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Abstract: According to a scientific study, eyes are the best predictors of 
numerous disorders including glaucoma, diabetic retinopathy, hypertension, 
and stroke. An ophthalmologist can learn about the problems by looking at the 
segmented retinal blood vessel network. The goal of this study is to offer 
ophthalmologists with reliable segmented retinal blood vessels to help them 
pinpoint the issue. This work put forwards an automated method of vessel 
extraction by incorporating curvelet-based enhancement with the Coye 
algorithm. Further, the segmentation performance is fine-tuned by embodying a 
pair of complementary gamma functions (PCGF) for contrast improvement. 
The suggested approach is evaluated on DRIVE and STARE databases and 
shows outstanding results as compared to state-of-the-art algorithms. 
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1 Introduction 

The retina is the only part of the human body that allows direct non-invasive visualisation 
of its anatomical structures. Several large-scale population-based surveys reported 
statistical correlations between structural variation in retina’s vascular system with 
various diseases like hypertension, stroke, and cardiovascular disorder (Khan et al., 
2019a). For example, presence of a tiny capillary near the small vessels is an early sign of 
DR. Similarly, proliferative DR is marked by unusual proliferation of new blood vessels. 
The temporal change of retinal vessel width and tortuosity give an indication of 
retinopathy of prematurity. The ratio of arteries to veins width is associated with 
hypertension and cardiovascular disorder. The examination of such retinal 
microvasculature necessitates the use of precise technologies to extract the vascular tree 
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in order to quantify the morphological changes and assess the patients’ status. 
Furthermore, the retinal vascular tree has been discovered to be unique to each person 
and can be utilised for biometric identification also. Although, manual annotation of 
vessels is possible, it is time-consuming, tedious, and prone to human error when carried 
out in large numbers. It also requires training and skill. Hence, automatic vessel 
extraction is needed. But the incorporation of noise, variation in image intensity, and poor 
image contrast, etc. put substantial difficulties for the reliability of vessel annotation. 
Furthermore, the shape, size, and grey level of blood vessels can all be very different, and 
some background elements may have similar characteristics as vessels. Vessel 
crossing/branching and loss of vessel connectivity due to poor illumination and contrast 
can further complicate the annotation process. 

Many researchers have recommended different methods for extracting the vasular 
network from the fundus image. These methods are broadly classified as: 

1 unsupervised methods like thresholding approach, clustering approach, tracking 
methods, etc. 

2 supervised methods such as support vector machine (SVM), artificial neural 
network-based classification (Moccia et al., 2018). 

In most of these approaches, image enhancement is a pre-requisite step that helps in 
removing the noise, making the background homogeneous, and improving the contrast 
between the vessel and the non-vessel regions. It also tries to highlight the edges and fine 
details of the vessels. These image enhancements can be carried out in the spatial domain 
i.e., modifying directly the pixel intensity values like GC, histogram, equalisation, 
morphological operations or it may be done in the transform domain, i.e., discrete 
wavelet transform (DWT), Gabor transform, curvelet transform (CT), etc. Enhancement 
can also be done by combing these methods. Dash et al. (2020) combined contrast limited 
adaptive histogram equalisation (CLAHE) and GC for image quality improvement, and 
successively applied Gabor and Hessian transforms to enhance the fundus image. It is 
learnt that the gamma intensity correction is very frequently applied on the retinal image 
for contrast improvement. Dash and Bhoi (2017) put forwarded an adaptive thresholding 
technique on gamma-corrected retinal images for vasculature extraction. Piecewise GC 
followed by histogram equalisation is suggested by Reddy et al. (2018) for fundus image 
enhancement. Khan et al. (2019b) applied a scale-normalised second-order Gaussian 
derivative detector on contrast-enhanced fundus image and flood-filled reconstruction 
strategy to get the binary image. Sreejini and Govindan (2015) implemented a multiscale 
Gaussian matched filter for the said purpose. 

Koh et al. (2017) estimated various DWT features for classifying several diseases in 
the retinal image. Dash and Senapati (2020) decomposed the retinal image through 
various wavelets and applied Tyler Coye algorithm (Coye, 2015) to trace the vessel 
network. DWT in integration with match filtering is adapted by Wang et al. (2013) for 
de-noising and enhancing the fundus image. The vessels are further extracted through 
adaptive thresholding. Roychowdhury et al. (2015) implemented Gaussian mixture model 
that utilised pixel-based features, first and second-order gradients for classifying vessel 
and non-vessel pixels. Mapayi et al. (2015) suggested a local adaptive thresholding 
technique based on the gray level cooccurrence matrix for vessel delineation. Pal et al. 
(2019) applied morphological gray level hit-or-miss transform for better segmentation 
performance. Memari et al. (2019) applied genetic algorithm-based fuzzy C-means 
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clustering to trace the initial blood vessel layout and further fine-tuned the result by an 
integrated level set approach. Zhou et al. (2020) traced the major structures of the vessel 
using an improved line detector and the thin vessels were detected using the Hidden 
Markov model. Ricci and Perfetti (2007) suggested the SVM that takes line detector 
response as a feature vector. The Gabor filter in combination with the Bayesian classifier 
is also suggested by Soares et al. (2006) for vessel enhancement. Yadav (2020) suggested 
the ridglet transform and histogram equalisation for fundus figure quality improvement 
and artificial neural network to classify normal and abnormal cases. The CT was first 
analysed by Starck et al. (2003) for image enhancement purposes. 

The curvelet can better represent the lines, edges, and curvatures in all the directions 
compared to the other multi-resolution techniques. This ability has been explored by 
many researchers for fundus image de-noising and enhancement. Kar and Maity (2016) 
proposed CT and match filtering for enhancement and intensification of the retinal 
vasculature. Following this, they applied fuzzy c-means clustering to get the vessel 
network. CT with length filtering is suggested by Miri et al. (2010) for vessel extraction 
in the retinal image. Strisciuglio et al. (2016) investigated the B-COSFIRE filters for 
vessel enhancement. Coye (2015) put forwarded a simple and straight forward algorithm 
for retinal vessel extraction. Bandara and Giragama (2017) integrated various 
enhancement techniques and hough line transformation-based vessel reconstruction 
approach with a variant of Tyler Coye algorithm, for extracting retinal vessels. But, they 
ended up with a lower segmentation Accuracy (Acc). 

In the original Tyle Coye algorithm, although the contrast between the background 
and vessels is enhanced before segmentation, the vessel edges and curvatures are not 
intensified. Furthermore, it is quite evident that incorporating a suitable technique for 
highlighting the vessel edges and contours can improve the segmentation results. This has 
motivated us to incorporate the curvelet-based vessel enhancement along with pair of 
complementary gamma function (PCGF) in the Coye algorithm for the problem on hand. 
Here, we suggest a novel modification to the original Tyler Coye algorithm by 
incorporating the curvelet-based vessel enhancement and de-noising. The CT is 
implemented to enhance the vessels and de-noise the image. The curvelet coefficients are 
modified in a very simple manner. The inverse CT with the modified set of coefficients 
give the enhanced image where the vessel edges and curvatures are sharpened and 
intensified effectively. Moreover, in the proposed approach, the PCGF has been 
incorporated to take care of the illumination variation and improve the overall contrast of 
the retinal image. Finally, the vessel network is extracted using ISODATA thresholding. 
The experiments are conducted with two standard fundus databases. The outcomes are 
compared with state-of-the-art published work on retinal vessel segmentation. It is 
observed that our proposed method give high quality segmented vessel structures as 
compared to other methods. 

The main contributions of this work are:  

1 A new amendment to Coye algorithm for retinal vessel extraction is suggested. 

2 A simple curvelet coefficient modification approach is investigated for vessel edge 
and curvature enhancement. 

3 PCGF based contrast enhancement for the retinal image is examined. 

4 The evaluated results are compared with state-of-the-art methods. 
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The remaining part of the paper is arranged as follows. Section 2 gives a brief 
explanation of the materials and methods used in the work. The suggested approach is 
discussed in detail in Section 3. Section 4 discusses the results and performance of the 
suggested approach and Section 5 concludes the paper. 

2 Materials and methods 

The basic analysis of the techniques that contribute to the proposed approach is presented 
in this section. 

2.1 Pair of complementary gamma function 

The gamma correction (GC) is a spatial domain operation, which modifies each pixel 
intensity of the input image by γ times (Gonzalez et al., 2004). This function increases the 
brightness of the image throughout due to which the bright areas become brighter 
resulting in poor image visibility. So, Li et al. (2020) proposed a new pair of gamma 
correction function (PCGF) that can delicately balance the brightness and contrast of the 
image in both the dark and the bright regions. Here, the enhanced image y is the weighted 
summation of the two mapped images y1 and y2, which are also estimated from the 
original input image x by the following way. 

1 1 2 2y w y w y= +  (1) 

Here y1 and y2 are computed as below: 

1 1 (1 )γy x= − −  (2) 

( )1/
2 1 (1 ) γγy x= − −  (3) 

The weight factors w1 and w2 are determined as 

1 2
1 2

1 2 1 2

y yw w
y y y y

= =
+ +

 (4) 

Here 1y  and 2y  are the average intensity values of the mapped images y1 and y2. Since 
the weight factors are directly related to the mean intensity values, so the equivalent 
mapping in the output image will have a moderate brightness. Equation (2) and (3) shows 
a complementary relationship and by integration of these two equations, a moderate 
exposed and high quality image can be achieved. As PCGF achieves a delicate balance 
between the underexposure and the overexposure areas, it can effectively boost the 
contrast of the dark and the bright regions in the image at the same time. 

2.2 Curvelet Transform 

The CT was first proposed by Donoho and Duncan (2000). It was designed with the 
objective of representing edges and other singularities along curves more effectively than 
typical wavelet transforms and other members of that family. It is a multiscale transform, 
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with the elements indexed by level s and orientation parameters θ. The digital CT applied 
on a 2D image f(m, n), gives a set of curvelet coefficients C(s, θ, k1, k2) as 

1 21 2 , , ,
0
0

( , , , ) ( , ) [ , ]s θ k k
m M
n N

C s θ k k f m n φ m n
< <
< <

=   (5) 

Here M and N are the horizontal and vertical dimensions of the image respectively. k1 and 
k2 are the spatial location of the curvelet φ. For implementing the curvelet transform, first 
a 2D FFT of the image is computed. The 2D frequency plane is divided into concentric 
squares representing different levels of decomposition. Then radial partitions are done to 
the frequency plane that correlates to angular orientations θ. Each segment that results 
because of the partition of the frequency plane to concentric squares and radial division, 
is termed as a wedge. Hence, each wedge is specified by level s and the orientation θ. 
These wedges catch the edges, curvatures, and singularities in various directions, which 
make the CT highly anisotropic and directional sensitive. Finally, an inverse FFT of each 
wedge is calculated to collect the curvelet coefficients in the spatial domain for each s 
and θ. These coefficients in each level represent different frequency regions of the image. 
The coefficients for level s = 1 represent the low-frequency region of the image. 
Similarly, the coefficients in the higher decomposition levels carry details of the  
high-frequency regions. These coefficients are modified in a specific manner to highlight 
certain regions in the image. The resultant image is reconstructed using the modified 
curvelet coefficients through inverse curvelet transform. 

2.3 Tyler Coye algorithm 

In 2015, Coye put forwarded a new methodology for retinal vasculature extraction in the 
fundus image. Here instead of the green channel, they utilised the gray image. The gray 
image is obtained from the RGB fundus image through principal component analysis 
(PCA). The first stage in this grey image conversion is the production of vector colour 
images, which is generated by stacking three colour channels. Then, using the traditional 
transfer function, a zero-mean YCbCr image is computed to separate the luminance and 
chrominance channels. In the next step, the eigenvalues of each component are 
determined and PCA is used to obtain the associated eigenvectors. A linear combination 
of three projections produces the final grey image with weights determined by their 
eigenvalues. The contrast of the gray image is then adjusted via CLAHE. Successively 
the background exclusion is done by deducting the mean filtered image from the 
enhanced image. Finally, the vessel annotation is achieved via ISODATA thresholding. 

3 Proposed method 

The suggested approach investigated a new modification to the original Coye algorithm 
by incorporating the curvelet based vessel enhancement strategy. The schematic 
overview of the suggested approach is presented in Figure 1. 
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Figure 1 Schematic overview of the proposed approach 
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The Coye algorithm utilised a gray image generated from the RGB in place of the green 
channel alone. Therefore, in the suggested approach, each channel is enhanced separately 
in order to preserve the contribution of each colour component. Then the enhanced 
components are concatenated to generate the RGB colour image, which produces the 
gray image using PCA. The enhancement of each colour component using the CT and 
PCGF is carried out as follows. 
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Figure 2 Image enhancement results using the proposed method, (a) original colour image  
(b) red, green and blue channels (c) curvelet transform output (d) PCGF output  
(e) enhanced colour image (see online version for colours) 

  

 Red channel Curvelet output PCGF output  

Original image Green channel Curvelet output PCGF output Enhanced image 

  

 Blue channel Curvelet output PCGF output   
(a)  (b)  (c)  (d)  (e) 

CT at level s and orientation θ, is applied to each colour component independently. It is 
to be noted here that the value of s and θ are experimentally determined and is discussed 
in the results section. The curvelet decomposition results in a set of curvelet coefficients 
for every level of decomposition at each orientation. The image is enhanced by 
modifying these coefficients so that high frequency curvatures and edges are emphasised 
while low frequency coarse regions are deemphasised. As discussed in Section 2.2, the 
coefficients at s = 1 corresponds to the coarse region and the coefficients for higher value 
of s corresponds to higher frequency regions. These coefficient modification strategies 
are unique and specific to the task at hand. In the proposed approach, the coefficient 
modification is done by setting all the coefficients for s = 1 to zero and multiplying a 
constant α(> 1) to the coefficients of all other levels. Then inverse CT is applied to the 
modified set of coefficients to reconstruct the image. Then the reconstructed image is 
subtracted from the corresponding colour component to get the enhanced image. Because 
the coefficient modification sets all coarse level coefficients to zero while raising fine 
level coefficients, the background in the reconstructed image appears darker while the 
curvatures and edges are highlighted. Several authors have proposed various ways for 
coefficient modification. Nevertheless, the suggested operation is very basic, 
straightforward, and effective. Furthermore, segmentation Acc is largely determined by 
the consistency of contrast throughout the image. The retinal image incorporates  
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non-uniform illumination that needed to be regulated before further processing. 
Although, CLAHE is popularly utilised for medical image enhancement but it fails to 
improve the image when the histogram of the original image is very narrow. The 
proposed approach involves red, green, and blue channels. Except the green channel 
other channels have very poor contrast. Hence, CLAHE is not preferred here. Therefore, 
we utilised the PCGF for contrast enhancement of the curvelet enhanced image. It takes 
both gamma and reciprocal of gamma values on the image and its complement to regulate 
the illumination variation. The gamma value in PCGF is experimentally selected and is 
discussed in the results section. The curvelet enhanced and PCGF corrected channels are 
then concatenated to get the enhanced colour image. Figure 2 illustrates the image 
enhancement outputs using the proposed CT and PCGF. Figure 2(a) shows the input 
colour image. The images in column 2(b) show the extracted colour components. Figures 
2(c) and 2(d) show the curvelet enhanced and PCGF processed image respectively. 
Finally, Figure 2(e) shows the enhanced colour image formed by concatenating all the 
three colour components. 

The enhanced colour image is annotated by using the conventional Coye algorithm. 
The enhanced colour image is converted to gray scale through PCA. This is done because 
the ground truth image available in both the databases is gray. An average filter of 
dimension 9×9 is utilised for the background elimination. Finally, ISODATA 
thresholding is applied to the background eliminated image to get the vessel network. 
Some minor disconnected vessel-like structures can be found in the ISODATA annotated 
result. The morphological opening operation is used for post-segmentation fine-tuning, 
which successfully removes the artefacts. It is important to mention here that the CLAHE 
stage for enhancement in the Coye algorithm is not used here because the input image is 
already enhanced using the proposed CT and PCGF. 

The algorithm of the proposed method is given below: 

Algorithm: 
1. Read the RGB colour retinal image. 
2. Separate the three colour channels of the input image. 
3. For each colour channel do the enhancement: 

i. Apply curvelet decomposition and collect the coefficients. 
ii. Do the coefficient modification as: 

a) Set all the coefficients corresponding to s = 1 as Zero. 
b) Multiply α to all other coefficients. 

iii. Compute the reconstructed image using the modified set of coefficients. 
iv. Subtract the reconstructed image from the colour channel to obtain the 

curvelet enhanced colour channel. 
v. Apply PCGF to the above image to get the enhanced colour channel. 

4. Concatenate the enhanced colour channels to get the colour enhanced image. 
5. Abstract the gray image from the colour enhanced image through PCA. 
6. Convolve the gray image with a mean filter of window size W = 9 × 9. 
7. Generate the difference image by subtracting the mean filtered image from the gray image. 
8. Apply ISODATA for annotation of the above image. 
9. Fine-tune the segmented result with morphological opening operation. 
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4 Results and discussion 

The outcome of the proposed approach is evaluated on two freely available databases: 
DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000). The digital retinal images 
for vessel extraction (DRIVE) database has 40 colour retinal images arranged in two sets: 
Training set and Testing set. As the proposed approach is an unsupervised method so 
training set is not needed here. The testing set contains 20 colour fundus image, 
corresponding mask, and manually segmented vessel structure or ground truth. Each 
image has 24-bit gray scale resolution and 565×584 pixels’ spatial resolution. The 
structured analysis of retina (STARE) dataset also has 20 colour retinal images of size 
700×605. The manually labeled vessel structure for each image is also available in the 
dataset. The experiments are conducted on Intel core-i5 mainframe with 4GB RAM, 
running under Windows 10 operating system. The algorithms are implemented using 
MATLAB. 

The segmented output of the suggested method is matched with the corresponding 
manually leveled image and true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN) values are computed. TP denotes the count of the match of vessel 
pixels. TN denotes the count of the match of background pixels. FP is the count of 
background pixels incorrectly marked as the vessel in the segmented image. Similarly, 
FN is the count of vessel pixels incorrectly identified as background. Based on these 
counts, few statistical parameters are defined to measure the exactness of the segmented 
output. The effectiveness of the proposed method is quantified by three performance 
indices: Acc, Sensitivity, and Specificity. Acc shows the degree of matching of the 
segmented result with the manually leveled image. It is stated as below: 

TP TNAcc
TP TN FP FN

+=
+ + +

 (6) 

The sensitivity of an algorithm is its ability to find the vessel pixels cases correctly. 
Mathematically, it is defined as 

TPSensitivity
TP FN

=
+

 (7) 

Specificity is the quantity of non-vessel pixels which are precisely marked as itself. 

TNSpecificity
FP TN

=
+

 (8) 

Now to determine the curvelet decomposition level s and orientation θ a set of 
experiments are carried out by varying s from 1 to 6, and θ from 8 to 24. Each channel of 
the colour retinal image is decomposed by the CT and the coefficients are modified as per 
the proposed scheme. Here the value of α is chosen as 1.5. Then the curvelet enhanced 
image is segmented using the Coye algorithm and the average performance indices are 
computed. Tables 1 and 2 show the average performance indices obtained for various 
values of s and θ on the two datasets. It is witnessed from the tables that the highest Acc 
is achieved for s = 5, θ = 16 for DRIVE dataset and s = 6 and θ = 20 for the STARE 
dataset. Hence, we proceed with these set of parameters for the CT on the two datasets. 
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Table 1 Performance indices with parameter variation of CT for DRIVE database 

CT Parameters Acc. Sensitivity Specificity 
s = 3, θ = 8 94.88 52.97 98.93 
s = 4, θ = 8 94.74 54.48 98.63 
s = 5, θ = 16 95.61 58.17 99.24 
s = 5, θ = 20 95.60 58.09 99.14 
s = 6, θ = 20 95.59 57.31 99.23 
s = 6, θ = 24 95.49 57.29 99.13 

Table 2 Performance indices with parameter variation of CT for STARE database 

CT Parameters Acc. Sensitivity Specificity 
s = 3,θ = 8 94.96 57.17 98.02 
s = 4, θ = 8 94.66 57.27 97.72 
s = 5, θ = 16 95.37 62.62 97.88 
s = 5, θ = 20 95.35 63.51 97.86 
s = 6, θ = 20 95.63 64.12 98.35 
s = 6, θ = 24 95.62 62.60 98.28 

Another set of experiments is carried out to set the value of γ in the PCGF utilised in the 
proposed approach. The γ value is varied from 0.5 to 1.5 with an increment of 0.1 and the 
image segmentation is done as per the proposed scheme. The average Acc is computed. 
Figure 3 shows the average Acc for different values of γ. It is clear from the figure that  
γ = 0.8 gives the highest Acc for DRIVE database and γ = 0.7 is the best for the STARE 
database. 

Figure 3 Variation of average accuracy with respect to γ (see online version for colours) 

 

So the proposed approach proceeds with s = 5, θ = 16, and γ = 0.8 for DRIVE database 
and s = 6, θ = 20, and γ = 0.7 for STARE dataset. The output image at every stage of the 
proposed approach is displayed in Figures 4 and 5 for repository images of the two 
datasets. Figure 4(a) represents the original colour fundus image (Image 1) from DRIVE 
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dataset and Figure 4(b) represents the ground truth image. The enhanced colour image 
achieved by the proposed modification is shown in Figure 4(c). It clearly illustrates the 
intensification of the vessel lines. The gray image abstracted from it using PCA and the 
effect of contrast enhancement are shown in Figure 4(d). Figure 4(e) illustrates the 
background removed image. The ISODATA annotated image is displayed in Figure 4(f). 
A closer look at the annotated image shows that many falsely detected pixels appear with 
the vessel pixels. The post-processing approach efficiently removes these disconnected 
vessel pixels and the final segmented result is displayed in Figure 4(g) which closely 
matches the ground truth image. 

Figure 4 Vessel segmentation results using drive dataset (a) original image (b) ground truth 
image (c) Enhanced image (d) Gray image obtained through PCA (e) background 
excluded image (f) ISODATA output (g) final segmented output (see online version  
for colours) 
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Similarly, Figure 5 represents the vessel segmentation results of colour fundus image 
(image 9) from STARE dataset. 

Figure 5 Vessel segmentation results using stare dataset (a) original image (b) ground truth 
image (c) enhanced image (d) gray image obtained through PCA (e) Background 
excluded image, (f) ISODATA output, (g) final segmented output (see online version 
for colours) 
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The performance indices computed for output images of the suggested approach are 
compared with Coye algorithm. The results are shown in Tables 4 and 5 for DRIVE and 
STARE datasets respectively. It can be inferred that the proposed method results in 
higher value of Acc for almost all the images. It is clearly observed that the proposed 
amendment to the Coye algorithm hiked the average Acc of segmentation to 95.73 for 
DRIVE dataset and to 95.75 for STARE dataset. There is also an increase in the value of 
sensitivity by around 3% for both these datasets. Also, the specificity is higher for the 
proposed approach as compared to the original Coye algorithm. 
Table 4 Performance comparison using DRIVE database 

Images 
Proposed  Coye 

Acc. Sensitivity Specificity  Acc. Sensitivity Specificity 
Image 1 95.84 62.14 99.14  95.63 57.24 99.39 
Image 2 95.22 57.12 99.57  94.83 51.17 99.81 
Image 3 94.44 53.34 98.99  94.54 51.83 99.27 
Image 4 95.54 56.75 99.47  95.20 50.31 99.75 
Image 5 95.37 55.85 99.46  95.34 59.04 99.09 
Image 6 95.88 51.11 99.60  94.41 44.18 99.82 
Image 7 95.22 53.86 99.38  95.14 50.83 99.59 
Image 8 95.85 52.90 98.80  87.42 65.39 89.50 
Image 9 95.68 69.69 99.56  94.82 62.69 97.66 
Image 10 95.86 59.13 99.16  95.57 63.52 98.44 
Image 11 95.57 56.64 99.40  95.45 54.22 99.51 
Image 12 95.68 59.42 99.11  95.59 64.83 98.49 
Image 13 94.87 53.03 99.40  94.80 51.37 99.51 
Image 14 96.02 62.05 99.01  95.88 54.56 99.51 
Image 15 96.37 67.52 98.59  94.22 71.76 95.95 
Image 16 95.93 59.43 99.55  95.30 49.90 99.80 
Image 17 95.53 69.89 99.36  94.44 35.62 99.86 
Image 18 96.31 68.08 99.17  96.05 56.45 99.46 
Image 19 97.03 71.74 99.31  96.86 67.05 99.56 
Image 20 96.39 63.67 98.99  88.54 77.65 89.40 
Average 95.73 60.17 99.25  94.50 56.98 98.17 

To further strengthen our claim, Figure 6 illustrates the comparison of the output images 
obtained using the original Coye algorithm and the proposed approach. A close 
observation of the images evidently states the superiority of the proposed approach as it 
draws the thin and fine vessels more efficiently. Moreover, the proposed method gives 
results close to the ground truth image. The reason may be due to the incorporation of the 
CT that provides very precise localisation of the curvatures and edges of vessels. The thin 
blood vessels have a very low contrast value and due to uneven illumination, these are 
almost meagre with the background. So the assimilation of PCGF in the proposed 
approach successfully neutralises the illumination variation and enhances the overall 
contrast of the image. 
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Table 5 Performance comparison using STARE database 

Images 
Proposed  Coye 

Acc. Sensitivity Specificity  Acc. Sensitivity Specificity 
Image 1 93.37 60.96 96.18  90.36 71.90 91.96 
Image 2 94.10 54.32 96.94  91.22 66.36 92.99 
Image 3 95.69 73.83 94.96  87.68 33.40 87.95 
Image 4 94.93 67.66 99.51  94.34 56.26 97.39 
Image 5 95.14 59.29 98.70  94.52 63.01 97.65 
Image 6 95.98 74.99 97.55  91.12 81.95 91.81 
Image 7 96.29 77.49 98.92  95.66 33.10 96.75 
Image 8 96.24 73.76 98.05  96.28 77.90 97.76 
Image 9 96.29 73.33 98.24  96.00 79.87 97.38 
Image 10 94.96 68.32 98.29  93.50 76.28 95.00 
Image 11 97.06 70.48 99.10  96.70 77.26 98.19 
Image 12 97.27 76.21 99.03  96.96 79.23 98.44 
Image 13 95.86 69.78 98.41  94.48 38.67 96.02 
Image 14 95.80 67.87 98.58  94.25 77.41 95.93 
Image 15 95.48 61.07 98.73  94.92 70.72 97.20 
Image 16 94.39 55.85 98.77  94.13 55.49 98.52 
Image 17 96.22 69.07 98.89  96.00 70.91 98.46 
Image 18 97.36 54.35 99.65  96.17 64.53 97.85 
Image 19 97.15 52.55 99.55  95.74 39.24 99.64 
Image 20 95.34 65.90 98.88  94.22 60.88 96.60 
Average 95.75 66.35 98.35  94.21 63.72 96.18 

Figure 6 Segmentation results (a) original images (b) ground truth images (c) Coye algorithm 
outputs (d) proposed approach outputs 
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A bar graph representing the effect of the modification to the original Coye algorithm is 
also presented in Figure 7 for easy interpretation. The higher value of sensitivity and 
specificity indicates that both the vessel and non-vessel pixels are classified more 
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accurately. The proposed method outperforms the original Coye algorithm for both the 
different databases with versatile images. Hence, it can be asserted that the suggested 
modification leads to a more efficient and robust method. 

Figure 7 Graphical comparison of the average values of the performance indices for Coye 
algorithm and the proposed approach (a) drive dataset (b) stare dataset (see online 
version for colours) 

    
(a)     (b) 

The performance of the suggested approach is also compared with a few of the existing 
methodologies. Table 6 and Table 7 show the comparison in terms of Acc, sensitivity, 
and specificity with the state-of-the-art approaches for DRIVE and STARE databases 
respectively. 
Table 6 Performance comparison with state-of-the-art methods using DRIVE dataset 

Methods Acc. Sensitivity Specificity 
Strisciuglio et al. (2016) 94.54 77.77 97.02 
Zhou et al. (2020) 94.75 72.62 98.03 
Pal et al. (2019) 94.31 61.29 97.44 
Khan et al.(2019a) 94.40 75.40 96.40 
Bandara and Giragama (2017) 94.11 74.32 96.66 
Miri and Mahloojifar (2010) 94.52 73.44 97.64 
Mapayi et al. (2015) 94.61 76.32 96.34 
Soares et al. (2006) 94.66 - - 
Sreejini and Govindan (2015) 95.00 71.72 96.87 
Roychowdhury et al. (2015) 95.20 72.50 98.30 
Dash et al. (2020) 95.20 75.60 98.10 
Wang et al. (2013) 94.61 - - 
Dash and Bhoi (2017)  95.50 71.90 - 
Original Tyler Coye algorithm 94.50 56.98 98.17 
Proposed approach 95.73 60.17 99.25 
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Table 7 Performance comparison with state-of-the-art methods on STARE dataset 

Methods Acc. Sensitivity Specificity 
Strisciuglio et al. (2016) 95.34 80.46 97.10 
Khan et al. (2019b) 94.80 75.20 95.60 
Bandara and Giragama (2017) 94.89 78.85 96.76 
Zhou et al. (2020) 95.30 77.54 97.39 
Mapayi et al. (2015) 95.10 76.26 96.57 
Soares et al. (2006) 94.80 - - 
Roychowdhury et al. (2015) 95.10 77.20 97.30 
Wang et al. (2013) 95.21 - - 
Original Tyler Coye algorithm 94.21 63.72 96.18 
Proposed approach 95.75 66.33 98.35 

Note: ‘-’ indicates non availability of data. 

From both the tables, it is observed that, the suggested strategy achieves the highest 
average Acc and specificity for both the database while maintaining comparable 
sensitivity values. For instance, Bandara and Giragama (2017) used the Tyler Coye 
variation that was modified with a Hough line transformation, but it achieved an average 
Acc of 94.11 for DRIVE and 94.89 for STARE. Miri and Mahloojifar (2011) 
implemented curvelet based retinal image enhancement with a non-linear coefficient 
modification strategy. However, they ended up with an average Acc of 94.52 on DRIVE 
images. The specificity value is below 99 for all these methods on DRIVE dataset. 
Conversely, the proposed approach achieves a specificity value of 99.25. The sensitivity 
value of the proposed approach is a bit lower. The reason may be the optic disk 
interference that needs to be removed before vessel annotation. The execution time of the 
suggested approach is also very less, i.e., around 3.11 secs as compared to 8.3 secs in 
Roychowdhury et al. (2015), and 10 secs in Strisciuglio et al. (2016). 

5 Conclusions 

This paper presents an automatic method of blood vessel extraction from fundus images 
by uniting curvelet decomposition and PCGF with Tyler Coye algorithm. As the vessels 
are curvilinear structures so CT can be best suited for highlighting the vessel edges, 
curvatures, and boundaries. As the proposed approach considers all the three channels of 
colour retinal image, the PCGF is demonstrated to be a better suitable for enhancement of 
low, high and moderate contrast images. The integration of curvelet decomposition and 
PCGF strongly intensify both the thick and the thin vessels. Hence, it delivers better 
segmentation performance. The average segmentation Acc, sensitivity, and specificity are 
94.50, 56.98, and 98.17 respectively for Coye algorithm using the DRIVE dataset. This 
has improved to 95.73, 60.17 and 99.25 respectively using the proposed approach. 
Similarly, the Acc, sensitivity, and specificity values also get enhanced from 94.21, 63.72 
and 96.18 to 95.75, 66.33 and 98.35 respectively in case of STARE dataset. The achieved 
results confirm that the developed algorithm can be reliably implemented for automatic 
extraction of blood vessels in the fundus image. The proposed technique has a slightly 
lower sensitivity value. It’s possible that the cause is interference with the optic disc, 
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which needs to be removed before vessel annotation. Even though the segmentation 
results are promising, they can further be enhanced by considering the optimum set of 
parameters for CT and PCGF. In future, the sensitivity and the Acc values can be 
improved by assimilating deep learning based classifiers. 
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