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Abstract: An increased dependency of digital control systems in the 
modern electrical network demand for a better quality of power signal. 
The occurrence of power quality disturbances (PQDs) in the network 
reduces the lifespan of power semiconductors and solid states switching 
devices. Global attention-based long short-term memory (LSTM) network is 
proposed to perform automatic time-series PQD detection and classification. 
Attention-based LSTM helps improve the noise immunity to extract salient 
features from noisy signal for PQD classification. The aim of this article is to 
analyse the performance of proposed attention-based LSTM under different 
noise conditions. Addictive white Gaussian noise is added to synthetic PQDs 
in different signal-to-noise ratio. These random generated noises are used to 
train and test the performance of proposed method, as well compared towards 
generic LSTM model. This work also shows the sensitivity of proposed 
method towards unknown noises that is not seen by the model during training 
phase.
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1 Introduction

Power quality (PQ) monitoring is an essential service performed by many utility
companies for their industrial and larger commercial customers (Aramwanid and
Boonyaroonate, 2015). Unexpected variation of voltage or current from normal condition
may frequently happen in electrical networks (Baraniak and Starzyński, 2020). These
anomalies are commonly caused by the increased complexity structure of power systems
involving the integration of renewable energy resources and microgrids (Chen et al.,
2021). As stated in the IEEE standard 1159-1995 (EM Committee et al., 2009), PQ
disturbances (PQDs) cover wide range of abnormal signal phenomena. These PQDs
includes transient (impulsive and oscillatory), short duration variations (interruption,
sag and swell), frequency variations, long duration variations (sustained under voltages
and sustained over voltages) and steady state variations (harmonics, notch and flicker).
Frequent occurrence of PQDs in the networks increases the risk of electric shortage
and reduces the lifespan of electrical components. Advanced metering infrastructure
(AMI) and phasor measurement units (PMU) allows continuous monitoring of the power
systems performance. Smart meters and utility monitoring devices were introduced
to make use of the massive raw data collected (Zhou et al., 2016). The backbones
behind these smart metering structures are algorithms that can perform desired analysis.
Machine learning has been introduced to perform automatic detection and classification
of anomalies presence in power systems (Zhang and Liu, 2008; Janik and Lobos, 2006).
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Figure 1 The proposed global attention-based LSTM network

Detection and classification of PQDs can be generalised into two stages, i.e., feature
extraction and classification stage. Feature extraction stage generally detects the most
distinctive features to characterise an occurrence of PQDs. Feature extraction process are
normally aided with signal processing techniques. Some of the commonly applied signal
processing techniques includes fast Fourier transform (FFT) (Heydt et al., 1999), discrete
Fourier transform (DFT) (Szmajda et al., 2007), short time Fourier transform (STFT)
(Jurado and Saenz, 2002), wavelet transform (WT) (Jurado and Saenz, 2002; Zhu et al.,
2004), S-transform (ST) (Zhao and Yang, 2006), and wavelet-packet-transform (WPT)
(Panigrahi and Pandi, 2009). Feature extraction process is performed by capturing the
signal statistics that can be used to identify the class of the signals. Some of the
commonly used statistical parameters includes minimum, maximum, entropy, standard
deviation, mean, RMS, skewness, range, and kurtosis. These extracted features are used
to ease the identification of different classes of PQDs during the classification process
(Wang and Chen, 2019; Lee et al., 1997; Khokhar et al., 2017; Kumar et al., 2015;
Bhavani and Prabha, 2017; Liu et al., 2019). The selection of these hand-crafted features
requires expert knowledge to avoid information losses. The classification accuracy is
highly dependent on the predefined filter specifications, selection of unique features and
accurate pattern recognition methods (Balouji et al., 2018).

Distinctive features are extracted and subsequently used in decision making
mechanism during classification process. Widely used classification techniques include
support vector machine (SVM) (Naderian and Salemnia, 2017), expert system
(Muthusamy and Ramanathan, 2018; Ahila et al., 2015), and artificial neural networks
(Chen et al., 2016; Alshahrani et al., 2016). SVM can achieve high accuracy with least
amount of training but the accuracy is highly dependent on the training samples. Expert
systems can be used with limited data samples but the implementation cost is high with
slow execution. Artificial neural networks have advantage in getting high accuracy for
real time application. However, the presence of noise has high impact on the accuracy.
The main focus of current research is to get highest accuracy with minimum of resources
spent. In order to achieve real-time classification, deep neural networks are used for
both feature extraction and classification in Wang and Chen (2019) and Deng et al.
(2018). These automatic feature extraction processes removed the needs of complex
feature selection stages and allowed the detection of unseen conditions for accurate
classification. Previous work of Chiam et al. (2021) showed that single layer LSTM
model trained with noise could achieve high classification accuracy of 84.87% under
20 dB SNR AWGN. However, training with real-time PQD integrated with real time
noise would increase the complexity of the harvesting and training process.

Global attention-based LSTM is thus proposed for time-series PQD classification.
The proposed method consists of an attention mechanism for highlighting salient
features, a layer of LSTM architecture for feature extraction and a fully connected layer
with softmax activation function for classification. Global attention mechanism is added
in between input signal and LSTM layer to highlight the characteristics of input signals.
The feature vector output from attention layer is used by LSTM to extract higher order
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representation from the sequence of signal’s magnitude. The entire automatic detection
and classification process is demonstrated in Figure 1. Sliding window is used for the
pre-processing of the raw power data. The classification performance of generic LSTM
model and proposed global attention-based LSTM model is compared and studied. The
comparisons of training with and without AWGN noise is done to analyse the strength
and weaknesses of the proposed method. The analysis is further studied by introducing
unknown noises to the models.

2 Global attention-based long short-term memory network

Long short-term memory (LSTM) is used with an attention layer to improve
classification accuracy under noisy condition. The proposed method includes an
attention layer between input data and LSTM layer. This attention layer is used to
highlight the abnormalities presented in single-windowed (global attention) power signal
before feeding into LSTM layer. The important features in the raw signal is first valued
in attention layer, then passed into LSTM for higher dimensional feature extraction.
The proposed model is summarised in Figure 2. Pre-processed data were passed into
attention layer before feeding into LSTM for feature extraction. A fully connected (FC)
layer is then used to classify the higher dimensional features output from LSTM layer
into different classes of PQDs. The network input vector X retrieves the shifting signal
as follows,

X = [bi, ..., bi+T ], (1)

where bi contains the value of the original signal at the i-th position up to i+ T
timestep, where T is the window size defined by the period of signal t− 1.

Figure 2 Global attention-based LSTM model with signal windowing

2.1 Global attention mechanism

Attention mechanism is proposed to highlight specific feature in the signal before
feeding into LSTM for feature extraction process. Attention weights calculated is
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multiplied to all data points present in each input sample, thus forming a global attention
mechanism. This global attention mechanism is achieved by a dense layer with an
softmax activation function as shown in Figure 3. Input signal xt with T window size
or timesteps is first passed into a dense layer to obtain the attention score, yd as follows,

yd =
T∑

t=0

wd,t · xt, (2)

where xt represents the input signal, wd,t is the trainable weights kernel vectors of the
dense layer. A softmax layer is used to normalise the attention score calculated into
range between (0, 1) as,

ad = softmax(yd) =
eyd∑T

j=0 e
ydj

. (3)

Finally, the attention weights, at is being multiplied element-wise with the input signal
to highlight the signal. This highlighted feature vector, adxt can be expressed as,

axt = ad ⊙ xt. (4)

Attention score represents the important features through a dense layer. The attention
weights are multiplied with input signal, highlighting the original signals with trained
weight distribution. These highlighted feature vectors have higher noise immunity
compared to raw signal without attention mechanism.

Figure 3 Self-attention mechanism (see online version for colours)

2.2 Long short-term memory

Feature vector output from attention layer is passed into LSTM layer for feature
extraction. An LSTM architecture can be depicted as in Figure 4 (Hochreiter and
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Schmidhuber, 1997). The inputs to the LSTM cell consists of: previous memory or
cell state, Ct−1, previous hidden state, ht−1, and the current input, xt. Sequential input
passed into the LSTM will be processed through multiple gates which control the
information flow. There are three ‘gates’ presence in LSTM cell: forget gate, ft, input
gate, it, and output gate, ot. The information is first passed through forget gate, where
unwanted information is erased, and a value of 1 signifies keeping all previous memory.
Input gate decides which information to retain. The output of input gate will be filtered
by the tanh activation function, producing a new candidate, c̃ for the cell state, while
W represents trainable weights and b is the bias.

ft
it
ot
c̃t

 =


σ
σ
σ

tanh

W · [ht−1, xt] + b. (5)

Figure 4 LSTM architecture

A new cell state, ct is produced at every time step. The new cell state, ct is achieved
by forgetting irrelevant information while learning new information. The equation
below shows the cell state updating mechanism. Previous cell state, ct−1 is multiplied
element-wise with the forget gate to remove the unwanted information. At the same
time, the candidate cell state, c̃t is multiplied element-wise with the input gate control.

ct = ft ⊙ ct−1 + it ⊙ c̃t. (6)

The third gate in an LSTM cell is the output gate, ot. This output gate controls the
output information from an LSTM cell. The information output or LSTM hidden state
output, ht is based on cell state. A tanh activation function is used to squeeze the cell
state information into a range of (–1, 1). Then, a sigmoid activation function is used
in output gate, ot to decide the output content of the cell states. The output gate and
hidden state output can be calculated as follows,

ot = σ(Woxt + Uoht−1 + bo), (7)

ht = ot ⊙ tanh(ct). (8)
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The temporal features of the input signal will be extracted by LSTM layer. These
temporal features representing the specific feature of the PQDs are encoded into higher
dimension representation which will be classified into PQDs classes by the classifier
dense layer. In our experiment, the pre-processed, 1-dimension single-period windowed
power waveform which consists of 200 timesteps is used as input. The important
characteristic of different classes of PQD is first highlighted in attention layer. The
output from attention layer is fed parallel into 200 units of LSTM. The final hidden
state output from LSTM representing extracted features are passed into fully connected
(FC) layer for the classification process.

3 Data generation and pre-processing

PQD signals are generated using mathematical model (Liu et al., 2019; Tang et al.,
2019) as listed in Table 1. Ten classes of single disturbance PQDs including class P0:
normal, and eight classes of combined disturbances from class P10 to P17 are trained
for automatic PQD classification. 200 random samples of three-period waveform are
generated based on the modelling equations in Table 1. Sampling frequency of 10kHz
is used in these experiments. Point-labelling is used where the magnitude of the signal
waveform is compared with normal waveform and a difference with more than ±0.005%
are labelled as specific disturbance class. The generated PQDs are displayed in Figure 6,
where the square wave represents point labelling. Multiple disturbances are labelled
according to the index. For example, class P2: swell is having an index of 2.0, thus
label amplitude at 2.0; while class P15: swell+transient is having label amplitude of
2.4 at Swell+Transient region.

Figure 5 PQD windowing and labelling process (see online version for colours)
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Table 1 PQD data generation
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Table 1 PQD data generation (continued)
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Figure 6 Waveform and labelling for all PQDs, (a) P0: normal (b) P1: sag (c) P2: wwell
(d) P3: interrupt (e) P4: impulse transient (f) P5: spike (g) P6: harmonics (h) P7:
oscillatory transient (i) P8: notch (j) P9: flicker (k) P10: sag + harmonics (l) P11:
swell + harmonics (m) P12: interrupt + harmonics (n) P13: harmonics + notch
(o) P14: sag + transient (p) P15: swell + transient (q) P16: sag + oscillatory
transient (r) P17: swell + oscillatory transient (see online version for colours)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)
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The two stages in data pre-processing include data segmentation and data formatting.
Sliding window technique is used to segment the voltage signal as shown in Figure 5.
A single period window size equivalent to 0.02 seconds of the 50 Hz voltage
waveform is used. The time-step of the sliding window or ‘stride’ used is kept at
one. Window-labelling is labelled according to the occurrence of the point-labelling.
Each windowed data consists of two information, magnitude of signal and 18 categories
one-hot-encoded window labelling. Data formatting is done before the input of
windowed data into the proposed global attention LSTM architecture. Normalisation
of the signal magnitude has been carried out during this data formatting stage.
Normalisation has been done by dividing the signal magnitude with maximum amplitude
which can be expressed as,

V (t) =
v(t)

max
t∈n

v(t)
, (9)

where n represents number of windows and t represents window size. The formatted
input, V (t) is the normalisation of magnitude v(t) over maximum magnitude present in
the entire data sample.

4 Experiment setup

The classification was conducted using Keras with Tensorflow backend. The formatted
input vector is partitioned into 70% training data, 15% validation data and 15% testing
data. Two experiments are conducted to analyse PQD detection and classification using
LSTM network. The first experiment is carried out to analyse the performance of
the proposed global attention-based LSTM network model. Signal-to-noise (SNR) of
20–50 dB addictive white Gaussian noise (AWGN) are added into the testing samples
to evaluate the model under noisy condition. Second experiment is carried out to study
the training performance with added randomised 20–50 dB and noiseless samples during
the model training session. The trained model is first tested under four seen conditions,
which are 20–40 dB SNR AWGN and noiseless condition. The model is further exposed
to three unseen noisy conditions, noise A with 15 dB SNR AWGN, noise B with
20–25 dB SNR positive-uniformly distributed random noise, and noise C with 15–30 dB
SNR uniformly distributed random noise. The calculation of SNR can be depicted as
follows,

SNR = 10 log10
Psignal

Pnoise
. (10)

The main evaluation matrix used in these experiments is the classification accuracy. The
classification accuracy of individual class Accn is the true positive, TPn over the total
test samples for m classes of PQD, Sj as,

Accn =
TPn∑m
j=0 Sj

. (11)

Weighted accuracy (WAcc) is used to overcome the imbalanced data sample used. The
weightage of each class is calculated by dividing the total number of samples of an
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individual class over the total number of samples. Weighted accuracy is calculated by
multiplying the individual class accuracy with its weight, which can be depicted as,

WAcc =
m∑
j=0

Wj ×Accj . (12)

5 Experiment 1 – performance comparison of LSTM network versus global
attention-based LSTM

Experiment 1 is evaluated using noiseless training dataset. The performance analysis is
compared among four groups of testing samples which includes the original noiseless
signal and AWGN with SNR ranging from 20–40 dB. Global attention mechanism is
proposed to highlight the input signal. The input signal and output attention vector can
be depicted as in Figure 7. Figure 7 shows the highlighted feature vector for oscillatory
transient and Interrupt under 20 dB SNR and no noise condition. Specific feature vector
are highlighted for each of the disturbance classes regardless of the AWGN level.
This shows that the attention layer successfully learn on how to highlight the specific
feature for each of the disturbance waveform. From 20 dB SNR to noiseless condition,
there is only slight changes in the magnitude of the highlighted features. This slight
changes indicates that the attention mechanism is having a good immunity against noisy
condition.

Figure 7 Oscillatory transient time-series signal with its attention output at (a) 20 dB level
(b) no-noise level; and interrupt time-series signal with its attention output at
(c) 20 dB level (d) no-noise level (see online version for colours)

(a) (b)

(c) (d)
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PQD classification using LSTM model tested under 20 dB SNR AWGN gives the WAcc
of 18.99%. LSTM model classifier are biased towards class P7: oscillatory transient
and class P11: swell+harmonics where both are having high similarities with the
nature of noisy signal. The LSTM model without Attention mechanism is thus prone
to noise and only perform better under noiseless condition. On the other hand, the
classification performance of the proposed global attention-based LSTM model tested
under 20–40 dB SNR AWGN increased significantly to 51.33%, 78.37%, and 87.54%
respectively, as shown in Table 2. The proposed global attention-based model is affected
by the 20 dB noise but still maintain the WAcc above 50%. This result proves that
the attention mechanism has been successfully highlighted the important features under
noisy condition. The added attention mechanism generalised the model by highlighting
the signal with attention vector.

Although the proposed attention mechanism shows better overall results, it is not
deniable that it comes with some weaknesses. From Table 2, it can be noticed that
class P16: sag+oscillatory Transient and P17: swell+oscillatory transient are having
difficulty in classification. It can be noticed that these two classes are very similar
in nature, except only magnitude difference. Class P12: interrupt+harmonics has
harmonics event occurred with the interrupt period. The Harmonics magnitude level is
relatively small compared to the normal signal condition before or after the P12 event.
The proposed attention mechanism is good at highlighting overall picture of the input
signal, but insensitive to small magnitude changes.

Table 2 Classification performance of LSTM model trained with noiseless synthetic PQD data
and tested with 20–40 dB AWGN and noiseless conditions

Attention Without attention With attention

PPPPPPPClass
SNR 20 dB 30 dB 40 dB Noiseless 20 dB 30 dB 40 dB Noiseless

P0 0.00 0.00 6.25 99.86 14.78 71.46 97.67 99.31
P1 0.67 36.04 55.29 96.34 57.23 84.88 91.75 92.50
P2 4.58 44.18 62.92 98.61 67.65 89.91 96.58 97.67
P3 9.30 22.72 45.58 99.15 44.91 69.58 83.01 87.20
P4 0.37 28.67 96.68 98.47 40.90 77.18 85.48 86.66
P5 0.15 25.69 72.79 98.92 49.58 77.57 83.63 84.39
P6 0.00 4.86 91.07 99.36 61.75 89.86 94.84 95.63
P7 99.33 98.74 90.74 96.82 72.23 78.73 79.47 79.37
P8 0.62 30.74 68.68 97.72 43.06 66.16 72.60 73.91
P9 0.01 3.65 51.83 99.28 58.21 95.98 99.02 99.17
P10 8.98 57.87 89.87 96.45 79.62 90.99 92.34 92.53
P11 82.04 94.38 97.11 98.51 92.99 97.52 98.14 98.22
P12 57.41 86.48 93.35 94.96 47.26 59.83 65.20 66.82
P13 41.71 97.76 99.09 99.27 67.85 78.29 81.17 81.15
P14 18.23 80.24 98.37 97.45 66.17 81.44 84.80 85.04
P15 25.87 56.59 97.60 98.73 76.32 86.16 88.11 88.21
P16 71.93 78.48 83.47 88.14 54.59 55.30 54.98 55.03
P17 58.38 65.44 71.55 87.07 35.14 35.40 35.45 35.52

WAcc 18.99 38.54 62.53 97.69 51.33 78.37 87.54 88.54
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6 Experiment 2 – noise analysis on the proposed global attention-based
LSTM network

In experiment 2, the models trained with dataset consisting of noiseless and 20–50 dB
SNR AWGN. The model can learn the temporal features from noisy signal if the noisy
dataset is listed during the training process. The AWGN added into the training samples
are learnt as a new type of feature posed on the samples. Subsequently this trained
model is tested with added 20–40 dB AWGN, and three types of unseen noises, which
are labelled as noise A, noise B, and noise C. Data with noise A is generated randomly
with 15 dB AWGN to evaluate the model performance on samples that are not exposed
during the training process. Data inserting with noise type B assimilates the situation
where an unknown uniform positive noise has offset into the DC level of the signal. On
the other hand, data added with noise type C has the unknown uniformly randomised
noise with the magnitude ranging from [–0.3, 0.3]. This is to simulate a scenario where
some parasitic components occurred in the system that cannot be picked up easily.

Table 3 Classification performance of LSTM model trained with noisy synthetic PQD data
and tested with 20–40 dB AWGN and noiseless conditions

Attention Without attention With attention

PPPPPPPClass
SNR 20 dB 30 dB 40 dB Noiseless 20 dB 30 dB 40 dB Noiseless

P0 92.14 98.85 99.64 99.75 55.05 97.46 99.32 99.41
P1 84.94 94.35 96.77 97.26 71.85 87.06 89.00 88.99
P2 89.59 95.62 97.13 97.45 82.08 94.60 96.35 96.47
P3 67.09 83.48 91.16 94.21 37.54 40.24 41.29 41.55
P4 66.77 88.25 94.04 94.79 52.19 75.05 78.06 78.44
P5 78.98 97.74 98.47 98.42 51.47 65.20 67.45 67.79
P6 88.99 98.29 99.08 99.25 75.67 89.60 91.51 91.87
P7 93.96 96.07 96.22 96.18 74.11 77.48 77.90 77.94
P8 76.22 97.02 97.80 97.80 47.70 61.80 63.10 63.67
P9 94.10 99.41 99.82 99.81 87.05 97.77 98.55 98.69
P10 87.56 94.10 95.42 95.59 84.76 90.85 91.58 91.64
P11 96.69 98.01 98.13 98.07 95.04 97.20 97.44 97.47
P12 67.64 82.81 91.55 95.06 67.28 78.64 81.63 82.15
P13 86.82 97.11 98.17 98.16 71.56 77.31 78.06 78.07
P14 66.54 84.47 92.14 93.49 62.60 69.94 70.06 69.94
P15 72.75 89.54 95.02 95.49 76.64 81.51 81.83 81.54
P16 81.17 86.46 86.54 86.46 44.03 44.22 44.43 44.53
P17 82.64 88.30 89.57 89.73 50.64 51.60 51.79 51.83

WAcc 84.87 94.22 96.43 96.97 66.67 82.89 84.30 84.45

The classification performance of both models with and without attention mechanism is
compared in Table 3. Both models are set up using 100 units of hidden units and trained
for 30 epochs. Both models are showing better classification performance compared to
models trained under noiseless condition. The classification accuracy of LSTM model
without attention improved from the previous 18.99% to 84.87% WAcc under 20 dB
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SNR AWGN. However, the classification performance of Global attention-based LSTM
model does not show drastic improvement when trained under noisy condition, from
51.33% to 66.67%. From Table 3, it can be noticed that class P16: sag+oscillatory
transient and P17: swell+oscillatory transient are still having similar difficulty in
classification. By comparing to previous train with noiseless experiment, it can also be
noticed that class P12: interrupt+harmonics showing improved performance but reduce
performance in class P3: interrupt. Training with added noise will change the nature of
the signal being trained, especially on the magnitude of the signal. The proposed global
attention mechanism is proved to be good in picturing global features, but insensitive to
slight magnitude changes.

Three unknown noises were used to test the trained model. The comparison result
is tabulated in Table 4. Unknown noise A is an AWGN with 15 dB SNR. Although the
trained model can achieve good accuracy when training with SNR 20–50 dB, it does
not perform well when unknown noise A having lower SNR level noise is used to test
the model. The classification accuracy for noise A achieves 14.75% in model trained
without noise and without attention mechanism. Training with mixture of noiseless and
20–50 dB noise without attention only improves the accuracy to 47.86%, which is still
far from expected 84.87%. Comparatively, despite affecting by higher level of noise,
model with attention mechanism can still achieve 36.01% and 48.07% under training
without and with noise respectively.

Noise B contains positive uniform random noise ranging within 20–25 dB SNR.
This positive uniform random noise simulates the DC level drift or offset when in the
real-life application. It is presented as a new variant of noise to test the trained model.
The model without attention achieved 47.07% and 52.09% under training without and
with noise condition respectively. The proposed global attention-based LSTM model
however achieved stable classification performance of 59.09% and 59.10% respectively
for training without and with noise respectively. These classification performance are
close to the average classification performance of testing with 20 dB SNR AWGN
condition. This result shows that the proposed attention model is still reliable with
different variant of noise, as long as the noise level are constant.

In addition, noise type C with uniform random amplitude from [–0.3, 0.3] is added
to the original signal to further test the model’s performance. This signal presented an
uniformly distributed noise with 11–30 dB SNR range. LSTM model without attention
mechanism achieve 20.06% and 53.94% under noiseless training and noisy training
respectively. The classification performance of the proposed global attention-based
model achieves consistence performance of 43.06% and 54.09% respectively. Overall,
the proposed global attention mechanism has comparatively consistent, and better
classification performance for unseen noise condition.

Table 4 Unseen noise performance comparison

Train Without noise With noise
PPPPPPPAttention

Noise A B C A B C

Without 14.75 47.07 20.06 47.86 52.09 53.94
With 36.01 59.09 43.06 48.07 59.10 54.09
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7 Conclusions

Global attention-based LSTM network is proposed in this paper for more generalised
PQD classification. The presented method used global attention mechanism to highlight
the important feature present in the input signal. Temporal feature of the highlighted
signal is extracted using single layer LSTM. Two experiments using various noise level
signals are conducted in this paper to evaluate the performance of global attention-based
LSTM network model. Results from experiment 1 show the global attention mechanism
aids in highlighting the global feature of an input signal. The classification performance
under high noise condition of 20 dB SNR AWGN shows improvement from 18.99%
without attention mechanism, to 51.33% aided with the proposed global attention
mechanism. This shows that the proposed global attention mechanism is good in
highlighting global features, while having less impact on the noises. Experiment 2
is conducted to further analyse the proposed model by training with noisy signal
consisting random mixture of noiseless and AWGN with SNR levels of 20–50 dB. The
performance of the model without global attention improves from 18.99% to 84.87%
under 20 dB condition. However, the performance of the proposed global attention
model only improves from 51.33% to 66.67%. The limitation of the proposed model
is thus uncovered, where global attention mechanism are insensitive to condition with
slight magnitude changes. Subsequently, the experiment continues by testing with three
unseen noises. The results show the proposed global attention-based LSTM model
having more generalised classification performance, where it can achieve averagely
better classification accuracy on signals polluted with unknown noise. As a conclusion,
global attention-based LSTM network model is a more general approach compared to
typical LSTM model. In practical scenario, the harvest of large amount noisy data in the
grid may posses high complexity in the experimental setup, which is not feasible in the
real-time applications. As for future work, global attention can be aided with multiple
resolution scaling tools to extract salient features from multiple resolution levels. A
generative training mechanism such as generative adversarial network could be adopted
to learn the distribution of samples using unsupervised manner to cover large set of data
variation.
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