 4 cases including 
cases with a single anonymity requirement (Case 1 and Case 4) and two anonymity 
requirements (Case 2). The study of Case 3, where HeuristicMin’s classification accuracy 
is worse than those of TDS and BUG, helps us gain insight that explains reasons for 
distinct classification accuracy between these two groups of techniques. TDS (or BUG) 
favours specialisation (or generalisation) that produces a row of non-mixed classes (as 
measured by information gain in their scoring metric). This enhances the quality of data 
for classification. On the other hand, HeuristicMin does not target for classification use. 
As a result, its optimal table may have mixed classes that result in poor classification 
accuracy as in Case 3. 

6 Conclusions 

This paper studies privacy objectives for anonymising the identity of the individuals 
associated with given data. In particular, we present HeuristicMin, an anonymisation 
approach that applies generalisations to securing privacy by satisfying user-specified 
anonymity requirements while maximising information preservation. Unlike prior 
approaches, HeuristicMin exploits monotonicity property of generalisation along with 
two simple heuristics: 

1 the number of rows violating the anonymity requirements 

2 the table size (or number of non-redundant rows of records) to efficiently obtain 
optimal generalised table. 

The first heuristic measures how far the generalised table being considered is from 
meeting the anonymity requirements whereas the second heuristic represents the amount 
of data retention from the original table. 

HeuristicMin has several advantages. First, it accommodates anonymity compliance 
and maximum data information for ‘general’ purposes (as opposed to special purpose 
such as classification). Second, it uses ‘simple’ heuristics (compared to MinGen’s 
precision or complex TDS’s or BUG’s information gain over anonymity loss) to find the 
generalised table solution. Third, its optimal solution is theoretically grounded by a  
well-known efficient optimal A* search. Finally, its use of generalisation by ‘attribute’ 
provides a compromising generalisation grain size between the cell level (that can be too 
fine to be computationally feasible in practice) and the column level (that can be too 
coarse to maintain close content to the original). 



   

 

   

   
 

   

   

 

   

    Data privacy with heuristic anonymisation 131    
 

    
 
 

   

   
 

   

   

 

   

       
 

The paper also presents a comparison study between HeuristicMin and popular 
techniques that produce optimal solutions to give semantic interpretation of ‘optimality’ 
in each technique and how they differ. In addition, we compare HeuristicMin with 
techniques that aim to anonymise data for classification. The experimental results show 
that even though HeuristicMin is not designed for classification, it can still produce 
competitive results. We further note that generalisations or specialisations that do not 
produce rows with mixing classes are likely to produce high classification accuracy. To 
the best of our knowledge, there has been no attempt to compare approaches to 
anonymisation with and without classification. 
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