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Abstract: Edge detection is one of the basic challenges in the field of computer vision. The 
results of most recent methods produce thick edges and background interference. The images 
generated by these networks must be postprocessed with non-maximum suppression (NMS). To 
tackle the problem, we propose a novel edge detection model that allows the network to 
concentrate on learning the contextual features of an image, thereby obtaining more accurate 
pixel edges. To obtain abundant multi-granularity features of image high-level features, we 
introduce multi-scale feature stratification module (MFM). Then, we increase the constraint 
between pixels through the edge attention module (EAM), so that the model can obtain stronger 
feature extraction ability. These new approaches can improve the ability of describing edges of 
models. Evaluating our method on two popular benchmark datasets, the edge image predicted by 
this method is superior to existing edge detection methods in subjective perception and objective 
evaluation indexes. 

Keywords: edge detection; deep learning; multiscale; attention network; non-maximum 
suppression; NMS; multi-scale feature stratification module; MFM; edge attention module; 
EAM. 
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1 Introduction 
With the rapid development of artificial intelligence, 
computer vision marks the arrival of Industry 4.0. The core 
of Industry 4.0 is efficient human-computer interaction, and 
computer vision, as the eyes of industrial robots, is of great 
significance to the Industry 4.0. Image edge detection which 
aims to find a collection of pixels with sharp brightness 
changes from natural images is considered a basic task in 
the field of computer vision (Canny 1986; Senthilkumaran 
and Rajesh, 2009). In computer vision applications, e.g., 
object detection (Ullman and Basri, 1991; Ferrari et al., 
2007), image segmentation (Arbelaez et al., 2010;  
Abdel-Basset et al., 2020, 2021; Dhiman et al., 2021) and 
saliency detection (Zhao and Wu, 2019), artificial 
intelligence’s security is an important guarantee for the 
development of Industry 4.0. Edge detection has obvious 
effect on countering attacks. Edge detection methods from 
the traditional manual feature extraction method (Canny, 
1986; Kittler, 1983; Arbelaez et al., 2011) to the current 
end-to-end automatic feature extraction method using CNNs 
have attracted the attention of many researchers. In  
the past few years, deep learning has achieved impressive 
results in edge detection, Xie and Tu (2015), Liu et al. 
(2017) proposed some excellent deep CNN models 
[holistically-nested edge detection (HED) (Xie and Tu, 
2015) and richer convolutional features (RCF) (Liu et al., 
2017), respectively, with VGG-16 network (Simonyan and 
Zisserman, 2014) as the backbone network]. 

Although CNN-based methods (Xie and Tu, 2015; Liu 
et al., 2017; Yang et al., 2016; Yu et al., 2017) can 
efficiently generate image edges with semantic information, 
most of the current CNN-based methods will produce thick 
edges and background interference. As shown in Figure 1, 
the background interference in (c) is the most serious, and 
(b) and (c) have thicker edges. Therefore, most deep 
learning methods require postprocessing of the images 
generated by the model, which will increase the hardware 
overhead. Some researchers have proposed corresponding 
solutions to this phenomenon. Wang et al. (2017) proposed 
an enhanced feedforward network with a subpixel 
convolution layer, which uses features of different scales to 
learn distinct edges. Deng et al. (2018) proposed using the 
dice loss function as the auxiliary loss function to solve the 
problem of data imbalance between the positive and 
negative data of the edge detection image, which makes the 
network learn positive sample edges more effectively. The 
method they proposed partially solves the problem of 

excessively thick edges extracted by deep learning; 
however, it does not effectively combine high-level and 
low-level semantic information. 

The main contribution of our research work proposes a 
novel edge detection model, named the multiscale 
hierarchical attention fusion network (MHANet). The 
network makes use of the fusion method of an edge 
attention module (EAM) and a multi-scale feature-layering 
module (MFM) to tackle the problem of the thick edges and 
background interference of deep neural network boundary 
prediction. In the context of the rapid development of 
artificial intelligence in Industry 4.0, edge images that 
conform to visual inspection are more conducive to features 
to understand images and generate data. Inspired by the 
scale-invariant feature transform (SIFT) (Lowe, 2004), we 
designed an MFM to extract the multi-granularity features 
of each layer. We take advantage of the attention module for 
low-level features and fuse them with multi-granularity 
features with an MFM to achieve the screening and use of 
low-level features. This method improves the visual effect 
of edge detection and the performance based on edge 
detection evaluation indicators. Our method that has not 
been processed by non-maximum suppression (NMS) 
achieves good performance on the BSDS500 dataset. 

Figure 1 (a) Is an image in the BSDS500 dataset, (b) and (c) 
show the experimental results of the RCF and HED 
detectors, respectively, and (d) is the experimental 
result of our method. The edge contours in (d) are 
clearer than those in (b) and (c) without excessive 
background information interference (see online 
version for colours) 

 
(a) (b)  (c) (d) 

Note: Postprocessing was not applied to any of the 
predicted edges. 

We summarise our contributions as follows: 

• We propose a novel model that focuses on learning the 
contextual features of images. It can obtain more 
accurate pixel edges without postprocessing. 

• We propose a cross-space self-attention mechanism to 
obtain the spatial position relations between distant 
pixels and increase the constraints between pixels. 
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• The method we proposed that does not conduct NMS 
postprocessing outperforms the existing methods and 
still has good performance after NMS. Information as a 
service: providing remotely hosted information 
services. 

2 Related work 
In the past decades, lots of excellent works on edge 
detection have emerged. Early works (Sobel and Feldman, 
1973; Duda and Hart, 1973; Torre and Poggio, 1986; Perona 
and Malik, 1990) focused on the image texture gradient, 
colour or other artificial visual features to extract edges. For 
example, the popular Sobel detector (Canny, 1986) and 
Prewitt (1970) detector use the greyscale difference between 
the upper and lower pixels and the left and right neighbours 
to detect edge pixels that reach the maximum value. The 
canny detector (Kittler, 1983) obtains the maximum 
gradient of the image through NMS, and then a dual 
threshold algorithm is used to detect the contours of finer 
pixels. However, the lack of advanced semantic features in 
these traditional methods limits the ability to obtain precise 
edges. 

Recently, models based on deep learning have made 
remarkable achievements in extracting image edges. Ganin 
and Lempitsky (2014) proposed N4-Fields, which combines 
a CNN with traditional machine learning-based nearest 
neighbour search methods; Bertasius et al. (2015) proposed 
the DeepEdge network where the target related features are 
used for advanced clue detection of the contour and the 
patch extracted by the canny detector (Kittler, 1983) is input 
into the network model to determine the effective edge of 
the detection patch. Xie and Tu (2015) and Liu et al. (2017) 
adopted an end-to-end network model to capture richer 
semantic expression features through the supervision of 
features at different layers; Yu et al. (2017) proposed 
CASENet, which associates each edge pixel with more than 
one edge class and uses a multilabel loss function to 
supervise the activation fusion; Yang et al. (2016) proposed 
a novel encoding and decoding network (cedn) to deeply 
supervise the high-level semantic contour. He et al. (2019) 
used a two-way cascaded network to supervise the  
single-layer output of the labelling edge. Gao et al. (2020) 
proposed for the first time a two-way overlay network 
combining top-down and bottom-up approaches and used 
channel weighting mechanism to filter useless feature maps. 

The above CNN-based methods have obtained excellent 
experimental results in image edge detection. However, they 
all need to perform postprocessing (NMS) on the generated 
images to eliminate the interference of thick edges and 
background to achieve a higher evaluation metric. As stated 
by Wang’s (Yu et al., 2017) work, although thick edges can 
achieve high scores through NMS, when the maximum 
tolerance distance is reduced, the score will drop very 
drastically, which also shows that thick edges cannot be 
aligned with the image boundary in the real environment. In 

response to this phenomenon, we propose a hierarchical 
fusion of low-level and high-level features to effectively 
improve the thick edges. The difference between our 
previous work focusing on the thicker edge problem is that 
we add spatial attention (SA) to the image edge task for the 
first time to make the model focus to the contextual features 
of an image. We will detail our approach below. 

3 Multiscale hierarchical attention fusion 
network 

In this paper, we propose a MHANet model to reduce the 
effect of thick and background content interference in edge 
detection tasks. The MHANet is based on the VGGNet 
(Simonyan and Zisserman, 2014) as the backbone network, 
removing fully connected layers. The MHANet contains 
multiple MFMs to capture high level features and EAMs to 
fuse low-level features. The overall structure is shown in 
Figure 2. 

3.1 Multiscale feature-layering module 
The extraction and fusion of multiscale features are critical 
to many visual tasks (He et al., 2019). Multiscale features 
contain not only overall global information but also detailed 
local information. Inspired by the SIFT (Lowe, 2004) and 
the latest DeepLab series of works (Chen et al., 2018), we 
designed a novel MFM to extract and fuse the image’s 
multiscale feature information. Similar to the DeepLab 
work, we use dilated convolutions to obtain multiscale 
features. 

Specifically, the MFM is shown in Figure 3. We use 
dilated convolutions with different dilation rates to obtain 
the multiscale features of the high-level features. Then, the 
1 × 1 convolved feature map and feature maps with 
different scales are used as residuals (He e al., 2016) to 
prevent overfitting and the vanishing gradients problem and 
increase the flow of information. Finally, the multiscale 
features and 1 × 1 convolution features from the residuals 
are combined through cross-channel connections. In this 
way, the model fully extracts and integrates multiscale 
features and uses them as the output of the MFM. 

Generally, we let the input be f ∈ ℝ(H × W × C), which is a 
feature map with C channels. The formula of the MFM 
component is as follows: 

0 0 ( )x H f=  (1) 

01
( ) +

k
i ii

x H f x
=

=  (2) 

H0 represents an ordinary convolution, the size of the 
convolution kernel is 1 × 1 

Hi represents convolutions with different dilation rates. 
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Figure 2 The model structure of the MHANet (see online version for colours) 

 
Notes: Its core is composed of an MFM and an EAM. The EAM is composed of a CA module and an SA module. 

Figure 3 Multiscale feature layering module (see online version for colours) 

 

Figure 4 Channel attention of EAM (see online version for colours) 

 

Figure 5 Trans-spacial self-attention of EAM (see online version for colours) 
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Convolutions receive residuals from ordinary convolutions 
to increase the flow of information. So the final output of 
the MFM is as follows: 

[ ]( )0 1 2 3( ) , , ,MGM f x x x x=  (3) 

where [] means concatenating the matrix in the specified 
dimension. 

3.2 Edge attention module 
We use the MFM to obtain the multiscale features of  
high-level features. In image edge detection, the saliency 
maps generated by different features will have information 
redundancy (He et al., 2019), and information that is similar 
to noise may cause performance degradation or even 
mispredictions. The MFM uses an attention mechanism to 
weight the information, effectively alleviating information 
redundancy. According to the characteristics of different 
levels of the VGGNet, we use a CA mechanism for the 
third, fourth and fifth layers and an SA mechanism for the 
first and second layers. Generally, low-level features have 
some noise, but they contain more spatial information. At 
the same time, there is almost no semantic difference 
between channels and channels in shallow channels, so the 
underlying features only use SA. Although most high-level 
features are coarse, they carry more semantic information. 
High-level features have a large quantity of channels, and 
there will be information redundancy. Therefore, only the 
CA mechanism is used for high-level features. 

3.2.1 Channel attention 
Different feature channels in the CNN respond to different 
semantics. After the MFM, we add CA to the different 
feature channels after multiscale features to weight those 
edge feature maps with higher correlation. In this section, 
we introduce CA in detail, and its structure is shown in 
Figure 4. 

Similarly, let f ∈ ℝ(H × W × C) denote a high-level feature 
map with the C channel. First, apply the global pooling 
layer to f to obtain a vector v ∈ ℝc containing global 
information f. Then, the weight relationship between the 
channels is obtained through two consecutive fully 
connected layers. The sigmoid activation function 
normalises the weight to between 0 and 1, and this process 
can be expressed by the following formula: 

( )( )( )( )2 1 1( , ) , ,w F v W sigmoid fc σ fc v W W=  (4) 

where w represents the weight of each channel, σ represents 
the ReLU activation function, fc1 and fc2 represent the fully 
connected layers, and v represents the vector of f after 
global pooling. The final definition of CA is expressed as: 

( ) * +CA f w f f=  (5) 

3.2.2 Trans-spacial self-attention 
The underlying features usually contain rich detailed 
foreground and complex background, which increase the 
uncertainty of image representation and increase the 
difficulty of model training (Zhao and Wu, 2019). In edge 
detection task, we hope to obtain a detailed boundary 
between the object and the background. Therefore, we need 
to correlate the relationship between more adjacent pixels, 
so as to filter the spatial information of the underlying 
features that contain rich details, instead of considering all 
spatial positions equally, which helps to generate finer 
edges. Inspired by self-attention mechanism (Vaswani et al., 
2017; Devlin et al., 2018), we proposed trans-spacial  
self-attention to get more relevant pixel relations shown in 
Figure 4. 

Let f ∈ ℝ(H × W × C) be the lower-level feature map with C 
channels. Inspired by the SA mechanism (Ferrari et al., 
2007), the input feature maps are respectively passed 
through three convolutional layers, the first layer of 
convolution kernel is 1 × k, the second layer of convolution 
kernel is k × 1, and the last layer of convolution kernel is  
k × k, where k is set to 3, which is used to receive the global 
information of the underlying features without adding 
parameters. Finally, the output feature maps are SQ, Sk, Sv 
(see Figure 5), Then SQ is multiplied by the transposition of 
Sk to obtain the transposed matrix, and finally the Softmax 
function normalises the encoded spatial feature maps to  
[0, 1]. 

( ( ))Q convS Q CA fι=  (6) 

( ( ))K convS K CA fι=  (7) 

( ( ))K convS V CA fι=  (8) 

where CA(f) represents the CA module in the previous 
section, Qconv, Kconv, and Vconv represent three convolutional 
layers, so the final output of SA is expressed as: 

( ) ( )( ), , , max *T
Q K V VKSA fι S S S fι Soft SQ S S= ⋅  (9) 

3.2.3 Network optimisation 
Loss function: in the publicly available dataset, the number 
of pixels in the background area is much larger than that in 
the edge area, which will cause a serious imbalance of 
positive and negative samples (Gu et al., 2007; Tang and 
Liu, 2005; Blagus and Lusa, 2010; Haider et al., 2014; Lee 
et al., 2018). Therefore, we use the class-balanced  
cross-entropy loss to train our network based on previous 
work (Liu et al., 2017; Yang et al., 2016). The loss is 
defined as: 

( )( ) log 0 ; #
i

BCE iT E
L W P T I W

∈
′ ′= = − =β  (10) 

where I is a natural image, E represents all pixels, E+ 
represents all edge pixels in the image, E– represents all 
non-edge points in the image, and T is the predicted image 
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of the model. 
| |
E
E

−=β  is the proportion of the target pixel 

in image pixels, which represents the weight of evaluating 
positive and negative samples when calculating the loss. W′ 
is the trainable parameter of the network. Following 
previous work (Deng et al., 2018; Milletari et al., 2016), the 
class-balanced cross-entropy loss combined with the dice 
loss (Dice, 1945) can generate clear-edge mapping. The 
dice loss function is defined as: 

( )
2 2+

2

N N
i ii i

dice N
i ii

p t
L W

p t
′ =  


 (11) 

where pi is the predicted value of the i-th edge pixel, and ti 
is the true value of the i-th edge pixel. The final loss 
function is expressed by the formula: 

( )( ) ( ) + ( )BCE DiceL W L W λ L W′ ′ ′=  (12) 

where λ is a hyperparameter that balances LBCE and LDice and 
is set to 0.01. 

Training strategy: we use the output containing  
high-level features to calculate the loss to reduce the impact 
of low-level features on high-level features. We use the 
output of the last three layers (P3, P4, P5) and the fusion Pfuse 
of the three-layer output as the total cumulative loss. Pi is 
obtained through an EAM and an N × 1 × 1 convolutional 
layer, as shown in Figure 2. To generate enough semantic 
information, we use only the Dice loss for Pfuse. The loss 
function strategy is expressed by the formula: 

( ) ( ) ( )5
3 4 5 3
, , , +total fuse fuse BCE ii

L P P P P L P λ L P
=

=   (13) 

Pfuse represents the final output of the fusion layer, and Pi 
represents the output of the i-th layer of the network. 

4 Experiments 
We will discuss the specific parameters of the experiment 
and briefly describe the data set. Then, we conducted 
ablation experiments on the proposed method and reported 
the performance of the method. 

4.1 DataSets 
We will evaluate the excellent performance of the proposed 
method on two publicly available datasets widely used in 
previous work: BSDS500 (Arbelaez et al., 2010) and the 
NYU Depth dataset, version 2 (NYUDv2) (Silberman et al., 
2012). 

The BSDS500 is used by the University of Berkeley for 
image segmentation and object edge detection tasks. It 
contains 200 training images, 100 verification images and 
200 test images. Each image is annotated manually by many 
annotators, and the final GroudTrue images are the average 
annotation of the annotator. 

The NYUDv2 dataset is very challenging. It is used by 
some jobs for edge detection tasks. The NYUDv2 dataset is 

composed of 1,449 densely labelled aligned RGB and depth 
images. Gupta et al. (2013, 2014) divided the NYUDv2 
dataset into 381 training images, 414 verification images, 
and 654 test images. We will follow their data division 
method to train the network. 

4.2 Experimental details 
We use the PyTorch (Paszke et al., 2017) to implement our 
method. We use the pretrained VGGNet model as the initial 
backbone network of the MHANet model. Unlike previous 
work (Xie and Tu, 2015; Liu et al., 2017; Ganin and 
Lempitsky, 2014; Bertasius et al., 2015) we used the Adam 
(Gupta et al., 2014) optimiser to optimise the network. The 
initial learning rate is set to 0.01, the batch size of all the 
experiments is set to 8, the weight attenuation is set to 1e-4, 
the number of training epochs is set to 20, and the λ in the 
loss function is set to 0.01. Based on previous work, 
appropriate data enhancement will effectively improve the 
model’s performance; therefore, we performed data 
enhancement on each dataset. First, the dataset was 
randomly rotated by ten different angles, and then 
appropriate brightness and gamma correction were applied 
on the basis of these ten angles. Finally, an enhanced dataset 
of more than 50 k images was obtained. We cropped the 
images in the dataset to 320 × 320 size and then input them 
into the network model. 

It is worth emphasising that unlike some previous works 
(Xie and Tu, 2015; Liu et al., 2017; Wang et al., 2017; Xu 
et al., 2017). We did not perform NMS on the final edge 
map. The final output image is a complete end-to-end 
generation of clear-edge images, which is more consistent 
with human visual inspection. At the same time, the work of 
Wang et al. (2017) showed that after NMS, even if the edge 
is slightly offset, a good score can be obtained. To evaluate 
the edge performance more accurately, we did not use NMS 
postprocessing. To make a fair comparison with other works 
(Xie and Tu, 2015; Liu et al., 2017; Wang et al., 2017), we 
used popular evaluation indicators, namely, the average 
precision (AP), optimal dataset scale (ODS), and optimal 
image scale (OIS), to measure the edge detection 
performance. 

In the experiment to test the performance, we set the 
maximum tolerance distances (Xie and Tu, 2015; Gupta  
et al., 2014; Dollár and Zitnick, 2014) of the BSDS500 
dataset and NYUDv2 dataset to 0.0075 and 0.011, 
respectively. 

4.3 Ablation experiments 
In this section, we perform ablation experiments to verify 
the influence of the MFM and the EAM on the network on 
the BSDS500. 

First, we verify the parameter’s influence of the MFM 
on the network. Our baseline model replaces the dilated 
convolutions in the MFM with ordinary convolutions. We 
also verified the influence of different dilation rates on the 
laboratory results. 
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Table 1 The influence of the MFM on the edge detection 
results under different parameters 

ro Rate ODS OIS AP 

0 1, 1, 1 0.769 0.784 0.741 
1 1, 2, 3 0.781 0.799 0.766 
2 2, 4, 6 0.773 0.787 0.745 
3 4, 8, 12 0.769 0.776 0.705 
4 8, 16, 24 0.767 0.784 0.742 

Table 2 Verification of the validity of CA and SA in 
MHANet, where NoCA represents not adopting the 
CA mechanism and NoSA represents not adopting 
the SA mechanism 

Variant ODS OIS AP 

Baseline 0.716 0.732 0.699 
CA + SA 0.759 0.775 0.705 
CA + MFM 0.768 0.783 0.729 
SA + MFM 0.770 0.786 0.737 
CA + SA + MFM 0.781 0.799 0.766 

From Table 1, we can see that when the rates are 1, 2, and 3, 
the MFM can achieve the highest score. In our model, using 
a lower dilation rate improves the performance. Similarly, 
other models (Yang et al., 2016; He et al., 2019) also show 
that different models have different performances for the 
dilation rate, so it is also very important to choose the 
dilation rate that suits the model. 

Figure 6 The different effects of THE BSDS500 data set with 
and without SA (see online version for colours) 

 
Note: It can be shown that the model using SA can better 

capture the edge pixels of the detailed features of 
the image, and at the same time remove part of the 
noise of the image background. 

Second, we verify that the EAM improves the network 
performance. The EAM is composed of two parts, and we 
need to verify the influence of the CA mechanism and SA 
mechanism separately. In the baseline model, we removed 
the CA, SA and MFM modules. The number of 
convolutions is consistent with the number of convolutions 
of the EAM. Table 2 shows that when the CA mechanism 
and MFM module are adopted, the ODS, OIS, and AP 
improve by 5.2%, 5.0%, and 3.0%, respectively, compared 
to the baseline model. When the SA mechanism and MFM 
module are adopted, they increase by 6.6%, 5.4%, and 

3.8%, respectively, compared to the baseline model. Using 
the CA mechanism, SA mechanism and MFM module at the 
same time increases the final experimental effects of the 
model by 6.5%, 6.7%, and 6.7%, respectively. 

We visualised a part of the effect map without SA, as 
shown in Figure 6. It can be shown that the NoneSA model 
cannot capture the edges of the subtle features of the image, 
and the WithSA model can not only effectively filter 
background noise, but also the edge pixels of the detailed 
features of the image can be extracted. 

4.4 Comparison with other works 

4.4.1 BSDS500 dataset 
We will compare our results with the results of previous 
excellent work (Xie and Tu, 2015; Liu et al., 2017; Wang  
et al., 2017; He et al., 2019). We show the visual effects of 
the images generated by the MHANet and the work of 
others in Figure 7. 

Table 3 Test results on the BSDS500 before applying NMS 

Method ODS OIS AP 

Canny (Canny, 1986) 0.600 0.640 0.580 
EGB (Felzenszwalb and 
Huttenlocher, 2004) 

0.610 0.640 0.560 

Mshift (Comaniciu and Meer, 
2002) 

0.601 0.644 0.493 

gPb-owt-ucm (Abdel-Basset et 
al., 2020) 

0.726 0.757 0.696 

ISCRA (Ren and 
Shakhnarovich, 2013) 

0.724 0.752 0.783 

Sketch tokens (Lim et al., 2013) 0.727 0.746 0.780 
DeepNets (Bertasius et al., 
2015) 

0.738 0.759 0.758 

MCG (Arbelaez et al., 2014) 0.747 0.779 0.759 
SE (Dollár and Zitnick, 2014) 0.746 0.767 0.803 
OEF (Hallman and Fowlkes, 
2015) 

0.749 0.772 0.817 

LEP (Zhao, 2015) 0.757 0.793 0.828 
N4-Fields (Ganin and 
Lempitsky, 2014) 

0.753 0.769 0.784 

HED_BeforeNMS (Xie and Tu, 
2015) 

0.644 0.635 —— 

RCF_BeforeNMS (Liu et al., 
2017) 

0.773 0.789 0.633 

LPCB_BeforeNMS (Deng et 
al., 2018) 

0.693 0.700 —— 

BDCN_BeforeNMS (He et al., 
2019) 

0.777 0.794 0.471 

Ours_BeforeNMS 0.781 0.799 0.766 

It can be shown from Figure 7 that the output results of our 
model have smaller edges, are closer to the real-label 
images, and have better visual effects than the results of 
other excellent work. In the real Industry 4.0 scenario, the 
original image has strong background interference. During 
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the training process, our EAM can adaptively adjust the 
weight of each region of the image and effectively filter out 
other information except contours. Therefore, the 
background of the output image of our model is cleaner than 
that of other research work. 

It is worth emphasising that we did not perform NMS 
operations or other image postprocessing operations on the 
images generated by the model. For different data sets, 
NMS needs to use different parameters; in other words, 
NMS functions are not universal. In this research and the 
following research, we evaluated the experimental results of 
each model twice (before applying NMS and after applying 
NMS). At the same time, we also give the increasing and 
decreasing trends in the MHANet, RCF and BDCN at 
different maximum tolerance distances, as shown in  
Figure 8. By doing presenting these trends, we can 
comprehensively evaluate the correctness of the edge and 
accurately locate the edge pixels. 

Table 4 Test results on the BSDS500 after applying NMS 

Method ODS OIS AP Year 

DeepEdge (Bertasius et al., 
2015) 

0.753 0.772 0.807 2015 

CSCNN (Hwang and Liu, 
2015) 

0.756 0.775 0.798 2015 

DeepContour (Shen et al., 
2015) 

0.756 0.773 0.797 2015 

CEDN (Yang et al., 2016) 0.788 0.804 0.834 2016 
HED-fusing (Xie and Tu, 
2015) 

0.782 0.804 0.833 2017 

HED-late-merging (Xie 
and Tu, 2015) 

0.788 0.808 0.840 2017 

COD (Shen et al., 2015) 0.793 0.820 0.859 2017 
CED (Wang et al., 2017) 0.803 0.820 0.871 2017 
RCF_AfterNMS (Liu et al., 
2017) 

0.798 0.815 —— 2017 

LPCB_AfterNMS (Deng et 
al., 2018) 

0.800 0.816 —— 2018 

BDCN_AfterNMS (He et 
al., 2019) 

0.806 0.826 0.847 2019 

DexiNed_AfterNMS 
(Poma et al., 2020) 

0.729 0.745 0.583 2020 

DSCD_AfterNMS (Deng 
and Liu, 2020) 

0.802 0.817 —— 2020 

PiDiNet (Su et al., 2021) 0.807 0.823 —— 2021 
Ours_AfterNMS 0.808 0.828 0.861  

We adopted the same strategy for excellent deep learning 
models from recent years and obtained the experimental 
results before applying NMS (Table 3). As shown in  
Table 3, that under the same experimental conditions before 
applying NMS, compared with previous research work, our 
proposed method has significantly improved in terms of the 
evaluation indicators. The ODS and OIS increased by 0.4% 
and 0.5%, respectively. Since the edge result of our model’s 
output is clearer and closer to the real edge image, there is a 

large improvement in the AP. For a better comparison, we 
performed corresponding NMS operations on the networks. 
From Table 4, the proposed model not only achieved  
state-of-the-art performance before applying NMS but also 
performed well after applying NMS. Although the ODS and 
OIS indicators are slightly lower than those of the BDCN, 
we still achieve a 1.3% improvement in the AP. 

Table 5 Test results on the NYUDv2 dataset before applying 
NMS 

Method ODS OIS AP 

Silberman (Silberman et al., 2012) 0.658 0.661 —— 
MCG-B (Arbelaez et al., 2014) 0.652 0.681 0.613 
SE (Dollár and Zitnick, 2014) 0.685 0.699 0.679 
HED_AfterNMS_RGB (Xie and Tu, 
2015) 

0.720 0.734 0.734 

RCF_BeforeNMS_RGB (Liu et al., 
2017) 

0.720 0.732 0.567 

BDCN_BeforeNMS-RGB (He et al., 
2019) 

0.716 0.731 0.577 

Ours_BeforeNMS-RGB 0.730 0.744 0.666 

Figure 7 Comparison of results on the BSDS500 test set  
(see online version for colours) 

 
Note: All the test results are before applying NMS. 

4.4.2 NYUDv2 dataset 
We compare our method with advanced methods on the 
NYUDv2 dataset. Similarly, we initially did not apply NMS 
to the predicted images from the model, nor did we perform 
any postprocessing. Compared with the experimental results 
of the existing methods, our experimental results are 
improved in terms of the ODS, OIS, and AP. The 
comparison results are shown in Table 5. Compared with 
the RCF (Liu et al., 2017) and BDCN (He et al., 2019), our 
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model achieves 1%, 0.8%, and 8.9% improvements on the 
OIS, ODS, and AP, respectively. Our indicators have 
exceeded the results of the RCF (Liu et al., 2017) after 
applying NMS. This finding indicates that in our model, 
NMS postprocessing may not be necessary. 

Figure 8 On the BSDS500, the MHANet, RCF and BDCN have 
different maximum tolerance distances d for the 
increasing and decreasing trends in the evaluation 
indexes (ODS, OIS, and AP) (see online version  
for colours) 

 
Note: As d decreases, the ODS, OIS, and AP 

performance gaps increase from 0.8% to 3.7%, 
from 1% to 3.7%, and from 1.33% to 17.9%, 
respectively. 

Table 6 Test results on the NYUDv2 dataset after applying 
NMS 

Method ODS OIS 

gPb-UCM (Arbelaez et al., 2010) 0.632 0.661 
gPb-NG (Gupta et al., 2013) 0.687 0.716 
OEF (Hallman and Fowlkes, 2015) 0.651 0.667 
SE (Gupta et al., 2014) 0.695 0.708 
SE+NG+ (Dollár and Zitnick, 2014) 0.706 0.734 
LPCB (Deng et al., 2018) 0.739 0.754 
AMH-Net-ResNet50 (Xu et al., 2017) 0.744 0.758 
HED_RGB (Xie and Tu, 2015) 0.720 0.734 
RCF_RGB (Liu et al., 2017) 0.729 0.742 
Ours_RGB 0.745 0.753 

Figure 9 Comparison of results on the NYUDv2 test set  
(see online version for colours) 

 
Note: All the test results are before applying NMS. 

5 Conclusions 
In this paper, we propose a novel MHANet which fully 
realises the integration of low-and high-level features. An 
MFM for high-level features is designed to obtain a larger 
receptive field. Moreover, our MHANet uses an EAM to 
suppress background noise to obtain a clearer edge. In the 
Industry 4.0 era, clear edges and noise immunity are more 
conducive to the deployment of real scenes. Experimental 
results show that this method has excellent performance 
without conducting NMS, which means that in edge 
detection tasks, NMS postprocessing is not necessary. And 
it is superior to other work in terms of human visual 
inspection. Pursuing further improvement in terms of the 
evaluation indicators is our future plan. Another future 
direction is that, in addition to edge detection, we also hope 
to apply the proposed method to other computer vision tasks 
and image pattern recognition in big data (Zerdoumi et al., 
2018) in Industry 4.0 era. 
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