

 104 Int. J. Information and Computer Security, Vol. 20, Nos. 1/2, 2023

 Copyright © 2023 Inderscience Enterprises Ltd.

Data privacy with heuristic anonymisation

Sevgi Arca* and Rattikorn Hewett
Department of Computer Science,
Texas Tech University, Texas, USA
Email: sevgi.arca@ttu.edu
Email: rattikorn.hewett@ttu.edu
*Corresponding author

Abstract: Abundance of data makes privacy more vulnerable than ever as it
increases the attackers’ ability to infer confidential data from multiple data
sources. Anonymisation protects data privacy by ensuring that critical data are
non-unique to any individual so that we can conceal the individual’s identity.
Existing techniques aim to minimally alter the original data so that either the
anonymised data or its analytical results (e.g., classification) will not disclose
certain privacy. Our research aims both. This paper presents HeuristicMin, an
anonymisation approach that applies generalisations to satisfy user-specified
anonymity requirements while maximising data retention (for analysis
purposes). Unlike others, by exploiting monotonicity property of generalisation
and simple heuristics for pruning, HeuristicMin provides an efficient
exhaustive search for optimal generalised data. The paper articulates different
meanings of optimality in anonymisation and compares HeuristicMin with
well-known approaches analytically and empirically. HeuristicMin produces
competitive results on the classification obtained from the anonymised data.

Keywords: anonymisation; data generalisation; bottom-up generalisation;
BUG; privacy.

Reference to this paper should be made as follows: Arca, S. and Hewett, R.
(2023) ‘Data privacy with heuristic anonymisation’, Int. J. Information and
Computer Security, Vol. 20, Nos. 1/2, pp.104–132.

Biographical notes: Sevgi Arca is a PhD candidate in Computer Science at
Texas Tech University. She received a Bachelor of Science degree in Computer
Science and Engineering from Sabanci University, Turkey. Her current
research interests include privacy protection and anonymization, blockchain
privacy and security attacks, automating privacy assessment, heuristic search,
and intelligent systems.

Rattikorn Hewett is a Whitacre Chair in Computer Science, a Professor and
Chair of the Department of Computer Science, Texas Tech University. He was
a Postdoctoral Fellow at Stanford University and received a PhD in Computer
Science from Iowa State University, an MEngSc from the University of New
South Wales, and a BA Honours in Pure Mathematics and Statistics from
Flinders University, Australia. Her applied research in artificial intelligence
covers four thrust areas: cyber security, data science, automated software and
system engineering, and intelligent controls and reasoning. Her research
sponsors include NSF, DARPA, DOE, EPRI, Florida State, Texas State,
Boeing and IBM. She has published over 100 peer-reviewed technical articles,
and has served on several journal editorial boards, and numerous conference
program committees.

 Data privacy with heuristic anonymisation 105

This paper is a revised and expanded version of a paper entitled ‘Realizing data
anonymization as search with optimal guarantee’ presented at Workshop on AI
for Privacy (AI4P 2020) in conjunction with European AI Conference, Spain,
4 September 2020.

1 Introduction

The concept of privacy has existed throughout the human history in different degrees,
forms and contexts (Clearwater and Hughes, 2013). Privacy is not about having
something to hide but having a choice to control what to share. Issues on privacy have
recently received a lot of attentions due to the rapid growth of information economy and
advanced technologies that allow data to be (automatically) collected, stored, analysed
and readily available. As these technologies become more sophisticated, users may end
up losing more controls of their data without knowing making privacy protection more
difficult.

The problem is compounded by malicious acts. An abundance of data information
makes data privacy more vulnerable, as attackers can infer confidential data from
different query sources. For example, by linking attribute values of ZIP code, gender and
birth date from anonymous data (or de-identified data) to those of other public data,
Sweeney (1998) has shown that 87% of US population can be uniquely identified (or
re-identified) to a certain degree. To achieve absolute privacy, one can accomplish this
easily by simply not sharing or publishing the data. However, this is not possible as long
as we need to make use of the data. Anonymisation addresses the issue of data privacy by
making sure that each set of ‘critical’ data values belongs to more than one individual so
that the identity of the individual can be protected.

Much research on anonymisation techniques has been performed (Bayardo and
Agrawal, 2005; Fung et al., 2009, 2007, 2005; Hundepool and Willenborg, 1996;
Iyengar, 2002; LeFevre et al., 2005, 2006; Li et al., 2007; Machanavajjhala et al., 2006;
Samarati, 2001; Sweeney, 1998, 2002a, 2002b; Wang et al., 2004). Basic approaches use
generalisation to transform the original data, according to its taxonomies, into a
generalised table that complies with anonymity requirements (Samarati, 2001; Sweeney,
2002a, 2002b). Some approaches are theoretically feasible but not practical (Sweeney,
2002b). Many techniques have focused on minimising generalisations to enhance
computational efficiency. Several use the same term (e.g., minimal generalisation) with
different details. Not all optimal techniques mean the same and that can mislead
the selection of appropriate technique. On the other hand, excess manipulation in
generalisation to provide anonymity can corrupt important information that the data
may convey. As a result, the data become less informative and may give wrong
decision-making or inaccurate inferences. It is important for anonymisation to strike these
balances.

Because of a trade-off between data privacy and the usefulness of the information that
the data provide, recent anonymisation techniques take contents of the generalised table
into account. These techniques can be divided roughly into two groups: those that lay
formal grounds to minimise changes of the data (or data distortion) (e.g., Li et al., 2007;
Sweeney, 2002b) and those that maximise data for a specific use, typically for
classification (e.g., Fung et al., 2007, 2005; Wang et al., 2004). These techniques are

 106 S. Arca and R. Hewett

useful. However, the first group may not be practical due to its high computational cost
while the purpose of the second group can be too limited. There has been no attempt to
explore if a solution from one group can be effective for the purpose of the other.
Although techniques for anonymisation have been studied extensively, most have
been designed to address each of these specific goals (e.g., efficient generalisation,
classification) as opposed to an integrated design for a general-purpose solution.

The contribution of this paper includes:

1 articulation and comparison of various aspects of privacy objectives for anonymising
the identity of the individuals associated with given data

2 HeuristicMin, a new anonymisation approach that applies generalisations along with
optimal artificial intelligence search to securing privacy by satisfying user-specified
anonymity requirements while maximising information preservation.

Unlike prior approaches, HeuristicMin aims to find an integrated anonymisation system
solution for computational efficiency, optimality and general data usage. HeuristicMin
exploits monotonicity property of generalisation along with heuristics to search for
optimal generalised data that comply with anonymity requirements. By using simple
heuristics and appropriate grain size of generalisations, HeuristicMin prunes and narrows
down the search space to enhance efficiency in its optimal search and prefers
generalisation that keeps maximum data for general usage (as opposed to for
classification). The paper also contributes to the analysis that expresses distinctions of the
term ‘optimality’ as well as comparison studies among representative approaches.

The rest of the paper is organised as follows. Section 2 describes related work and
Section 3 defines terms, notations and background concepts. Section 4 gives the problem
statement and the proposed approach of HeuristicMin along with an illustration and
complexity analysis. Section 5 presents analytical comparison studies of HeuristicMin
with other optimal anonymisation techniques as well as empirical comparisons with other
anonymisation techniques for classification. Section 6 concludes the paper.

2 Related work

Research in privacy has been studied extensively in various aspects including privacy
with rationality and decisions (Acquisti and Grossklags, 2005), protection and
preservation of privacy (Bayardo and Agrawal, 2005; Dwork, 2006; Iyengar, 2002;
LeFevre et al., 2005, 2006; Samarati, 2001; Sweeney, 1998, 2002a, 2002; Wang et al.,
2004). Most current privacy protection techniques are stemmed from the two notorious
pioneer concepts of Dwork’s (2006) differential privacy and Sweeney’s (2002a)
k-anonymity. Both aim to protect identity of the individuals associated with the data.

Differential privacy provides objectives to ensure that the probability of statistical
query results from the data with or without an individual’s information are (nearly) the
same. If the individual’s data does not have a significant effect on the query outcome,
then releasing his data does not harm his privacy. To do this, differential privacy injects
random noise (e.g., noise from Laplace or Gaussian distribution) to the query results to
mask the individual’s identity. Consequently, the query results become less accurate. The
more accurate the query result is, the less privacy protection we have.

 Data privacy with heuristic anonymisation 107

Alternatively, k-anonymity (Sweeney, 2002a) aims to guarantee that each group of
unique critical attribute (or quasi identifier) values must have at least k records in order to
prevent them from being personally identifiable (or de-identified). Mechanisms for
achieving k-anonymity are generalisation and suppression, which involve replacement of
a current value by its corresponding more abstract value or general form, respectively.
The problem of finding optimal k-anonymisation is NP-hard (Meyerson and Williams,
2004). To better protect against attribute disclosure, the k-anonymity concept has been
extended to l-diversity (Machanavajjhala et al., 2006) to make sure each sensitive
attribute has at least l well-represented values and to t-closeness (Li et al., 2007) to ensure
the distribution of a sensitive attribute in each group is close to the distribution of the
attribute in an overall database. Our work focuses on k-anonymity anonymisation; not its
extensions nor the differential privacy.

Most approaches dealing with k-anonymity focus on minimal k-anonymisations (i.e.,
minimal number of generalisations/supressions satisfying the k-anonymity requirements)
(Samarati, 2001; Sweeney, 2002a, 2002b). Sweeney’s (2002a, 2002b) MinGen algorithm
uses exhaustive search to find the minimal k-anonymisation with minimal distortion. The
algorithm searches for optimal solution on a cell level, which makes it impractical for
scalability due to a large search space. However, MinGen is an early work that provides a
concrete formal model for minimal k-anonymisation. Based on binary search, Samarati’s
(2001) AllMin algorithm searches for k-anonymisations, where the generalisation is not
on a cell but attribute level. Thus, AllMin has reduced search space. Nevertheless, since
binary search is a blind search, computational cost can still pose a problem since AllMin
searches for all possible k-generalisations (i.e., no pruning). Our proposed approach is
similar to the above approach in searching for an optimal k-anonymisation. However, we
apply heuristics for efficient search as well as maximal data content. We also note that
these approaches that yield optimal results have different implications on the term
optimality.

Other heuristic techniques include Datafly (Sweeney, 1998), the μ-argus system
(Hundepool and Willenborg, 1996) and Mondrian (LeFevre et al., 2006). The core
Datafly employs a heuristic based on the number of distinct attribute values to select an
attribute for generalisation with additional suppressions to obtain data that satisfy
k-anonymity requirements. The μ-argus system is similar to Datafly in basic structure of
the algorithm. However, it uses heuristics based on user-specified ratings of sensitive
attributes and unsafe combinations of attributes to test for elimination by generalisation
and suppression. The multidimensional algorithm Mondrian follows a greedy approach to
partition the data space into regions with at least k value. The method considers a
top-down approach where it starts with the most general attribute value and partitions
recursively as long as the anonymity requirement is satisfied. Since the approach uses a
greedy method the optimality is not guaranteed. Datafly, μ-argus and Mondrian improve
efficiency. Unlike our approach, they do not guarantee optimal results in terms of
minimal k-anonymisation and the μ-argus system may also fail to satisfy k-anonymity
(Sweeney, 2002b).

It is clear that generalisation and suppression increase the degree of anonymity.
However, the more data are anonymised, the less specific information they retain.
Explosive applications of machine learning to analyse data have generated a relatively
new research direction of anonymisation by not only satisfying k-anonymity but also
aiming for the data to still be useful for data analysis (Fung et al., 2009, 2007, 2005). All
these approaches use the resulting anonymised data for classification except the approach

 108 S. Arca and R. Hewett

in Fung et al. (2009) that modifies the algorithm for clustering. Our approach is similar to
Wang et al. (2004) in that we use generalisation as a mechanism for k-anonymisations
and thus, a bottom up search, whereas approaches in Fung et al. (2009, 2007, 2005) rely
on specialisation mechanism and thus, a top-down search for data to comply with
k-anonymity. Unlike these approaches that focus on the resulting data for modelling
specific task for data analysis, our approach optimises the data con-tent (to be as close
as possible to the original data) for general use. Furthermore, none of these data
analysis-focused approaches result in optimal solution but ours does.

Work by Iyengar (2002) and Bayardo and Agrawal (2005) address performance of
search for minimal k-anonymisations. Using genetic algorithm, the former represents
(table) data to be string-like and evolves them toward optimal solution. The latter uses the
same data framework and extends to general cost metrics. Similar to these approaches,
our approach aims to produce resulting data that accounts for a trade-off between
anonymisation and quality data preservation. Unlike these approaches that focus on
empirically optimal efficient approaches for anonymisation, our approach focuses on
efficiently producing optimal resulting data (will be explained in detail in Section 4).

3 Preliminary concepts

This section describes relevant terms, notations and concepts.

3.1 Data table and anonymity requirements

A table T(A1, A2, …, An) represents a relational database with a schema A of attributes A1,
A2, …, An. Each data record is an instance of a tuple of the data table of the form (a1, a2,
…, an), where data entry ai is a domain value of attribute Ai [i.e., ai ∈ dom(Ai)] for all i. A
table can contain multiple records (or instances) of a tuple. For compactness, each row of
the table represents a distinct tuple followed by a column representing its corresponding
number of records. For example, the first (distinct) row of Table 1 represents five records
of a tuple (undergrad, female, 3.2).
Table 1 An illustration of anonymity requirement

Status Gender Age #Records
Undergrad Female 3.2 5
Undergrad Male 3.2 6
Undergrad Female 3.6 2
Graduate Male 3.6 3
Graduate Female 3.8 1
Graduate Male 3.8 2

An anonymity requirement specifies an anonymity degree required on a certain subset of
attributes in the table schema, called anonymity shield [or referred in Sweeney (2002a) as
quasi-identifiers). More specifically, for a subschema B ⊆ A, a k-anonymity requirement
on shield B, denoted by <B, k>, states that a table projection on B results in a set of
B-projected tuples, each of which has a minimum of k records. We write [t, rt] to

 Data privacy with heuristic anonymisation 109

represent a pair of a tuple t and its corresponding number of records rt. Thus, <B, k> is
violated if there is [b, rb] for some B-projected tuple b such that rb < k.

As an example, consider Table 1 with a given anonymity requirement <{education,
gender}, 4>. Here, dom(gender) = {female, male} and dom(education) = {undergrad,
graduate}. Thus, there are four combinations of domain values of the tuple projection on
{education, gender}. First, for a projected tuple b = (undergrad, female), Rows 1 and 3
of Table 1 give a total number of records, rb = 7. Thus, we have [(undergrad, female), 7],
which satisfies the required anonymity degree of four. Similarly, for the rest three tuples,
we have [(undergrad, male), 6], [(graduate, male), 5] and [(graduate, female), 1]. The
last case violates the anonymity requirement since a minimum of four records is required.
Therefore, the anonymity requirement <{education, gender}, 4> is not satisfied.

Intuitively, the anonymity requirement protects the privacy of a record holder by
ensuring that for each tuple projected on a shield, the number of records that share the
same tuple values must be large enough to help ‘hide’ the individual identity/information.
Thus, the larger the degree of the anonymity is, the harder it is to identify the identity of
the record holder. In general, for a given table, one can define more than one anonymity
requirement, each of which can have a different anonymity degree and a shield. In
practice, the data provider or the data user specifies the anonymity requirement.

Different shield sets are useful when there are many attributes that can be critical to
identification of record holders. To determine one single shield may not be practical or
easily selected as it depends on different contexts of data usage (e.g., {Zipcode} may not
be a shield that is as critical for restaurant customers as those for hospital patients
because there are likely to have more restaurants than hospitals in a given zipcode). The
choice of anonymity degree and a shield (set of projected attributes) in anonymity
requirement can impact data inferences that lead to privacy breaches. If the anonymity
degree is too low, the shield may or may not be able to protect the individual identity
(e.g., when the projected tuple becomes personally identifiable). For example, anonymity
requirement <{education}, 1> and <{education, gender}, 1> would allow publishing
every row in Table 1. While the shield {education} can protect individual identity of a
student based on their educational information [since there are 13 (undergrad) and
6 (graduate) records)], the shield {education, gender} results in one record of (graduate,
female). If we are looking for a female graduate student, because there is only one record
of such a person (as shown in Table 1), we can directly infer that she has a GPA of 3.8.
Here, the shield {education, gender} yields a personally identifiable tuple.

On the other hand, if we set the anonymity degree too high, none of the data can
satisfy the requirement and as a result, there is no data release for privacy becomes over
protected. For example, applying anonymity requirement <{education, gender, GPA}, 7>
to Table 1, none of the projected tuples (e.g., (undergrad, female, 3.2), (undergrad, male,
3.2)) would satisfy the requirement. Even if we lower the anonymity degree to 4, some of
the projected tuples, e.g., (undergrad, female, 3.6), (graduate, male, 3.6), (graduate,
female, 3.8), and (graduate, male, 3.8) would all violate the requirements for data
publishing/sharing. Instead of excluding such data completely to protect privacy, a
compromising alternative is to publish data in a less informative way. This leads to the
concept of generalisation and specialisation that we will describe next.

 110 S. Arca and R. Hewett

3.2 Anonymity via generalisation and specialisation

Generalisation replaces an attribute value by a more general but semantically consistent
value (e.g., generalise a city by its state). This increases the number of tuples that share
the same attribute value, and consequently increases a number of records, and anonymity
degree, to hide individual identities. Generalisation provides several advantages to
preserve data privacy including consistent interpretation, traceability and minimal content
distortion (Sweeney, 2002a). Specialisation is, however, a reverse of generalisation.

By using the taxonomy (or hierarchy) of the corresponding attribute tree,
generalisation replaces the attribute value by its parent node to protect privacy. For
example, Figure 1 shows three taxonomies of three attributes: education, gender and
GPA. As shown in Table 2(a), since there is only one record of a student with GPA 3.9
and GPA 2.5, we can identify gender and education of each of these students. Since both
are females, applying generalisation to GPA cells that correspond to female students will
give a resulting Table 2(b), where we can no longer identify the education and gender of
the student with GPA 3.9 (as we have [(undergrad, female, [3, 4]), 6], i.e., we hide them
among six students with GPA in [3, 4]). However, we can still infer information about the
student with a GPA 2.5 (last row).
Table 2 Cell-wise generalisation and effects on anonymity (see online version for colours)

Education Gender GPA #Rec Education Gender GPA #Rec
(a) Initial table (b) Generalise on GPA cells

Undergrad Female 3.5 5 Undergrad Female [3, 4] 5
Undergrad Male 3.6 6 Undergrad Male 3.6 6
Undergrad Female 3.9 1 Undergrad Female [3, 4] 1
Graduate Male 2.9 2 Graduate Male 2.9 2
Graduate Female 2.5 1 Graduate Female [0, 3) 1

(c) Generalise on gender, GPA cells (d) Final table
Undergrad Female [3, 4] 5 Undergrad Female [3, 4] 6
Undergrad Male 3.6 6 Undergrad Male 3.6 6
Undergrad Female [3, 4] 1 Graduate Any [0, 3] 3
Graduate Any [0, 3) 2
Graduate Any [0, 3) 1

Figure 1 Taxonomy tress of three attributes

To hide information of this student, we can generalise her gender, using taxonomies in
Figure 1, to any giving [(graduate, any, [0, 3)), 1]. Next, we generalise the row above it

 Data privacy with heuristic anonymisation 111

by replacing the GPA 2.9 to [0, 3) as well as replacing male to any giving [(graduate,
any, (0, 3]), 2]. The result is shown in Table 2(c). Table 2(d) shows a final table after
merging the rows with the same tuples. Thus, the gender and education of the student
with GPA 2.5 is protected. If the anonymity degree required on all of the three attributes
is two, generalisation transforms Table 2(a) that violates the anonymity requirement into
Table 2(d) that complies with the anonymity requirements.

Note that there are many ways one can generalise. Table 2 shows generalisation at a
cell level (i.e., a data entry of a specific row and column of a table) (e.g., Sweeney,
2002b). Some simplify the grain size and perform generalisation by column, where
generalisation is applied to data entry of each row under the same attribute column (e.g.,
Samarati, 2001). Another type of generalisation is performed at a height level (or by
attribute). In this case, for a given taxonomy tree of an attribute, if we generalise a child
to its parent, we also generalise all siblings of the child to the parent as well. This will
apply to all occurrences of the child and siblings in Table 2 so that all entries of the same
level in the table are generalised to the next level at the same time in order to improve
efficiency in finding anonymity compliant rows. Thus, when T is generalised on attribute
A, the generalisation is applied only to the table rows that contain the child and its
siblings. For example, consider Table 2(a). Generalising female enforces generalising
male. Both are replaced by any (generalising from height 0 to height 1) on all of their
occurrences (rows) in Table 2. This gives Table 2 where every row has value any under
the column gender. On the other hand, if we generalise 2.5 in Table 2(a) on GPA, the
resulting table would look like Table 2(a) except the data entries under GPA of the last
two rows of Table 2 are replaced by [0. 3) since 2.9 is the only sibling of 2.5. Generalised
by column is more general than that by attribute.

4 Problem and proposed approach

4.1 Problem statement

The paper addresses the problem of how to protect privacy of the owners of the
shared/public data. This aims to protect the individual identities and their corresponding
data. Although the ultimate privacy can be achieved by generalising the data to the
highest level of hierarchy, this results in making every individual’s information the same.
To the lesser extent of generality, the data will not be specific enough to be useful. Since
privacy works against sharing information, a more practical question should be how to
protect data privacy while keeping the shared data as informative as possible. Our
criterion is to satisfy user-specified anonymity requirements while the amount of
non-redundant data released measures the degree of data preservation.

More formally, let T(A1, A2, …, An) (or T when attributes are implicitly defined) be a
data table of a schema A = {A1, A2, …, An} and taxonomy trees of each attribute Ai. Let R
be a set of anonymity requirements <Ri, ki>, for shield Ri ⊆ A and anonymity degree
ki > 0 for i = 1, …, m. We say that T satisfies <Ri, ki> if every Ri-projected tuple has a
minimum of ki records and T satisfies R if T satisfies <Ri, ki> for all i = 1, …, m.

The problem can be stated as follows. For a given table T, its corresponding
taxonomy trees and a set of anonymity requirements R, find an optimal table T′ that
satisfies R. By optimality, we mean that T′ preserves the most information of T.
Specifically, T′ is a generalised table of T such that T′ has a maximum number of rows

 112 S. Arca and R. Hewett

among all T’s generalised tables that satisfy R. Recall each table row represents a distinct
tuple that can have one or more instances of records. Thus, the highest number of rows
represents the most non-redundant information from data. Thus, we use the number of
rows (or the table size) to capture non-redundant information.

4.2 Proposed anonymisation

Our research aims to mask the sensitive information on the table while preserving as
much information as possible. We propose a hybrid approach that combines artificial
intelligence’s heuristic search concepts with a classic anonymisation technique to
guarantee optimal informativeness as well as compliance with anonymity requirements.
The resulting table is optimal in that it preserves as many rows of the anonymised table as
the anonymity requirement allows. Specifically, we use generalisation for anonymisation.
Thus, our approach is a bottom-up heuristic approach. Figure 2 provides a general
overview of the proposed algorithm.

Figure 2 Proposed algorithm

As shown in Figure 2, the proposed algorithm has three inputs: a data table T with a set of
attributes A, a taxonomy tree for each attribute, and a set of anonymity requirements R
with a set of anonymity shield attributes S ⊆ A. Note that, as described in the input
specification and Line 1, the algorithm is also applicable to multiple requirements, each
of which may have a different shield set as well as a different anonymity degree. We
assume that T does not satisfy R, otherwise there is nothing to be done and T is our
optimal table.

 Data privacy with heuristic anonymisation 113

The algorithm iteratively generalises a table on an appropriate attribute using its
corresponding taxonomy tree to increase anonymity degree. In Lines 1–4, a generalised
table of T on each attribute in S is generated and maintained in set W. Each generalised
table keeps track of two key heuristics: the number of rows that violate R and the total
number of rows on the table. The former tells how close we are to finding the table that
satisfies the anonymity requirements R while the latter measures how much
non-redundant data is preserved. As shown in Figure 2, Line 6, we select, among
generalised tables in W, a table that has the highest number of rows with the lowest
violation number of rows to be further generalised (Lines 7–10). Each selected table will
be removed from W (Line 11). As shown in Lines 5-12, this generalisation process
repeats until there is no more tables left in W or no tables in W has the number of rows
> the number of rows of a table that satisfies R. In the latter case, all the tables in W either
have:

1 zero number of rows that violate R

2 non-zero number of rows that violate R out of the total number of rows that is
smaller than those tables in Case 1.

In other words, we stop expanding the search when we find a table that satisfies R or a
table that is smaller than the biggest table that satisfies R found so far (even though it
violates R). The principle rationale behinds this is the monotonicity behaviour of
generalisation. As we increase the generalisation steps, the table can never grow in size.
Because our goal is to maximise the size of the table that satisfies R, the algorithm only
further generalises the table that is larger than those found to satisfy R so far. If a table
violates R but is already smaller than the biggest table found so far to satisfy R, further
generalising it would not result in a larger table that satisfies R.

As shown in Line 13 of Figure 2, the algorithm selects the largest table among the
tables in W with no anonymity requirements violation. Note that it is possible to have
more than one of such table of the same size. In such a case, the algorithm selects the first
one found as it represents the table that has the least number of generalised steps. In other
words, it retains most specific data that are closest to the given data table.

Since generalisation procedure monotonically decreases the number of rows, our
approach uses this property to prune the fruitless path of an exhaustive search. Thus, it
finds an optimal solution of a table that maximises the information preserved (i.e., the
table size) from the original table while hiding sufficient privacy by satisfying anonymity
requirements (i.e., zero violation rows).

4.3 Illustration

Figure 3 shows the three taxonomy trees of attributes corresponding to a given table T on
top of Figure 4. Given the anonymity requirements set R as {<{education, sex, hours},
4>}. Each of rows 3, 6 and 7 of T has two records and thus, violates R that requires a
minimum of four records. (Note that if R contains multiple requirements, Line 1 would
collect all violating rows. For example, if R includes an additional requirement of <sex,
20> then Line 1 would have included rows 4–7 as violating rows.) We now apply the
proposed approach. Let T(n, m) represent a generalised table T generated with n number
of rows that violate R out of m total number of rows in T. The rows that violate R in each

 114 S. Arca and R. Hewett

table are indicated by colour highlight. The column class will be used for comparison
later and should be ignored for now, as it is not directly a part of our approach.

Figure 3 Taxonomy trees

Figure 4 Example of our proposed anonymisation approach (see online version for colours)

As shown in Figure 4, starting from T(3, 7), by applying Lines 1–3 of the algorithm, we
generalise T on education, sex, and hours and obtain T1(0, 4), T2(2, 6) and T3(3,7),

 Data privacy with heuristic anonymisation 115

respectively. Looking more closely, for example for T1, by generalising T on education to
T1, all rows in T1 share the same value of high under column education.

Thus, a total number of rows in T1 is 4, due to four combinations of two values of sex
and two of hours in T. For example, rows 2 and 3 both represent a tuple (high, M, 30)
with 4 and 2 records, respectively. Both rows are merged to row 2 of T1 with a combined
number of records as 6. The rest is similar, and we obtain T1(0, 4) with four rows, none of
which violate R. On the other hand, by generalising T on sex results in T2 where now
rows 3 and 4 are the same and the number of records can be combined giving T2(2, 6)
with a reduced number of violation rows to 2 and size of the table to 6. For T3, by
generalising T on hours, a data entry of each row under column hours in T is replaced by
either [1, 40) or [40, 99) depending on its value and appropriate generalisation governed
by the corresponding taxonomy [e.g., 30 is replaced by [1, 40)]. As a result, T3 still
maintains the same number of rows (i.e., 7) and violation rows (i.e., 3).

Applying Line 6 of the algorithm to W = {T1, T2, T3}, we stop generalising T1 (as it
satisfies R and further generalisation will only shorten the table). As among tables that do
not satisfy R, namely T2 and T3, T3 has a larger size. Therefore, T3 is next selected for
further generalisation. Generalising T3 on education, sex, and hours and obtain T4(0, 4),
T5(2, 6) and T6(1, 4), respectively. Update W = {T1, T2, T4, T5, T6}.

We stop generalising T1(0, 4), T4(0, 4) and T6(1, 4) (as generalising them would
obtain smaller tables). Thus, T2 is selected for generalisation. Since we cannot generalise
T2 further on sex, only generalisation on education and hours remain.

Here, generalising T2 on education and hours results in T7 and T5, respectively. The
rest of the process continues in a similar fashion. Figure 4 only shows a partial detailed
generalisation of our approach. It should be noted that tables of the same two key
heuristic values may not be the same. For example, T2 and T5 both have two violation
rows out of six rows. T1 and T4 are similar. Thus, the solutions may not be unique (see
later on how we select a unique optimal solution).

We can represent the approach as a search tree where each node represents an ordered
pair (n, m) where n and m are previously defined as in T(n, m). Figure 5 shows a
complete search tree resulting from our approach.

As shown in Figure 5, the search starts from the root node (3, 7) of a given table T
and follows the same step as illustrated in Figure 4. By generalising T on each of the
three attributes, (3, 7) branches to three children, namely (0, 4), (2, 6) and (3, 7)
corresponding to tables T1, T2 and T3 in Figure 4.

Figure 5 A complete search tree for optimal generalised table

 116 S. Arca and R. Hewett

As mentioned above, we stop generalising node (0, 4) as it would only shorten the table.
Among (2, 6) and (3, 7), node (3, 7) is selected to be generalised on education, sex and
hours to (0, 4), (2, 6) and (1, 4), respectively. At this point among frontier nodes (0, 4),
(2, 6), (0, 4), (2, 6) and (1, 4), the first node (2, 6) is selected for further generalisation
producing nodes (0, 2) and (2, 6). So far, all the leave nodes (corresponding to tables in
W) include two (0, 4) nodes, (0, 2), (2, 6) and (1, 4). Because node (1, 4) represents a
table of size 4, which is not larger than those of nodes (0, 4). Thus, as shown in Figure 5,
both (1, 4) and (0, 4) will have no further generalisation leaving (2, 6) to be generalised to
(0, 2) and (0, 3). Furthermore, tables with n = 0 (i.e., satisfy anonymity requirements R),
has maximum m = 4 (i.e., non-redundant data preserved). The search stops when there is
no node for further generalisation that will yield a bigger table. Thus, all the leave nodes
of the tree either have n = 0, or non-zero n with m < 4 [e.g., (1, 4) as shown in Figure 5].
At this point, there are nodes with zero violations and there are no other nodes where
number of rows is greater than the ones with zero violations. Because there are two
optimal (0, 4) nodes (as shown in bold in Figure 5), the algorithm returns the first one
generated, i.e., the one that is of level 1 [i.e., T1(0, 4) as opposed to T4(0, 4) of level 2
because its data information is closer to the original table (less generalisation steps)]. This
can be easily verified that T1 is more specific than T4. Thus, the algorithm returns an
optimal table T1.

4.4 Complexity analysis

The algorithm searches for an optimal table in that it minimally generalises the given
table to obtain a table with maximum size among all the tables that do not violate the
anonymity requirements. It uses heuristics based on the monotonicity of generalisation to
prune away some fruitless paths to improve efficiency. However, in theory in the worst
case, the algorithm exhaustively finds all generalised tables in order to determine the
optimal table. Our analysis gives an upper bound that may not be as tight as possible to
simplify the analysis and to give an idea of the time complexity of our approach.

Let n be the number of records of a table tuple of k attributes, each of which has at
most m domain values. The time it takes the algorithm to search for a solution depends
on the number of generalisations, each of which depends on the structure of the
corresponding taxonomy tree. For each generalisation on each attribute, the number of
ways to generalise m values, from the bottom-up, is one in the best case (i.e., when all
values have the same parent) and at most m / 2 in the worst case. This is because each
generalisation has a branching factor ranging from 2 (binary tree) to m. The maximum
branching factor m gives a minimum of one possible generalisation whereas the
minimum branching factor two gives a maximum of m / 2 possible generalisations. Since
there are k attributes, there are at most km / 2 possible generalisations. For each attribute
of m values, the number of generalisation steps is m – 1 in the worst case (e.g., from the
top of the binary tree with m leaf nodes). Since there are k attributes, the longest
generalised path is at most k(m – 1). Thus, each data entry value in each record requires
O(bd) time for all possible generalisation, where b = km / 2 and d = k(m – 1). Since there
are n records, the algorithm takes O(nbd) (i.e., O(n(km / 2)k(m–1)).

 Data privacy with heuristic anonymisation 117

5 Analytical and experimental comparisons

In this section, we illustrate different approaches with examples and compare the results
on anonymity, data preservation and data utility for classification modelling. We consider
two comparison sections. On the first section, we do the comparison with techniques that
aims for optimality with different meanings, MinGen (Sweeney, 2002b) and AllMin
(Samarati, 2001). On the second one, we compare our method with two anonymisation
techniques that are for classification, top-down specialisation (TDS) (Fung et al., 2005)
and bottom-up generalisation (BUG) (Wang et al., 2004).

5.1 Anonymisation for optimality

This section analyses the three ‘optimal’ approaches including Sweeney’s (2002b)
MinGen, Samarati’s (2001) AllMin and ours, HeuristicMin. All achieve anonymity by
complying with given anonymity requirements. All find the ‘optimal’ solution by
searching for a generalised table with minimal generalisations. However, it is not clear
how each of these solutions and approaches differ. By observing details of these
approaches on a specific example, we aim to gain understanding of their differences and
the real meaning of optimality. In Section 4, we show how HeuristicMin works and
obtain its optimal generalised table. We next apply MinGen and AllMin to the same
example in details before we provide comparison analysis.

5.1.1 MinGen approach
MinGen uses generalisation to produce a table that satisfy k-anonymity with minimal
distortion. The generalisation is performed at a cell level. MinGen exhaustively searches
on each cell for generalised tables with minimum number of generalisations that comply
with k-anonymity degree requirement (or k-minimal generalisations). In our example,
k = 4. We now apply MinGen, to table T of Figure 4. For convenience, we display T again
in Figure 6(a). Rows 3, 6 and 7 violate anonymity requirements R. There are numerous
ways to generalise T cell-wise. For example, for each record in each row, there are 6
(3 × 1 × 2) generalisations based on a taxonomy height of each attribute. Thus, table T
has a total of 240 possible generalisations.

To produce a generalised table that complies with R, one option is to generalise T on
education cell of rows 2 and 3 allowing them to be merged to one row of six records.
Thus, this eliminates row 3 violation. Similarly, generalising T on education cell of
rows 4 and 6 to be merged as well as those of rows 5 and 7 produces table T8 as shown in
Figure 6(b). Overall, a total number of generalisations at cell level required to generalise
T8 is 20 (i.e., 1 × 6 + 1 × 6 + 1 × 8 for generalising on education of rows 2 and 3, 4 and 6,
and 5 and 7, respectively). Another option is to generalise education cell of rows 2 and 3
to be merged as in T8 but also generalising two levels on hours cell of rows 6 and 7. This
produces a generalised table T9, as shown in Figure 6(c), which requires 14 cell level
generalisations. Similarly, we can obtain T10, as shown in Figure 6(c), which also requires
14 cell level generalisations. Both T9 and T10 require minimal generalisations at cell level
of 14 in order to satisfy the four-anonymity requirement R.

 118 S. Arca and R. Hewett

Figure 6 Sweeney’s MinGen approach, (a) an initial table T (b) generalised T to T8 (c) minimal
generalised T to T9 (d) minimal generalised T to T10 (see online version for colours)

 Row Edu Sex Hrs #Rec
1 10th M 40 20
2 10th M 30 4
3 9th M 30 2
4 9th F 30 4
5 9th F 40 6
6 12th F 30 2
7 12th F 40 2

(a)

Row Old Edu Sex Hrs #Rec
1 1 10th M 40 20
2 2, 3 High M 30 6
3 4, 6 High F 30 6
4 5, 7 High F 40 8

(b)

Row Old Edu Sex Hrs #Rec
1 1 10th M 40 20
2 2, 3 High M 30 6
3 4 9th F 30 4
4 5 9th F 40 6
5 6, 7 12th F Any 4

(c)

Row Old Edu Sex Hrs #Rec
1 1 10th M 40 20
2 2 10th M 30 4
3 3, 4 9th Any 30 6
4 5 9th F 40 6
5 6, 7 12th F Any 4

(d)

As we can see, non-unique minimal generalised tables that satisfy R may exist (e.g., T9
and T10). Moreover, such tables do not necessary contain the same in-formation and thus,
have different degree of distortion. Intuitively, the cell’s distortion depends on a
proportion of generalised data. Comparing row 2 of T9 and row 3 of T10, the proportion of
generalised data on education of the former is about 1/3 (1 out of 3 possible
generalisation steps) whereas that on sex of the latter is about 1/1. Thus, T9 is less
distorted and should be preferred. MinGen uses the preference metric Prec, to measure a
precision of a table, where a ratio of each cell’s generalisation level over the total number
of levels (height) in a corresponding taxonomy tree is used to represent the cell’s
distortion. The less distortion the table is, the more ‘precise’ the table becomes in terms
of its closeness of the generalised data to its original. Prec of a generalised table is
defined by subtracting all normalised cell distortions from one. Specifically, let T be a
generalised table with number of attributes n, and number of records m. For each cell tij
of attribute i and instance j, let l(tij) and h(tij) be its corresponding taxonomy level and
height (i.e., taxonomy tree of attribute i). We then define Prec (or P) as follows:

()
()1 1

11
n m

ij

iji j

l t
P

nm h t= =

= −

Applying the formula to T9, the normalised sum of cell distortions is 0.05 [i.e., 1/120
(6 × 1/3 + 4 × 2/2), where the first amount in the sum indicates distortion on education
and the second indicates distortion on hours for all relevant cells]. This gives a precision
of T9 to be 0.95. Similarly, we obtain T10’s precision to be 0.92. Thus, by the preference
criterion, MinGen returns T9 as an optimal generalised table.

5.1.2 AllMin approach
Samarati’s AllMin uses a binary search indexing by a total number of generalisations
Gen, which is a sum of a taxonomy level of each generalised data on each shield
attributes. In our example, since there are three attributes, search state [i, j, k] represents a
taxonomy level i, j and k on attribute education, sex and hours, respectively. Recall each
of the given three taxonomy trees in Figure 3 has height 3, 1, and 2 on education, sex and

 Data privacy with heuristic anonymisation 119

hours, respectively. Thus, a state with maximum generalisations is [3, 1, 2], where Gen is
6, and an initial table has an initial state [0, 0, 0]. AllMin generalises by column.

Based on binary search, AllMin starts looking for anonymity compliance generalised
tables with minimal Gen at level ⌊6/2⌋, since Gen of [3, 1, 2] is 6. There are
six generalised tables at level 3, namely [2, 1, 0], [1, 1, 1], [1, 0, 2], [2, 0, 1], [3, 0, 0] and
[0, 1, 2]. As shown in Figure 7, all of them satisfy R. AllMin moves to a more specific
level (i.e., level 2) and repeats checking all generalised tables in this level, namely
[1, 1, 0], [1, 0, 1], [0, 1, 1], [2, 0, 0] and [0, 0, 2] in a similar manner.

Figure 7 AllMin’s generalised tables corresponding to states in level 3 (see online version
for colours)

Figure 8 AllMin’s generalisation states at all levels (see online version for colours)

Figure 8 shows the two levels of generalised tables that AllMin has evaluated so far. As a
result, [0, 1, 1] and [0, 0, 2] do not satisfy R but the rest do. Thus, candidates for
generalised tables with minimal Gen at level 2 are [1, 1, 0], [1, 0, 1] and [2, 0, 0]. If
none of the specialised (i.e., a reverse of generalised) tables (in level 1) of these
three candidates satisfies R then they are indeed the optimal solutions. As seen from

 120 S. Arca and R. Hewett

Figure 8, these relevant generalised tables correspond to states in level 1. Thus, AllMin
checks if:

1 [1, 0, 0] (specialised table of [1, 1, 0], [1, 0, 1] and [2, 0, 0])

2 [0, 1, 0] (specialised table of [1, 1, 0])

3 [0, 0, 1] (specialised table of [1, 0, 1]) satisfies R.

The results shown in Figures 9(a)–9(c) indicate that only [1, 0, 0] satisfies R. Since a
lower level state [0, 0, 0] corresponds to an initial table, which does not satisfy R,
therefore the generalised table corresponding to [1, 0, 0] as shown in Figure 9(a) is an
optimal generalised table produced by AllMin.

Figure 9 AllMin’s generalisations in level 1, (a) [1, 0, 0] (b) [0, 1, 0]) (c) [0, 0, 1]) (see online
version for colours)

 Row Edu Sex Hrs #Rec
1 High M 40 20
2 High M 30 6
3 High F 30 6
4 High F 40 8

Row Edu Sex Hrs #Rec
1 10th Any 40 20
2 10th Any 30 4
3 9th Any 30 6
5 9th Any 40 6
6 12th Any 30 2
7 12th Any 40 2

Row Edu Sex Hrs #Rec
1 10th M [40, 99) 20
2 10th M [1, 40) 4
3 9th M [1, 40) 2
4 9th F [1, 40) 4
5 9th F [40, 99) 6
6 12th F [1, 40) 2
7 12th F [40, 99) 2

(a) (b) (c)

5.1.3 Comparative analysis
Figure 10 summarises our findings from this example. As shown in Figure 10(a),
MinGen’s resulting table [i.e., T9 of Figure 6(c)] clearly retains the data closer to the
original than that of AllMin’s and ours, which, as shown in Figure 10(b), happens to be
the same [i.e., T1(0, 4) in Figure 4 and the table of state [1, 0, 0] in Figure 9(a)]. The
observation is verified by the precisions 0.95 and 0.89 of the two tables as shown in
Figure 10(c). This is to be expected since MinGen aims to find a table with minimal
generalisations to satisfy anonymity requirements R with minimal distortion. On the size
of the resulting tables, MinGen produces a slightly larger table than that of the rest. This
is reasonable since both HeuristicMin and AllMin apply generalisation on a larger grain
size than MinGen (i.e., rows on a certain attribute column as opposed to record cells).
Thus, the minimum number of generalisations obtained by MinGen (i.e., 14) is double of
that of AllMin and HeuristicMin (i.e., 7 from generalising seven rows of the initial table T
on education). Because of this generalisation gran size, the solution space of 240 possible
generalisations of MinGen is significantly higher than 24 [i.e., sum of all states in
Figure 8] of the other two approaches. The main difference between HeuristicMin and
AllMin is the optimal criteria and the effort in searching for optimal solution (due to
heuristics that help pruning in HeuristicMin).

 Data privacy with heuristic anonymisation 121

Figure 10 Summary of results on generalising table T by all three methods, (a) MinGen (b) ours
and AllMin (c) comparisons on this specific example (see online version for colours)

Edu Sex Hrs #Rec

10th M 40 20
High M 30 6

9th F 30 4
9th F 40 6

12th F Any 4
(a)

Edu Sex Hrs #Rec
High M 40 20
High M 30 6
High F 30 6
High F 40 8

(b)

Characteristics MinGen AllMin
Heuristic

Min
(Ours)

Precision of the resulting table 0.95 0.89 0.89
No. of rows in the resulting table 5 4 4
No. of generalisations in the resulting table 14 7 7
Generalisation by Cell Column Attribute
No. of generalisations to find solutions Trial/Error 14 9
Size of solution space (all generalisations) 240 24 24

(c)

As a result, in this example, the number of generalisations to find solutions is 9 for
HeuristicMin (see all states generated in Figure 5) and 14 for AllMin (see a total number
of states in levels 1–3 in Figure 8).

To summarise, MinGen’s optimality means a minimum number of cell-wise
generalisations that satisfy anonymity requirement and minimise data distortion (i.e.,
changes of original data).

AllMin’s optimality means a minimum number of column-wise generalisations that
satisfy anonymity requirement. HeuristicMin’s optimality means a minimum number
of attribute-wise generalisations that satisfy anonymity requirement and maximise
non-redundant data information (i.e., number of rows).

On solution criteria, HeuristicMin is similar to MinGen in that their optimal solutions
must meet two criteria:

1 satisfying anonymity requirements with minimal generalisations

2 maximise data preservation of the given table.

On the other hand, AllMin’s optimal solution only needs to meet only the first criterion.
On generalisation, MinGen generalises by cells, AllMin by column and HeuristicMin by
attribute. Thus, MinGen’s generalisation is the finest grain size, while AllMin’s is the
coarsest and HeuristicMin’s compromises between the two. Because of this, MinGen
produces the optimal table with best precision but at the same time it has a large search
space. Therefore, MinGen serves as a good formal approach but not feasibly practical
(Sweeney, 2002b). To remedy this, Sweeney (1998) has developed Datafly, a heuristic
approach that is computationally feasible. However, because it does not guarantee
optimal generalisations, we exclude it from our comparison.

Although the results obtained from AllMin and HeuristicMin are the same in this
example, it is not necessary the same in general. Both of their generalisations are based
on the attribute column but HeuristicMin’s generalisation applies to certain table rows
(i.e., those contain attribute values violating anonymity requirements and its sibling),
which, in the worst case, could be all rows as in AllMin. In searching for optimal
solutions, AllMin exploits a binary search, which is a blind search, whereas HeuristicMin
uses heuristics on the number of rows violating the anonymity requirements and the table
size. By using the monotonicity property of generalisation, HeuristicMin is an admissible
A* search, giving an optimal solution (Russell and Norvig, 2010). Note that the search

 122 S. Arca and R. Hewett

may not find a unique optimal solution. In such a case, MinGen and HeuristicMin apply a
preference metric to select a unique solution, while AllMin does not but gives possible
criteria. Finally, both MinGen and AllMin include suppression (not releasing or masking)
in generalisation. For example, generalising the zip string 12345 to 1234* has the same
effect as masking the last zip digit value. HeuristicMin could do the same.

These comparisons show that our HeuristicMin approach is simple and effective in
that it produces a practical and useful optimal result comparable to those of other
methods that likely have higher computational cost or not realistically realisable.

5.2 Anonymisations for classification

Several existing data privacy approaches aim to find a generalised data table that not only
satisfies a given anonymity requirements to mask sensitive information but also preserves
data useful for modelling classification. TDS (Fung et al., 2005) and BUG (Wang et al.,
2004) are designed for this purpose. Specifically, the resulting data tables aim to
maximise accuracy of the classification models. This section compares TDS, BUG and
our HeuristicMin (even though HeuristicMin is not designed for classification purpose).

Starting from the most general table, TDS searches for its table solutions by
repeatedly performing appropriate specialisations until no further applicable
specialisation exists. That is, it either violates the anonymity requirements or does not
increase useful information for classification [or information gain (MacKay, 2003;
Mitchell, 1997; Russell and Norvig, 2010)]. TDS selects an attribute with a maximum
metric score to be specialised using its corresponding taxonomy tree. The scoring metric
is defined as a ratio of information gain to anonymity loss.

In our context, information gain from a given attribute tells us how well specialisation
of the attribute helps us gain better classification. The classification quality depends on
the ‘mix’ of classes, which is measured by entropy (MacKay, 2003; Russell and Norvig,
2010). The less mix the classes are (e.g., frequency of one class dominates the rest), the
easier it is to classify because the separation of classes are more distinct. Thus,
information gain uses entropy to measure the mix of classes before and after
specialisation. Good specialisation increases information gain and reduces the mix of
class. Note that specialisation on an attribute that involves records of one single class will
not increase information gain and thus, such specialisation is inapplicable.

TDS’s anonymity loss on a given attribute A is defined as an average of anonymity
loss before and after specialisation on A overall requirements containing A. The
anonymity loss on A for each requirement is measured from the largest difference (i.e.,
the worst case) of the number of records before and after specialisation. In other words,
we compare the record number of the parent node with that of the child node with
minimum number of records. If the difference is high, then the anonymity loss is also
high, but the score will be low. In sum, the metric score is high when information gain is
high (to increase classification quality) and/or anonymity loss is low (i.e., low distance to
satisfy anonymity requirements) (see more details in Fung et al., 2005).

BUG addresses the same problem as TDS but searches for the solution in a bottom-up
manner. Being developed by the same researchers as those of TDS, BUG uses a similar
scoring metric. Since BUG applies generalisation rather than specialisation, BUG’s score
is a reverse of TDS’s score, which is a ratio of information loss to anonymity gain. Here,
we apply generalisation on the attribute with a minimum score (i.e., either low
information loss or high anonymity gain) (see more details in Wang et al., 2004).

 Data privacy with heuristic anonymisation 123

Next we compare our approach, HeuristicMin, on four examples with TDS and for the
sake of simplicity, compare all three approaches only on one of those four examples. To
evaluate the results on classification modelling we use naive Bayesian classifier with
ten-fold cross-validation on the resultant tables of the four examples. On the comparison
tables, we consider the number of distinct rows and classification accuracy.

Figure 11 Comparison of TDS and HeuristicMin on classification Case 1, (a) initial table
(b) HeuristicMin's result (c) TDS’s result (d) comparisons (see online version
for colours)

Row Edu Sex WorkHrs Class #Rec
1 10th M 40 A 20
2 10th M 30 B 4
3 9th M 30 B 2
4 9th F 30 B 4
5 9th F 40 B 6
6 8th F 30 B 2
7 8th F 40 B 2

(a)

Row Edu Sex WorkHrs Class #Rec
1 High M 40 A 20
2 High M 30 B 6
3 High F 30 B 6
4 High F 40 B 8

(b)

Row Edu Sex WorkHrs Class #Rec
1 Any M [40, 99) A 20
2 Any M [1, 40) B 6
3 Any F [1, 40) B 6
4 Any F [40, 99) B 8

(c)

 # Rows
Input

Rows
Result

% Acc

HM 7 4 100%

TDS 7 4 100%

(d)

5.2.1 Case 1: HeuristicMin vs. TDS on single requirements
Consider an illustration in Section 4.3, where an initial table is shown again here in
Figure 11(a) with the anonymity requirements set R as {<{education, sex, hours}, 4>}.
The results obtained from our HeuristicMin (HM) and TDS is shown in Figures 11(b)
and 11(c), respectively.

Figure 11(d) gives a summary of comparisons between a specialised table obtained
from TDS and a generalised table obtained from HM. Both algorithms preserved the same
number of rows and have the same result for classification. However, HeuristicMin
produces a table with data closer to the original than the data of TDS [e.g., original work
hours of 40 is generalised to [40, 99) and education attribute value high is closer to the
original than any]. Thus, on the criterion of informativeness, HeuristicMin performs
better than TDS in this case.

5.2.2 Case 2: HeuristicMin vs. TDS on two requirements
Consider an example given in Fung et al. (2005), where the taxonomy trees are shown in
Figure 12 and an initial table is shown in Figure 13(a). Some rows have multiple classes.
For example, for row 3, a tuple (11th, M, 35) has five records, 2 of which are of class A
and 3 are of class B. In this example, a set of anonymity requirements R = {R1, R2},
where R1 = <{education, sex}, 4>, and R2 = <{sex, WorkHrs}, 11>}. The data projected
on the shield attributes of R1 and R2 are surrounded by the two boxes shown separately in
Figure 13(a) for R1 and Figure 13(b) for R2. Recall that we write [t, rt] for a pair of a
tuple t and its corresponding number of records rt. Thus, we can represent R1-projected
tuple in row 1 as [(9th, M), 3].

 124 S. Arca and R. Hewett

Figure 12 Taxonomy trees of Case 2

Figure 13 Comparison of TDS and HeuristicMin on classification Case 2, (a) initial table
showing R1 violation (b) initial table showing R2 violation (see online version
for colours)

 Row Edu Sex WorkHrs Class #Rec
1 9th M 30 B 3
2 10th M 32 B 4
3 11th M 35 A, B 2, 3
4 12th F 37 A, B 3, 1
5 Bac F 42 A, B 4, 2
6 Bac F 44 A 4
7 Mas M 44 A 4
8 Mas F 44 A 3
9 Doc F 44 A 1

Row Edu Sex WorkHrs Class #Rec
1 9th M 30 B 3
2 10th M 32 B 4
3 11th M 35 A, B 2, 3
4 12th F 37 A, B 3, 1
5 Bac F 42 A, B 4, 2
6 Bac F 44 A 4
7 Mas M 44 A 4
8 Mas F 44 A 3
9 Doc F 44 A 1

(a) (b)

On anonymity requirements R1 with shield {education, sex}, rows 1, 8 and 9 violate R1.
On the other hand, for R2, we have [(F, 44), 8] from rows 6, 8 and 9. Each of the rest of
the rows represents a unique tuple that violates R2’s anonymity requirements of 11. Thus,
none of the rows satisfy R2.

Figure 14 shows an execution of specialisations in TDS. Starting from the most
general table shown in Figure 14(a), TDS computes scores of each attribute and selects
the attribute with a maximum score (i.e., WorkHrs, in this case) to specialise. Using the
taxonomy tree of work in Figure 12, TDS replaces [1–99) by its children: [1–37) and
[37–99) and uses the initial table to count the corresponding records resulting in the table
shown in Figure 14(b). The same process repeats. Each specialisation generates a more
detailed table that does not violate the anonymity requirements R. As shown in Figure 14,
TDS next continues specialising on education, secondary, senior and university and
obtains tables shown in Figures 14(c)–14(d), respectively.

Figure 14(f) shows the specialisations of the tables produced by TDS. Further
specialising junior in Figure 14(f), will split its first row into rows 1 and 2 of Figure
14(g), where [(9th, any), 3], in row 1, violates R1. Further specialising sex in Figure 14(f),
will split its last row into row 7 and rows 8-9 of Figure 14(h), where we have [(M, [1–
37)), 12] and [(F, [37–99)), 18] satisfying R2 but [(M, [37–99)), 4], in row 7, violate R2.
Further specialising [1-37) in Figure 14(f), will result in Figure 14(i), where [(any, [1–
35)), 7] and [(any, [35–37)), 5], in its first two rows, violate R2. Similarly, further
specialising graduate will result in R1 violation.

 Data privacy with heuristic anonymisation 125

Figure 14 TDS’s specialisations to its solution, (a) initial TDS table (b) specialise on WorkHrs
(c) specialise on education (d) specialise on secondary (e) specialise on senior
(f) specialise on university (g) specialise on junior (h) specialise on sex (i) specialise on
[1–37) (see online version for colours)

Rows Edu Sex Hrs #Rec
1-9 Any Any [1-99) 34

(a)

Rows Edu Sex Hrs #Rec
1-3 Any Any [1-37) 12
4-9 Any Any [37-99) 22

(b)

Rows Edu Sex Hrs #Rec
1-3 Sec Any [1-37) 12
4 Sec Any [37-99) 4

5-9 Uni Any [37-99) 18
(c)

Rows Edu Sex Hrs #Rec
1-2 Jr Any [1-37) 7
3 Sr Any [1-37) 5
4 Sr Any [37-99) 4

5-9 Uni Any [37-99) 18
(d)

Rows Edu Sex Hrs #Rec
1-2 Jr Any [1-37) 7
3 11th Any [1-37) 5
4 12th Any [37-99) 4

5-9 Uni Any [37-99) 18
(e)

Rows Edu Sex Hrs #Rec
1-2 Jr Any [1-37) 7
3 11th Any [1-37) 5
4 12th Any [37-99) 4

5-6 Bac Any [37-99) 10
7-9 G Any [37-99) 8

(f)

Rows Edu Sex Hrs #Rec
1 9th Any [1-37) 3
2 10th Any [1-37) 4
3 11th Any [1-37) 5
4 12th Any [37-99) 4

5-6 Bac Any [37-99) 10
7-9 G Any [37-99) 8

(g)

Rows Edu Sex Hrs #Rec
1-2 Jr M [1-37) 7
3 11th M [1-37) 5
4 12th F [37-99) 4

5-6 Bac F [37-99) 10
7 G M [37-99) 4

8-9 G F [37-99) 4
(h)

Rows Edu Sex Hrs #Rec
1-2 Jr Any [1-35) 7
3 11th Any [35-37) 5
4 12th Any [37-99) 4

5-6 Bac Any [37-99) 10
7-9 G Any [37-99) 8

(i)

Figure 15 HeuristicMin’s generalisations toward its optimal solution, (a) initial table
(b) generalise on education, R1 is satisfied but not R2 (c) generalise on WorkHrs, R1 is
satisfied but not R2 (d) generalise on Sex, R1 is satisfied but not R2 (see online version
for colours)

 Row Edu Sex Hrs Class #Rec
1 9th M 30 B 3
2 10th M 32 B 4
3 11th M 35 A, B 2, 3
4 12th F 37 A, B 3, 1
5 Bac F 42 A, B 4, 2
6 Bac F 44 A 4
7 Mas M 44 A 4
8 Mas F 44 A 3
9 Doc F 44 A 1

Row Edu Sex Hrs Class #Rec
1 Jr M 30 B 3
2 Jr M 32 B 4
3 11th M 35 A, B 2, 3
4 12th F 37 A, B 3, 1
5 Bac F 42 A, B 4, 2
6 Bac F 44 A 4
7 G M 44 A 4
8 G F 44 A 3
9 G F 44 A 1

(a) (b)

 Row Edu Sex Hrs Class #Rec
1 Jr M [1, 35) B 3
2 Jr M [1, 35) B 4
3 11th M [35, 37) A, B 2, 3
4 12th F [37,99) A, B 3, 1
5 Bac F [37,99) A, B 4, 2
6 Bac F [37,99) A 4
7 G M [37,99) A 4
8 G F [37,99) A 3
9 G F [37,99) A 1

Row Edu Sex Hrs Class #Rec
1 Jr Any [1, 35) B 3
2 Jr Any [1, 35) B 4
3 11th Any [35, 37) A, B 2, 3
4 12th Any [37,99) A, B 3, 1
5 Bac Any [37,99) A, B 4, 2
6 Bac Any [37,99) A 4
7 G Any [37,99) A 4
8 G Any [37,99) A 3
9 G Any [37,99) A 1

(c) (d)

 126 S. Arca and R. Hewett

Thus, considering all possible specialisations (i.e., specialisation that has not reached the
leaves of the taxonomy trees) of Figure 14(f), none results in a table that satisfies
anonymity requirements R. TDS terminates with Figure 14(f) as a solution.

Applying HeuristicMin to the initial table, Figure 15 shows resulting tables and
violations obtained by each generalisation. For example, generalising on education of
violating rows 1, 8, 9 results in replacement of education data values of rows 1–2 by
junior (Jr) and those of rows 7–9 by graduate (G) as shown in Figure 15(b). The
generalisation continues as shown in Figures 15(c) and 15(d), where generalising table in
Figure 15(d) on rows 1–3 on WorkHrs results in an optimal table that complies with
anonymity requirements as shown in Figure 16(a).

Using the resulting table for classification, of course, gives the same result as shown
in Figure 16(b). In Case 2, the accuracy obtained is 80% [Figure 16(b)].

Figure 16 Resulting solution of (a) TDS and HeuristicMin and (b) comparison (see online version
for colours)

 Row Edu Sex WorkHrs Class #Rec
1 Jr Any [1-37) B 7
2 11th Any [1-37) A, B 2, 3
3 12th Any [37-99) A, B 3, 1
4 Bac Any [37-99) A, B 8, 2
5 Grad Any [37-99) A 8

 # Rows
Input

Rows
Result

% Acc

HM 9 5 80%

TDS 9 5 80%

(a) (b)

So far, the classification results obtained from solution tables from TDS and HeuristicMin
in both Cases 1 and 2 have the same accuracy even though the data tables are different (in
Case 1) or the same (in Case 2). In all, even HeuristicMin is not designed for
classification; it produces the same classification results.

5.2.3 Case 3: HeuristicMin vs. TDS and BUG

Consider an initial table as given in Figure 18(a) where its corresponding taxonomy
trees are shown in Figure 18(b). The data table represents the Walmart cashier job
applications, where class A refers to applicants with references from previous jobs and
class B, otherwise. In this scenario, the anonymity requirements R = <{application, sex},
25>.

Figure 17 Given inputs of Case 3, (a) initial table (b) taxonomy trees of the three attributes
(see online version for colours)

(a) (b)

 Data privacy with heuristic anonymisation 127

As shown in the initial table of Figure 17(a), we use Acc (for accepted) and Rej (for
rejected) for attribute values of application. Here, we have [(Rej, M), 25] (rows 6, 10),
and [(Rej, F), 25] (rows 7–9) that satisfy anonymity R. However, [(Acc, F), 24],
(rows 1–3) and [(Acc, M), 9] (rows 4–5) violate R. Thus, the original state in
HeuristicMin is (5, 10) (i.e., 5 out of 10 rows violate R).

Figure 18 Results obtained from HeuristicMin on Case 3, (a) generalise on application: (0, 7)
(b) generalise on sex: (0, 8) (c) HeuristicMin’s search tree (see online version
for colours)

(a) (b) (c)

Based on the violating rows, HeuristicMin applies generalisation to Acc and its sibling
Rej on application. The resulting table is shown in Figure 18(a), where we have [(any, F),
49], [(any, M), 34]. Thus, it satisfies R and is represented by state (0, 7). Similarly,
HeuristicMin also applies generalisation to M and F on sex of Figure 18(a) giving a
resulting table with state (0, 8) as shown in Figure 18(b). Since there are no more
violations, the algorithm stops searching [as shown in Figure 18(c)] and returns the table
corresponding to node (0, 8) because its number of rows is higher than that of the table
corresponding to node (0, 7). In other words, by our heuristic to select a bigger table to
maximise data information, HeuristicMin selects Figure 18(b) as an optimal solution.

Applying TDS to the most general form, TDS calculates the score of each attribute
and chooses to specialise application and continues specialising on age until
specialisation yields anonymity violation. TDS then stops and returns the resulting table
as shown in Figure 19(a). Applying BUG to the initial table, BUG uses the same scoring
metric as that used by TDS to select the attribute to generalise. Consequently, BUG
generalises ‘by attribute’ on application and the resulting table of Figure 19(b) is
obtained. Figure 19(c) shows the result obtained from HeuristicMin, where generalisation
on sex was applied as shown earlier in Figures 19(b) and 19(c). Figure 19(d) shows
comparison results of the three approaches. Our HeuristicMin gives the highest
output/input (i.e., O/I) ratio between the table size after and before anonymisation of 0.8,
while TDS’s ratio is 0.4, the lowest. HeuristicMin preserves twice as many rows as those
of TDS. This is to be expected because HeuristicMin aims to maintain the size of the
table to maximise data preservation while obtaining a table that satisfies anonymity
requirements. When we use the precision measure to indicate how much the
anonymisation process via generalisation/specialisation manages to keep the data
undistorted, both HeuristicMin and BUG have the same precision of 0.67 whereas TDS’s
precision of 0.5 is considerably less. This is because precision measures are based on
ratios of taxonomy levels. However, comparing the attribute values of resulting tables of

 128 S. Arca and R. Hewett

all the three techniques, our HeuristicMin keeps the table contents closest to the original
table.

Figure 19 Comparison results obtained from all methods on Case 3, (a) result from TDS (b) result
from BUG (c) result from HeuristicMin (d) comparisons (see online version
for colours)

 Rows App Sex Age Class #Rec
1,2,
7,9 Any F [0, 40) A 41
3,8 Any F [40,99) A 8
4-6 Any M [0, 40) B 19
10 Any M [40,99) B 15

(a)

Rows App Sex Age Class #Rec
1, 5 Acc Any 30 A, B 5, 5
2 Acc Any 20 A 16
3 Acc Any 40 A 3
4 Acc Any 25 B 4

6, 7 Rej Any 30 A, B 15,10
8 Rej Any 50 A 5
9 Rej Any 20 A 5
10 Rej Any 70 B 15

(c)

 Rows App Sex Age Class #Rec
1, 7 Any F 30 A 20
2, 9 Any F 20 A 21

3 Any F 40 A 3
4 Any M 25 B 4

5, 6 Any M 30 B 15
8 Any F 50 A 5
10 Any M 70 B 15

(b)

 O/I Row
Ratio

Prec. % Acc

HM 8/10 0.67 63%
TDS 4/10 0.5 100%
BUG 7/10 0.67 100%

(d)

On classification, TDS and BUG perform equally well and outperform HeuristicMin as to
be expected as they both are designed for classification use. Looking more closely, both
TDS and BUG use the scoring metric that depends on a ratio of the information loss over
anonymity gain. The information loss refers to the effects of the class mixing (which
effects the classification accuracy), while the anonymity gain refers to the effects
of record aggregation (which increases the degree of anonymity). As shown on
Figures 19(a) and 19(b), both resulting tables from TDS and BUG do not have class
mixing, whereas heuristic’s solution shown in Figure 19(c) does, particularly the first and
fifth rows. When choosing which generalisation to apply, HeuristicMin chooses to
generalise on the attribute that creates a big table size, BUG on the other hand chooses
the attribute that creates a table that does not mixes the classification labels. As a result,
ours choose the attribute sex and BUG chooses application attributes. This explains our
results that are guided by the heuristic measured applied.

In summary of Case 3, HeuristicMin preserves twice as many rows as those of TDS.
However, the result of the classification is not as good as TDS and BUG that aim to
preserve data for classification. BUG performs as well as TDS in classification as
expected and preserves more information than TDS but not as good as HeuristicMin.
The performances on this case reflect the design and heuristics used in each of these
approaches.

5.2.4 Case 4: HeuristicMin vs. TDS
Given a table representing gym data records with three attributes: activity, duration and
price. The account of a gym member becomes inactive if he/she does not attend more

 Data privacy with heuristic anonymisation 129

than two weeks. Gym members pay extra for special classes such as spinning or yoga.
Classes include those with (class A) or without (class B) individual gym instructors. The
data table and corresponding taxonomy of the attributes are shown in Figure 20. We write
Inact and Act for inactive and active attribute values, respectively. Similarly, M is for
monthly and Y for yearly.

Figure 20 Given inputs of Case 4, (a) initial table (b) taxonomy trees of the three attributes
(see online version for colours)

(a) (b)

Given the anonymity requirements R to be <{activity, duration}, 25>. It is clear that
rows 1–3 give [(Inact, M), 24] and rows 4–5 give [(Inact, Y), 9] both of which violate R.
The results obtained from HeuristicMin, and TDS are shown in Figures 21(a) and 21(b),
respectively.

Figure 21 Comparison results obtained on Case 4, (a) HeuristicMin’s result (b) TDS’s result
(c) comparisons (see online version for colours)

(c)

(a)

(b)

Applying HeuristicMin (HM) to the initial table, the optimal table is obtained
[Figure 21(a)] by generalising on activity on rows 1–5 that cause the violation and
rows 6–10 that contain associated sibling attribute values. Applying TDS to the initial
table, the resulting table obtained through top-down specialising is shown in
Figure 21(b). Figure 21(c) compares characteristics and accuracy obtained from the
resulting tables. The result shows that our HeuristicMin preserves more information than
TDS with number of rows 80% of the original while TDS preserves only 40% of the
original. Both achieve the same classification accuracy of 100%. This comparison of

 130 S. Arca and R. Hewett

Case 4 indicates that even though HeuristicMin’s information preserving metric is not
specifically designed for classification like TDS, it can still generate reasonable results to
be used for classification.

In summary, our empirical experiments in all four cases in this section show that
each approach performs accordingly to its design criteria and the metrics or heuristic
employed. Both TDS and BUG aim to produce tables that satisfy anonymity requirements
while preserving information for the best quality of the classifiers produced by the
anonymised data. HeuristicMin aims to anonymise data while keeping data as
informative and close to the original data as much as possible. The interesting
observation from these experiments is that even though HeuristicMin is not designed for
classification use, it performs just as well as TDS and BUG in 3 out of 4 cases including
cases with a single anonymity requirement (Case 1 and Case 4) and two anonymity
requirements (Case 2). The study of Case 3, where HeuristicMin’s classification accuracy
is worse than those of TDS and BUG, helps us gain insight that explains reasons for
distinct classification accuracy between these two groups of techniques. TDS (or BUG)
favours specialisation (or generalisation) that produces a row of non-mixed classes (as
measured by information gain in their scoring metric). This enhances the quality of data
for classification. On the other hand, HeuristicMin does not target for classification use.
As a result, its optimal table may have mixed classes that result in poor classification
accuracy as in Case 3.

6 Conclusions

This paper studies privacy objectives for anonymising the identity of the individuals
associated with given data. In particular, we present HeuristicMin, an anonymisation
approach that applies generalisations to securing privacy by satisfying user-specified
anonymity requirements while maximising information preservation. Unlike prior
approaches, HeuristicMin exploits monotonicity property of generalisation along with
two simple heuristics:

1 the number of rows violating the anonymity requirements

2 the table size (or number of non-redundant rows of records) to efficiently obtain
optimal generalised table.

The first heuristic measures how far the generalised table being considered is from
meeting the anonymity requirements whereas the second heuristic represents the amount
of data retention from the original table.

HeuristicMin has several advantages. First, it accommodates anonymity compliance
and maximum data information for ‘general’ purposes (as opposed to special purpose
such as classification). Second, it uses ‘simple’ heuristics (compared to MinGen’s
precision or complex TDS’s or BUG’s information gain over anonymity loss) to find the
generalised table solution. Third, its optimal solution is theoretically grounded by a
well-known efficient optimal A* search. Finally, its use of generalisation by ‘attribute’
provides a compromising generalisation grain size between the cell level (that can be too
fine to be computationally feasible in practice) and the column level (that can be too
coarse to maintain close content to the original).

 Data privacy with heuristic anonymisation 131

The paper also presents a comparison study between HeuristicMin and popular
techniques that produce optimal solutions to give semantic interpretation of ‘optimality’
in each technique and how they differ. In addition, we compare HeuristicMin with
techniques that aim to anonymise data for classification. The experimental results show
that even though HeuristicMin is not designed for classification, it can still produce
competitive results. We further note that generalisations or specialisations that do not
produce rows with mixing classes are likely to produce high classification accuracy. To
the best of our knowledge, there has been no attempt to compare approaches to
anonymisation with and without classification.

References
Acquisti, A. and Grossklags, J. (2005) ‘Privacy and rationality in individual decision making’,

IEEE Security & Privacy, Vol. 3, No. 1, pp.26–33.
Arca, S., Kijsanayothin, P. and Hewett, R. (2020) ‘Realizing data anonymization as search with

optimal guarantee’, Proceedings of Workshop on AI for Privacy (AI4P 2020) in conjunction
with European AI Conference, Santiago De Compostela, Spain.

Bayardo, R.J. and Agrawal, R. (2005) ‘Data privacy through optimal k-anonymization’, in Proc. of
the 21st International Conference on Data Engineering (ICDE), Tokyo, Japan, pp.217–228.

Clearwater, A. and Hughes, J. (2013) ‘In the beginning … an early history of the privacy
profession’, Ohio State Law Journal, Vol. 74, No. 6, p.897.

Dwork, C. (2006) ‘Differential privacy’, in Proc. ICALP’06 33rd International Conference on
Automata, Languages and Programming, Vol. Part 2, pp.1–12.

Fung, B.C.M., Wang, K. and Yu, P.S. (2005) ‘Top-down specialization for information and privacy
preservation’, in Proceedings of the 21st International Conference on Data Engineering, IEEE
Computer Society, pp.205–216.

Fung, B.C.M., Wang, K. and Yu, P.S. (2007) ‘Anonymizing classification data for privacy
preservation’, IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 5,
pp.711–725.

Fung, B.C.M., Wang, K., Wang, Y. and Hung, K. (2009) ‘Privacy-preserving data publishing for
cluster analysis’, Data & Knowledge Engineering, Vol. 68, No. 6, pp.552–575.

Hundepool, A. and Willenborg, L. (1996) ‘μ- and τ-argus software for statistical disclosure
control’, Third International Seminar on Statistical Confidentiality.

Iyengar, V.S. (2002) ‘Transforming data to satisfy privacy constraints’, in Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton,
AB, Canada, pp.279–288.

LeFevre, K., DeWitt, D.J. and Ramakrishnan, R. (2006) ‘Mondrian multidimensional
k-anonymity’, ICDE, Vol. 6.

LeFevre, K., DeWitt, D.K. and Ramakrishnan, R. (2005) ‘Incognito: efficient fulldomain
k-anonymity’, Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, ACM.

Li, N., Li, T. and Venkatasubramanian, S. (2007) ‘T-closeness: privacy beyond k-anonymity and
l-diversity’, in Proc. 23rd International Conference on Data Engineering.

Machanavajjhala, A., Gehrke, J., Kifer, D. and Venkita-Subramaniam, M. (2006) ‘l-diversity:
privacy beyond k-anonymity’, in Proc. 22nd International Conference on Data Engineering
(ICDE), pp.24–75.

MacKay, D.J.C. (2003) Information Theory, Inference and Learning Algorithms, Cambridge
University Press, Cambridge.

 132 S. Arca and R. Hewett

Meyerson, A. and Williams, R. (2004) ‘On the complexity of optimal k-anonymity’, in
Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, ACM, pp.223–228.

Mitchell, T.M. (1997) Machine Learning, McGraw Hill, New York.
Russell, S. and Norvig, P. (2010) Artificial Intelligence: A Modern Approach, Prentice Hall, New

Jersey.
Samarati, P. (2001) ‘Protecting respondents’ identities in microdata release’, IEEE Transactions on

Knowledge and Data Engineering, Vol. 13, No. 6, pp.1010–1027.
Sweeney, L. (1998) ‘Datafly: a system for providing anonymity in medical data’, in Database

Security XI: Status and Prospects, IFIP TC11 WG11.3 11th Int’l. Conf. on Database Security,
pp.356–381.

Sweeney, L. (2002a) ‘K-anonymity: a model for protecting privacy’, Int. J. Uncertain. Fuzz.,
Vol. 10, No. 5, pp.557–570.

Sweeney, L. (2002b) ‘Achieving k-anonymity privacy protection using generalization and
suppression’, Int’l. Journal on Uncertainty, Fuzziness, and Knowledge-base Systems, Vol. 10,
No. 5, pp.571–588.

Wang, K., Yu, P.S. and Chakraborty, S. (2004) ‘Bottom-up generalization: a datamining solution to
privacy protection’, in Proc. 4th 22nd International Conference on Data Mining.

