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Abstract: The machine learning CNN method defect detection is highly reliant on the training 
data; thus, post-classification regularisation may significantly improve the output. The suggested 
fault detection process may perform well on demanding synthetic and actual information by 
using a practical synthetic fault system depending on the SEAM model. We further propose the 
visual exploration be made more reliable regarding fault tolerance. The visual exploration model 
is made up of three-phase namely, visual identification and mapping, dynamic controller, and 
terminate criterion. The submap-dependent on visual mapping phase ensures higher mapping 
manageability, semantic classification dependent on active controller ensures continuous driving, 
and a new completion assessment technique ensures robust re-localisation under the terminate 
criterion. To preserve mapping and improve visual tracking, all the components are tightly 
linked. The proposed model machine learning CNN model is examined, and actual tests show 
fault-tolerance methods are proven to withstand visual monitoring and mapping failure situations. 
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1 Introduction 
Convolutional neural networks (CNNs) are coming under a 
supervised learning approach which may be built to handle 
a variety of hard issues in exploratory geophysics, thanks to 
their tremendous flexibility in network construction. 
Detection of specific seismic facies of concern is the easiest 

use of CNNs amongst such issues. CNN initially presented 
seismic information, wherein the CNN model is utilised to 
identify salt versus non-salt characteristics in a seismic 
volume (Waldeland and Solberg, 2017; Sabarinath et al., 
2015). Around the identical time, claimed the fault detection 
process using CNN methods (Araya-Polo et al., 2017; 



10 D.V. Babu et al.  

Huang et al., 2017). Faults are specific edges set in seismic 
information from the standpoint of computer vision (CV). 

With remarkable effectiveness, CNN is highly 
applicable to more broad edge detection issues (El-Sayed  
et al., 2013; Xie and Tu, 2015). Faults in seismic 
information, on the other hand, are significantly distinct 
from edges in pictures utilised in CV. With a typical 
computerised vision image, areas isolated by edges are 
largely homogenous, but in seismic information, these areas 
are characterised using reflector patterns. Furthermore, all 
seismic edges information faults. 

Conventional edge identification qualities like 
coherence are vulnerable to stratigraphic edges like 
disconformities, channel banks, as well as karst collapsing 
in practicality while giving great fault pictures (Marfurt  
et al., 1999). An excellent methodology for autonomously 
generating fault surfaces is developed in which calculating 
the fault likelihood is a critical stage (Wu and Hale, 2016). 
To produce these fault likelihood levels, fault detection 
approaches depending on CNN may be utilised as an option, 
and thus, the fault striking, and dipping can be calculated 
using the fault likelihood. 

The applications depending on the vision include visual 
exploration, which is critical. Several similar types of 
research in the visual simultaneous localisation and 
mapping (VSLAM) field are published for visual 
identification and mapping, with a priority on precision 
(Mur-Artal and Tardós, 2015; Forster et al., 2014). As 
stated, (Cadena et al., 2016) improving robustness might be 
a significant barrier for realistic vision-based navigation 
systems, and several types of research are published to 
address this issue (Bourmaud and Megret, 2015; Lin et al., 
2018). Nonetheless, to solve the challenge by addressing 
vision-dependent navigation as a fault-tolerant mechanism, 
in which both driving as well as exploration termination 
platforms are addressed, in contrast to prior research which 
approaches reliability improvement as a CV problem. A 
fault-tolerance framework is presented here, based on 
(AbuKhalil et al., 2015; Ding et al., 2017), in which a ‘fault’ 
is characterised as a collapse of visual monitoring as well as 
mapping. 

Numerous issues, regarding VSLAM, must be addressed 
for fault-tolerance in autonomous mobile robots (Lussier  
et al., 2005; Upasana et al., 2015). The construction of a 
dynamic controller for the mobile application to identify the 
required motion is however challenging. The platform for 
mobile localisation is often necessary for controls (Lauri 
and Ritala, 2016). Several comparable studies use a 
Homograph transformation to find the target point in the 
picture space (Arrospide et al., 2010; Pears and Liang, 
2001), which requires a planar premise, which restricts the 
controller’s applicability and robustness. A reactive 
technique based on the acquired picture is presented in the 
latest decades of great development in pattern recognition 
(Long et al., 2015; Krizhevsky et al., 2012) studies, and this 
is widely explored in the autonomous driving field (Fang  
et al., 2005; Sotelo et al., 2004; Sidhwani et al., 2014). 

To test the efficacy of the suggested methodology, both 
actual synthetic information and field information is 
employed. The synthetic data must preferably be a close 
match to field data that allow complete control over the 
parameter collection. From the impedance method,  
sub-volumes are being selected and adding faults, thus, 
synthetic data depending on the SEAM model is created 
(Fehler and Larner, 2008). The suggested fault identification 
method, which produces highly clear fault pictures, shows 
tremendous promise in both synthetic information and field 
information. 

2 Background and related works 
Arrhythmia diagnosis requires automated ECG data 
analysis. It is owing to the extensive usage of portable ECG 
equipment like the Holter monitoring that generates a lot of 
information that must be processed. In specific, autonomous 
ECG data analysis consists of two key stages namely 
extracting feature and beat categorisation (Pal and 
Majumder, 2010). Arrhythmia detection programs  
(De Chazal et al., 2004) use the outcomes of such processes 
to identify arrhythmias. The collection of ECG features is 
critical for accurate heartbeat categorisation and cardiac 
disorders diagnosis, particularly in the analysis of long-term 
observations (Karpagachelvi et al., 2010). With ECG data, 
several extraction methods as well as signal transformation 
strategies are suggested, which may be classified as  
time-domain, frequency-domain, and time-frequency 
domain methods. For instance, RR-intervals retrieved by a 
sliding window are used in one very effective time-domain 
arrhythmia categorisation method (Tsipouras et al., 2005). 
Symbolic aggregate approximation (SAX) is a method for 
classifying heartbeats relying on a symbolic depiction of 
ECG data (Lin et al., 2007). The method namely  
frequency-domain is used to develop an arrhythmia 
detection system that extracts frequency-domain 
information through the fast Fourier transformation 
(Gothwal et al., 2011). Wavelet transforms are used to 
create a hybrid heart rate identification system that 
maintains both time-domains as well as frequency-domain 
information (Zhao and Zhang, 2005). 

Spatiotemporal visualisation: all earthquakes as well as 
observing information are considered spatiotemporal along 
with multivariate informational data. To show 
spatiotemporal data, a variety of visualisations have been 
developed. A simple, but straightforward three-dimensional 
visualisation metaphor is the space-time cubes. In the 
spatiotemporal scenario, relevant glyphs are utilised to 
represent multivariate data (Tominski et al., 2012). Several 
studies explicitly encode temporal data (Andrienko and 
Andrienko, 2011) and also multivariate data on a  
two-dimensional map to minimise visual clutter caused by 
the three-dimensional display (Bak et al., 2009). Filtering, 
grouping, and aggregation techniques are used to make 
spatiotemporal data easier to explore and analyse (Krüger  
et al., 2013; Andrienko et al., 2009; Andrienko and 
Andrienko, 2008). To evaluate multivariate spatiotemporal 
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data, VIS-STAMP uses methods including connected 
parallel coordinates and SOM (Guo et al., 2006). 
Furthermore, a toolbox is used as a statistical approach to 
forecasting hotspot areas (Maciejewski et al., 2011; Ganesh 
Babu et al., 2021). Currently, there has been a lot of talk 
about spatiotemporal heterogeneous data analysis. The 
VASA system suggested a pipeline to explore the 
relationship between traffic, weather, and crucial 
infrastructure modelling (Ko et al., 2014; Sridevi et al., 
2021). 

Describing processing techniques for the seismic picture 
to produce maps of the fault probability, checking those 
maps for incorrect fault detection, and applying discrete 
surfaces across the regions of higher fault likelihood is all 
part of autonomous fault interpretation. In the research (Wu 
and Hale, 2016; Wu and Zhu, 2017), realistic procedures for 
autonomous fault interpretation are outlined, as well as 
instances of successful applications. These procedures, 
though, have yet to be implemented into the standard 
software industry. Obtaining high-quality maps of fault 
chances is an important part of an efficient workflow for 
autonomous fault interpretation. Various options are used, 
which were eventually depending on attributes deduced 
effectively from seismic information (Di et al., 2018; 
AlRegib et al., 2018), however, in recent decades, image 
processing, as well as artificial intelligence concepts, are 
applied to this search area (Lu et al., 2018; Bharath Kumar 
et al., 2021). 

3 Proposed workflow 
A CNN classifier has been utilised to generate a fresh image 
of defects in the suggested process. We use a  
three-dimensional CNN model depending on a patch to 
classify every seismic sample wherein the samples are 
utilised from a three-dimensional window. Figure 1 
illustrates the CNN framework utilised in this work. Many 
convolutional layers, pooling layers, and then  
fully-connected layers make up a basic CNN model 
depending on the patch. A CNN model collects a few 
higher-level image abstractions (identical to seismic data) 
utilising the convolutional layer and pooling layers after that 
categorise the obtained data utilising the fully connected 
layers, which also perform similarly to a conventional 
multilayer perceptron networking, provided a  
three-dimensional patch of seismic magnitudes. The 
network’s result is a singular value reflecting the facies 
labelling of the seismic sample focused at the  
three-dimensional patch. This labelling is binary in this 
research, meaning ‘defect’ or ‘non-fault.’ 

The defect pictures are then improved using a variety of 
image processing methods. To calculate the fault’s azimuth, 
dip, and magnitude, initially directional Laplacian of 
Gaussian (LoG) filter is used to boost high-angle lineaments 
acquired from layered reflectors and reduce anomalies near 
to reflector dip. Then, the skeletonisation phase is used to 
re-distribute fault anomalies inside a fault damage state to 
the nearest feasible fault plane using such data. Next, some 

thresholding is performed to get a binary picture of the 
defects. When this output remains noisy, a median filter is 
employed to decrease the random noise then apply the 
directed LoG with iterative skeletonisation until acquiring a 
satisfactory result. 

Figure 1 CNN framework (see online version for colours) 

 

Initially, put the suggested procedure to the examination 
using synthetic information generated using the SEAM 
model. The enhanced SEAM model with stacked channels 
as well as turbidites gives the model a reasonable 
representation of actual data collected. To create seismic 
volumes, the fault is injected randomly in the impedance 
modelling to convolve using a Ricker wavelet of 40 Hz. The 
list of parameters was utilised randomly of five reverse 
faults in the three-dimensional volume. Because of the 
turbidites present in the model, a significant layer distortion 
with amplitude changes across reflectors in this proposed 
model. As a result of the presence of various forms of 
discontinuities, these synthetic data provide a significant 
challenge to a fault detection system. The softmax function 
is described as follows 

( ) ( )
( )

exp i
i

jj

xsoftmax x
x

=


 (1) 

Here, xi is the ith vector element and xj is denoted as jth 
vector element of the proposed model. 

Figure 2 Structure of visual exploration system (see online 
version for colours) 

 

The active controller has been the initial unit in the 
architecture, as illustrated in Figure 2. For efficient robotic 
exploration, a controller is being developed which can 
function independently of global localisation and continuing 
motion, allowing for failure recovery in terms of hardware 
control. To address the vulnerability of visual localisation, 
this type of controller is presented. Localisation is required 
for path planning in most current controllers. Owing to the 
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sensitivity of visual exploration, it is difficult to attain 
complete localisation every time. The system employs a 
reactive technique that allows it to accomplish ground 
identification from a given picture. Two claims are taken for 
ground identification without sacrificing generalisation: the 
monocular camera is pointed in the mobile platform’s 
directional heading, and the camera is set at a pitch that 
allows the bottom to be seen plenty of time. The pre-trained 
model Pascal contextual is used in the system, and the result 
is a partitioned picture of the identical size as the provided 
input image. Furthermore, this partitioning does not require 
any previous information or localisation. 

3.1 Visual localisation and mapping (VLM) 
Architecture is built in the VLM front-end for exact visual 
recognition within every new keyframe through evaluating 
several restrictions simultaneously, resulting in an adequate 
outcome. Furthermore, to reduce the number of keyframes, 
a multiple-layer keyframe selection has been implemented. 
In this scenario, fault prevention is the most important  
front-greater end’s frame rating. The creation of  
loop-closure restrictions is sped up using a parallel 
architecture. The construction of the restrictions is split into 
many threads as well as executed in parallel. The frame rate 
may be enhanced utilising this technique that is directly 
proportionate to the amount of created restrictions. Map 
maintainability should increase with a greater frame rate. 

Figure 3 The proposed organisation (see online version  
for colours) 

 

A multi-layer technique is devised enabling keyframe 
selection. The initial stage is to calculate the optical-flow 
length; the next is to calculate the global descriptive 
variance across all keyframes. An initially enhanced  
optical-flow technique is utilised to compute the visual 
length among the present frame as well as the final 
keyframe before descriptive collection as the descriptive 
collection is a time-consuming process. The global 
description of the present picture has to be retrieved for 
keyframe selections as well as referenced frame 
identification once the image meets a resemblance criterion. 
By reducing the time it takes to retrieve the descriptors, 
including a selection approach can save time. 

The terminating criterion is examined once environment 
modelling in VLM establishes the mapping’s completion. 
Because the investigated space is restricted in internal 
exploration, a terminating criterion is required. The map 
data has been assured to be comprehensive sufficient for 
robust re-localisation via adequate determination. The 
geographical density and then collected keyframes 
distribution may be used to assess mapping completion 
according to the visual exploration system based on 
keyframes. The suggested terminating criterion is organised 
as shown in Figure 3, with coarse completeness determined 
using the localised keyframe density with fine complete 
determination using the keyframes distribution globally. 
The density-based complete assessment is done initially in 
this mechanism to get the number of participants for the 
statistics distribution-based determination in phase. 

4 Performance analysis 
CNN model is trained randomly to utilise 20% of fault 
plane samples as well as the identical number of non-fault 
samples. The produced synthetic data is displayed on a 
single line, with errors indicated in red is shown in  
Figure 4(a). Similar to Figures 4(a) and 4(b) depicts the 
CNN-based fault detector’s actual outputs and the faults 
show as a tiny zone rather than as sticks. There are 
occasional misclassifications when data is difficult to get 
by, as is to be assumed. The regularisation processes are 
then carried out. The outcome of the directed LoG filter, as 
well as skeletonisation, is shown in Figure 4(c). The flaws 
are thinner and relatively continuous as a result of those two 
processes, which are removed a lot of the noise. Lastly, 
thresholding is used to create a fault map with faults 
labelled as ‘1’ in which they occur and ‘0’ in which they do 
not as shown in Figure 4(d). 

The experiment’s purpose is to assess the thoroughness 
of the examination. To assess the effect of the suggested 
technique, two sets of trials are established, using tracking 
percentages in case of with as well as without complete 
determination recorded. A Tdensity series is also supplied, and 
the exploration time for satisfying the terminating criterion 
is observed, whereas the mapping without completion 
determination is ended based on its recorded time. Figure 5 
depicts the outcome of the visual exploration in both cases. 
A greater tracking percentage indicates that the 
investigation has progressed with completion determination. 
We investigate the influence of complete determination on 
visual exploration under the terminating criterion. Figure 5 
shows the improvement brought about by complete 
determination, which shows a greater visual exploration %. 
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Figure 4 (a) Artificially created fault lines, (b) CNN fault 
detection outcome, (c) Fault detection after LoG and 
skeletonisation and (d) Fault detection after 
thresholding (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Complete determination of visual exploration of fault 
detection (see online version for colours) 
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5 Conclusions 
This study proposes fault detection architecture for reliable 
visual exploration for tracking and mapping. In 
environmental analysis, a VLM are utilised, with a parallel 
layout as well as a back-end depending on submap is added 
will enable mapping and monitoring. Furthermore, a 
separate active controller for global localisation has been 
created. In this paper, we present a fault detection approach 
that employs both CNN-based categorisations with image 
processing regularisation. CNN classifier has been trained 
to exclusively detect faults, substantially reducing the 
mixture of faults and encounters other discontinuity in the 
fault images obtained. We next utilise a regularisation 
procedure based on image processing to augment the  
fault-planes and then reduce non-fault characteristics in the 
fresh fault images. Either of tough synthetic information and 
field information, the suggested methodology demonstrates 
significant promise. The efficacy of our method is 
confirmed via experiments. Thus, a viable remedy to fault 
tolerance is proposed through fault prevention and recovery 
for dependable visual exploration. 
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