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Abstract: We propose a computational framework using surrogate models
through five steps, which can systematically and comprehensively address
a number of related stochastic multi-scale issues in composites design. We
then used this framework to conduct an implementation in nano-composite.
Uncertain input parameters at different scales are propagated within a
bottom-up multi-scale framework. Representative volume elements in the
context of finite element modelling (RVE-FEM) are used to finally obtain
the homogenised thermal conductivity. The input parameters are selected
by a top-down scanning method and subsequently are converted as
uncertain inputs. Machine learning approaches are exploited for computational
efficiency, where particle swarm optimisation (PSO) and ten-fold cross
validation (CV) are employed for hyper-parameter tuning. Our machine
learning prediction results agree well with published experimental data, which
proves our computational framework can be a versatile and efficient method
to design new complex nano-composites.
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1 Introduction

The excellent and outstanding mechanical, thermal, and electrical properties of
carbon nanotube (CNT) make it an ideal filler to strengthen polymer materials’
comparable properties (Budarapu et al., 2019a). Some extraordinary characters, such
as high-performance load, lightweight design, excellent chemical resistance, easy
processing, and heat transfer, make the design of polymeric nanotube composites (PNCs)
a hot topic in recent research (Baughman et al., 2002; Budarapu et al., 2021; Kumar
et al., 2019). Due to the reinforcing effects with different fillers on composite materials,
compared with traditional materials, it has a higher degree of freedom and can be
designed for the structure according to detailed applications’ needs (Dusane et al., 2021).

The heat transfer of composite materials has very promising engineering applications
in many fields, such as automobile engineering, aerospace engineering, electronic
devices, and energy storage equipment. PNCs are used as heat sinks as a component
of the structure to dissipate the heat generated under the current load (Siruvuri and
Budarapu, 2020). There are many common carbon nanofillers, such as single-walled
carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), carbon
nanobuds (CNB), fullerenes, and graphene (Thostenson et al., 2001; Javvaji et al., 2018).
SWCNT is widely used in various structures as the most commonly added filler among
those proper candidates. SWCNT is a tubular structure formed by many carbon atoms
with a diameter of about or less than 1 nm, which has an excellent thermal conductivity
that can be regarded as an ideal additive to be designed into the polymer matrix.

Many studies have shown that the shape of the inclusions, the proportion of
the additives in the composites, the fillers’ thermal properties, and the interface
layer between the fillers and the matrix have significant impacts on the thermal
conductivity. These influencing factors have different performances at different scales
and have different contributions to the overall structural materials. At present, many
researchers have conducted systematic studies on these effects through theory and
experimental methods (Francis et al., 2022; Siruvuri et al., 2021) . However, the
experimental approaches have imposed limitations, such as unavoidable randomness and
many resource costs. There are many common carbon-based fillers such as SWCNTs,
MWCNTs, CNBs, fullerene, and graphene (Thostenson et al., 2001). As already
stated, the focus will be on PNCs. Since experiments are time-consuming, sometimes
expensive and cannot shed light into phenomena taking place for instance at the
interfaces/interphases of composites, they are often complemented through theoretical
and computational analysis (Budarapu et al., 2018a; Ojo et al., 2017; Budarapu et al.,
2019b; Sutrakar et al., 2021).

Shokrieh and Rafiee (2010) conduct a hierarchical stochastic multi-scale modelling
from nano to macro-scale to predict mechanical properties in carbon nanotube reinforced
polymers (CNTRP) where random uncertainties are considered in all scales. Their
study applies nano-scale continuum modelling at nano and micro scales and continuum
modelling with finite element analysis (FEA) in RVE at meso and macroscopic scales.
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Vu-Bac et al. (2014a, 2014b, 2015a) propose a stochastic multi-scale method to quantify
the different input parameters influencing the mechanical properties of PNCs. Rafiee
and Zehtabzadeh (2020) use stochastic multi-scale modelling with nano-scale continuum
modelling and FEM to predict Young’s modulus of graphene/polymer composites.
Jeong et al. (2019) present a 3D stochastic computational homogenisation model for
carbon fibre-reinforced (CFR) CNT/epoxy matrix composites, which can be a basis for
hierarchical multi-scale material design of nanocomposite materials.

Although stochastic modelling can well reflect the inherent mechanism of materials
related to thermal properties, the modelling is too complicated and time-consuming,
significantly requiring computational resources and cost (Pinsky and Karlin, 2010).
Thus, data-driven techniques, i.e., machine learning approaches, are applied to deal
with these complex internal mapping relationships caused by extensive computation
(Mortazavi et al., 2020, 2021). As a salient component of artificial intelligence, machine
learning has become a versatile and full-featured modelling tool due to the powerful
computing ability and application prospects (Alpaydin, 2020; Sharma et al., 2021).

This method can be used in many practical ways. To be specific, Rong et al.
(2019) conduct a data-driven technique, a deep learning tool – convolutional neural
networks (CNNs) to predict the effective thermal conductivity of the particle-reinforced
composite with image recognition approach. Goswami et al. (2020) propose a hybrid
algorithm for solving brittle fracture problems, where physics informed neural network
(PINN) is efficiently enhanced by transfer learning. Matos et al. (2019) present
a mixed architecture wherein an artificial neural network (ANN) is applied to
train the physical data at micro-scale. Subsequently, the electro-mechanical response
at macro-scale can be predicted. Zhuang and Zhou (2019) provide an intelligent
integrated method where the particle swarm optimisation (PSO) is an ideal optimiser
for hyper-parameter tuning, which can vastly improve the predictive performance
of crack closure percentage (CCP) in bacteria-based self-healing concrete. Mortazavi
et al. (2020) apply machine-learning interatomic potentials (MLIPs) as an enhanced
data-driven approach to enable first-principles multi-scale modelling via hierarchical
employment of DFT/CMD/FEM simulations, which can efficiently predict the lattice
thermal conductivity of graphene and borophene pristine phases. Guo et al. (2022)
present a stochastic deep collocation method (DCM) based on neural architecture search
(NAS) and transfer learning for heterogeneous porous media. In our previous works (Liu
et al., 2020, 2021, 2022), we also applied surrogate models for data-driven modelling
(DDM) to simplify the computational cost of stochastic multi-scale modelling.

In this manuscript, we present a computational framework based on surrogate
models via machine learning approach accounting for uncertainties to assist stochastic
multi-scale modelling. Then we implement an example under this framework to predict
the macroscopic thermal conductivity of CNT-PCs based on numerous fine scale features
including the Kapitza resistance. This article is organised as follows. In the next section,
we describe the entire architecture of this five-steps computational framework via
DDM. We introduce our implementation based on this overall framework in Section 3,
which is a stochastic multi-scale modelling in thermal conduction of nano-composites.
Subsequently, we discuss the results before we conclude our manuscript in Section 4.
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2 Computational framework of surrogate models in machine learning method

In this section, we briefly introduce our proposed computational framework using
surrogate models. Generally speaking, we can form a framework through five steps: data
preparation, model selections, hyper-parameter tuning, model training, evaluation and
prediction, shown as Figure 1. This five-step framework addresses a number of related
problems, and each of the components is described later.

Figure 1 Five steps computational framework (see online version for colours)

2.1 Dataset preparation

The ‘raw data’ is obtained directly from physical and engineering models. It is divided
into two sets: the training set, which accounts for 80% of the overall proportion, and
the test set, which accounts for the remaining 20%. Subsequently, we normalise the data
ensuring that the data of different attributes are at the same scale, which reduces the
computational cost. After the dataset is collected, we also perform a test for missing
data and outliers.

In data-driven technology, the establishment of datasets is significant. The choice
of subsequent machine learning training algorithms and the strategy of hyper-parameter
tuning all depend on the size of the dataset and the degree of data completeness.

2.2 Ensemble learning approaches

The tree-based model is non-parametric modelling, which can establish a connection
between inputs and outputs by dividing the data multiple times. The structure of this
model is illustrated in Figure 2, where it is mainly composed of one or more if-then
judgments named divide-and-conquer strategy. Each judgment corresponds to an if-then,
and those data can be divided more times. The following three significant elements are
applied to tree-based modelling: the depth and complexity of the tree, the segmentation
points, and the prediction equations at the final node.

The model’s composition structure is prone to insufficient fitting when running a
regression model with a solitary regression tree. Therefore in this study, we employ
two integrated tree-based models, namely random forest (RF) and gradient boost
machine (GBM). Both methods are based on tree architecture, so the basic structure
is similar, including leaf, nodes, and discrimination conditions. The only difference is
the contribution ratio of the results obtained by different branches to the total result,
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whether there are weights to consider. Besides, there are several newly developed robust
gradient boosting algorithms, including XGBoost, LightGBM, and CatBoost (Chen and
Guestrin, 2016; Ke et al., 2017; Dorogush et al., 2018).

Figure 2 The structure of regression tree (see online version for colours)

Figure 3 The architecture of RF (see online version for colours)

2.2.1 Random forest

RF is a variation of the bagging method, proposed by Breiman (2001). The architecture
of this tree-based model is illustrated in Figure 3. The RF introduces randomness in
constructing trees, thereby reducing the correlation between predictors. Let us assume
the attribute set of the current node consists of d attributes. For each node of the
basic regression tree in the RF, a subset of attributes containing k is randomly selected
from the attribute set of the node, and then an optimal attribute is chosen from the
sub-set for partitioning. This integrated approach adds some self-attribute disturbances
based on the sample disturbance to increase the component learners’ diversity, i.e., the
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regression trees. Algorithm 1 presents the RF algorithm, which is distinct from the
original regression tree in the way of choosing and separating attributes at the current
node. The RF has the following advantages (Kuhn et al., 2013):

1 lower possibility of over-fitting

2 noise resistance in response variables

3 high efficiency

4 low sensitivity w.r.t parameter tuning.

Algorithm 1 RF algorithm
Require: The number of predictors k;

The number of trees t;
The number of split points s;

Ensure: Predictive value Y (x);
1: Choose the number of models m
2: For t = 1, 2, ..., m do
3: Generate a bootstrap sample from the original data
4: Train a tree model on this sample
5: For s = 1, 2, ..., m do
6: Randomly extract k < d attributes as predictor
7: Choose the optimal variable among k attributes
8: end for
9: Tree model rule termination conditions take effect
10: end for
11: return Y (x);

2.2.2 Gradient boosting machine

The boosting is an ensemble method based on a series of weak learners, through
this compelling combination to improve the model’s predictive performance, proposed
by Friedman (2001). The implement of this integration requires the following steps:
initially, a component learner is trained from the original training set, and the training
samples are adjusted and refined based on this trained component. The adjustment of
this sample pays more attention to the analysis of the wrong sample, that is, the wrong
sample is assigned a more considerable weight. When this component is ready, the
adjusted sample is entered into the next epoch of training. Repeat the above process,
epoch after epoch until the preset convergence conditions are met, so all the trained
trainers are integrated simultaneously. The above algorithm flow is illustrated by the
pseudo code of Algorithm 2 as follows. From this algorithm, we can find that the
most original principle is to try to find a cumulative model that can minimise the loss
function’s value under a determined loss function and given the decision tree model. In
addition, the residual gradient also needs to be initialised by the predicted value that is
most suitable for the predictors, and the loss function is minimised by modelling the
residual.

Compared with the previous RF, GBM has certain similarities since both have
the same integrated idea to improve the overall performance. In terms of specific
details, the individual components in the RF are trained simultaneously and contribute
equally to the complete model. However, GBM is inconsistent with others due to
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chain relationships between the neighboring components. The late component’s result
is highly related to the previous one, and the weight is assigned to each component
during integration.

Algorithm 2 Gradient boosting machine
Require: The depth of trees D;

The number of iterate K;
Ensure: Predictive value Y (x)
1: Calculate the mean of the response variable as the initial predicted value of each sample
2: For k = 1, 2, ..., K do
3: Calculate the residual between observed value and predictive value;
4: Use residuals as response variables to fit a tree with depth D;
5: Use the previous steps to get the regression tree to predict each sample;
6: Update each sample and add the obtained in the previous step;
7: end for
8: return Y (x);

Figure 4 The architecture of neural network

Figure 5 K-fold CV (see online version for colours)
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2.3 Neural-network-based approach

ANNs are based on neurons and try to mimic the architecture of the human brain. We
use a multi-layer neural network. The initial layer – or input layer – is connected to one
or more hidden layers whose main function is to process data through the activation
function between the layers up to the last neural layer, the output layer. Needless to say
that there is no connection between neurons in the same layer. Figure 4 illustrated an
example of a neural network with architecture of [5, 12, 10, 1].

We consider a network with l hidden layer, in which the 0th layer is the input layer
and the (l + 1)th is the output layer, respectively. The output at a layer l can be computed
by:

Y l
i = Fl−1

(
ml−1∑
i=1

(X l−1
t ωl

ij) + bli

)
(1)

where Y l
i is the weighted input into a ith neuron on the lth layer, W l

ij is a weight and
bli a bias; Fl−1 denotes the activation function in the lth layer and ml−1 is the number
of neurons in the (l − 1)th layer. We employ ReLU activation functions in both, input
layer and hidden layer 1 and hidden layer 1 and hidden layer 2 given by:

FReLU (x) = max(0, x) (2)

The back propagation method (Algorithm 3) is applied, in which the initial weights
and biases are self-adjusted after the computational error is minimised. The stochastic
gradient descent (SGD) method is used in the training process (to minimise the loss
function). The BP algorithm starts with neurons in the input layer, and then the data
is transmitted layer by layer until the output layer. After the error between the target
value and results generated by the output layer is calculated, the error is backpropagated
to the hidden layers for comparison, adjusting the weights and biases. One round of
this process is called an epoch, and then the epochs are repeated many times until a
stopping condition is met. We take advantage of the TensorFlow r2.0 platform with
Python/Rstudio using the RMSProp optimiser, an extension of the SGD and define an
improved L2-loss root mean square error (RMSE) as the loss function.

Algorithm 3 Back propagation method
Require: The training set D = (xk, yk)

m
k=1;

The learning rate η;
Ensure: Minimise the cumulative error on D
1: Randomly initialise weights and deviations in the range of (0, 1)
2: For all (xk, yk)∈ D do
3: Calculate the output of the current sample ŷk;
4: Calculate the gradient of the neurons in the output layer gj ;
5: Calculate the gradient of hidden layer neurons eh;
6: Update connection weight whj , vih and bias θj , γh
7: end for
8: return Neural network Y with determined weights and biases
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2.4 Cross validation and hyper-parameters tuning

Cross validation (CV) is commonly used in machine learning method to estimate
hyper-parameters and build integral models. CV reuses data, dividing the existing data
into a training set and a testing or validation set. By putting different data segments
into different sets, all data can be effectively employed in the data learning to avoid
over-fitting the data in the training process. Among the most common CV approaches
are the holdout C-V, K-fold C-V, and leave-one-out C-V (Kohavi et al., 1995). Since
the computational cost of LOOCV is high and the holdout CV’s accuracy is insufficient,
we will use K-fold CV in our study. K-fold CV separates the original dataset into two
parts, a training set and a testing set. Both are divided into several segments. In each
training process, the testing set does not participate in the training, but it is only used
to verify the models’ performance and determine whether there is insufficient fitting.
If the test set’s model performance is much smaller than the training set, it indicates
over-fitting of the model, otherwise an under-fitting.

Figure 5 illustrates how K-fold CV separates the initial data into K groups (K-Fold)
and generates a validation set while the remaining K-1 group subsets are used as the
training set during the learning procedure. The obtained K models assess the outcome
in the validation sets before the final indicators like RMSE and R2 are averaged to
construct the K-fold CV indicators. Through the use of limited data, each dataset can
be a test set, which maximises the diversity of the current data. K-fold CV effectively
reduces the variance by averaging results and easily meets the requirement for data
division selection. It is suitable for applications with ‘medium’ amount of data. The K’s
value is flexible enough and only determined by the complexity of the available data.
When the training set has enough data, it is commoonly set to 5 in order to reduce
the extra training time; Otherwise, it is set to 10 increasing the accuracy in the results
when the dataset is not large (Kuhn et al., 2013). In our study, we use a ten-fold CV
according to our original training data.

A ‘proper’ selection of hyper-parameters is crucial for the performance of machine
learning methods. In order to avoid over-fitting and obtain a better prediction result,
hyper-parameters need to be determined before constructing the machine learning model.
Both, the selection of hyper-parameters and the determination of interval values, are
commonly based on experience and trial and error approaches. A more ‘systematic’
was is to apply optimisation – such as PSO – to tune the hyper-parameters. The PSO
algorithm, which has been proven successful also in our previous studies (Liu et al.,
2021), is shown in Algorithm 4. The SSE is chosen as fitness function from the 10-fold
CV; it is minimised continuously during the PSO process. It is given by

SSE =
1

N

N∑
i=1

(Yri − Ypi)
2 (3)

where Yri and Ypi are the required and predicted ith output parameters, respectively;
N is the number of output parameters. A swarm size of 450 is chosen, ω, c1 and
c2 are 1 and (2.0, 2.0), respectively (Liu et al., 2021). A flowchart illustrating the
hyper-parameters tuning process can be found in Figure 6.
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Figure 6 Flowchart of PSO algorithm in hyper-parameters tuning
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Algorithm 4 Particle swarm optimisation
Require: i, Vi, Xi, N
Ensure: gBest
for each particle i do

Initialise velocity Vi and position Xi for particle i;
Evaluate particle i and set the pBesti = Xi;

end for
gBest = min(pBesti);
while Not Stop Running do

for i = 1 to N do
Update the velocity and position of particle i;
Evaluate particle i;
if fit(Xi)<pBesti then

pBesti = Xi;
end if
if pBesti < fit(gBest) then

gBest = pBesti;
end if

end for
end while
Print gBest;

2.5 Evaluation and prediction

The accuracy and predictability is measured by standard metrics such as the coefficient
of determination (R2) and the RMSE, which is a function of the model’s residual.
The RMSE can also be regarded as the ‘average distance’ between the predicted and
observed values. The RMSE and R2 values can be computed by

RMSE =

√√√√ 1

N

N∑
i=1

(Yri − Ypi)2 (4)

R2 = 1−
∑N

j=1(Yri − Ypi)
2∑N

j=1(Yri − Ymean)2
(5)

3 Implementation: stochastic multi-scale modelling in composites materials

In this section, we briefly introduce the implementation of a five-step computational
framework to design and predict composite materials. We present our stochastic
multi-scale modelling in detail and apply it for a specific PNC built by using
chemical vapour deposition (CVD). The epoxy resin is cycloaliphatic polyamine
(Araldite LY564/Aradur HY2954), and the catalyst is zeolite-supported cobalt and iron
(HSZ-390HUA) (Maruyama et al., 2002; Harish et al., 2012; Vavouliotis et al., 2010;
Fiamegkou et al., 2014).
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Our modelling strategy is hierarchical multi-scale model bridging different length
scales, the micro-scale to the macro-scale, see Figure 7. A bottom-up approach
then is employed to transfer ‘information’ through the length scales accounting for
uncertainties. In this hierarchical framework, the output of the finer scale is the input of
the next coarser scale (Korupolu et al., 2002). More details about materials model can
be observed on our precious work (Liu et al., 2020, 2021).

Figure 7 Multi-scale modelling scheme

3.1 Multi-scale modelling

The models for PNCs at different length scales are based on representative volume
elements (RVEs) and can be found in Figure 7. For each length scale, we first need to
identify a suitable RVE size to subsequently upscale the ‘relevant’ material parameters
to the next higher length scale (Yang et al., 2015; Budarapu et al., 2017). All effective
parameters are summarised in Table 1.

We employ a bottom-up approach, i.e., a hierarchical multi-scale method where
information is transferred only from the fine scale to the next coarses scale (Budarapu
et al., 2018b, 2014). Figure 8 shows the associated flowchart. The models at different
length scales will be described subsequently.

A continuum model is employed at the meso-scale, which consists of the
equivalent fibres embedded in the polymer matrix. A Python script to generate
the microstructure of the RVE can be downloaded from https://github.com/
jackylbk/Generation-Algorithm-of-PNCs.git. The algorithm has been described in detail
elsewhere (Liu et al., 2020, 2021; Mortazavi et al., 2013c; He et al., 2016; Mortazavi
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et al., 2013a, 2013b). It avoids overlapping of the equivalent fibres and ensures
the imposition of periodicity. The commercial FE package ABAQUS is used in all
simulations. A typical discretisation of the RVE with quadratic tetrahedra elements is
illustrated in Figure 11.

Table 1 Relational effective parameters for each scale

Effective scale Effective length Parameters

Micro nm and µm Interface resistance between CNT and matrix, thermal
conductivity of epoxy

Meso µm Thermal conductivity of fibre, aspect ratio, agglomeration,
dispersion

Macro mm Volume fraction, homogeneous thermal properties

Figure 8 Multi-scale modelling scheme

After the corresponding fibre generation is completed, we also need to consider
fibre agglomeration and dispersion for some RVE models with high aspect ratio
and high volume fraction. In terms of agglomeration and dispersion, we use the
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two-parameter method, which is a simple and widely used approach to quantify the
degree of agglomeration. Let us simplify the agglomeration model first, in which using
a simplified sphere to represent the gathered CNT area. Figure 9 illustrates this spherical
zone that is considered as ‘inclusions’. We define the total volume of CNTs is VCNT ,
and it can be classified into two parts, namely V inclusion

CNT and V matrix
CNT :

VCNT = V inclusion
CNT + V matrix

CNT (6)

where the V inclusion
CNT and V matrix

CNT indicate the CNTs are located in the inclusions and
matrix, respectively. Based on this definition, we introduce two parameters, which are
agglomeration index ξ and dispersion index ζ. They are shown as:

ξ =
Vinclusion

V
, ζ =

V inclusion
CNT

VCNT
(7)

where Vinclusion is the entire spherical volume of inclusions in the RVE volume V . ξ
indicates the volume fraction of inclusions w.r.t the entire cubic volume of RVE as well
as ζ shows the inner volume fraction – that is, the volume of CNTs in inclusion w.r.t the
total volume of CNTs. Usually, when ξ = ζ, we define that there is no agglomeration,
CNTs are uniformly distributed in the cube. When ξ > ζ, it shows that CNTs are
unevenly located in various positions in the inner RVE.

Figure 9 The agglomeration and dispersion in the cubic RVE

We use the selected cubes to maximise the smallest possible volume to contain more
material information, including micro-scale CNTs and the surrounding matrix. Hence, a
RVE of suitable size needs to be determined. We use the sample enlargement method
(SEM) to specific this appropriate size, so the initial model should be relatively small
enough to evaluate the material properties of interest, i.e., thermal conductivity in this
case. Figure 10 indicates the SEM method, where we can find the size is increasing if
the condition is not met. That means we enlarge the size of RVE continuously until the
predictive property converges into a nearly stable value. Here we should note that our
results require an average ensemble method because of statistical scatter:
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⟨R⟩ = 1

M

M∑
K=1

R(K) (8)

where R(k) is the current value in the kth RVE, and M is the total members of the
entire RVEs. After the ensemble is averaged, a convergence criterion must be satisfied
subsequently, which states that the predicted value is allowed to meet convergence when
it is less than a tolerance value:∣∣∣∣ ⟨R(K+1)⟩ − ⟨R(K)⟩

⟨R(K)⟩

∣∣∣∣ < Tol = 1% (9)

where R(k) is the current value in the kth RVE, and R(k+1) is the following k + 1th

RVE.

Figure 10 Sample enlargement method

Figure 11 3D cubic RVE meshing (see online version for colours)

After the generation of RVE at meso-scale, we prepare to apply the heat load. The
governing equation of the underlying problem is the constitutive equation, balance
equation, and boundary conditions. Our heat transfer problem is steady conduction
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wherein the classical formulation of the general governing equations for the linear
thermal problem can be employed on a domain Ω:

Cf
∂θ

∂t
+∇ · q −Q = 0 (10)

where Cf is the heat capacity. Q is the heat source in our simulation, and q is the
heat flux vector with the unit of (J/m2s). θ is the absolute temperature, and ∇ is an
operator to show the divergence of q. According to quasi-static theorem, the first item
Cf

∂θ
∂t is 0.
We use the direct method to calculate the thermal conductivity, by establishing two

different heat flux at both ends of the RVE, that is, one surface applies a heat flux
+q, and the opposite surface applies other heat flux −q, respectively as Figure 12
shown. It will generate a continuous heat flow through the cube and produce a different
temperature distribution to meet the energy redistribution. The generated temperature
gradient can be brought into Fourier’s law to obtain the thermal conductivity, which is
given as:

q = −κ∇T (11)

with κ =

κxx 0 0
0 κyy 0
0 0 κzz

 (12)

where κ is the conductivity in composite. We assumed isotropy with κxx = κyy = κzz ,
which can be confirmed by applying boundary conditions at different RVE edges. Our
priority is to obtain effective thermal conductivity (ETC), so each direction’s value needs
to be averaged.

Figure 12 Applying heat flux in both sides (see online version for colours)

The Fourier law is inserted into the governing equation. The formulations can be shown
as follows:

div(κ∇θ) +Q = 0 in Ω (13)
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qn|Γq = q · n|Γq = qn on Γq (14)

qn = −q · n = q on Γq (15)

where n we call it normal vector, q is flux value on the boundary Γq .

Figure 13 The material region in macro-scale modelling

We need to discrete the above formulation, so the weak form is applied for this FEM.
The weak form for the steady-state solution in the Ω can be designed as: find θ ∈ ν
such that:∫

Ω

κ∇θ · ∇δθdΩ = −
∫
Γq

δθq̄dΓ−
∫
Γθ

δθqndΓ +

∫
δθQdΩ ∀δθ ∈ ν0 (16)

From a macroscopic perspective, CNT reinforced materials are composed of small
mesoscopic cubes with different thermal properties. The distribution of this model
simulates the material as heterogeneous due to uncertainty. Each small cube RVE results
from the mesoscopic modelling and is used as an input parameter in the macro-scale.
Therefore, ‘cubes’ with different thermal properties extracting from simulations at the
meso-scale are randomly distributed in the macroscale, see Figure 13. Though it is
principally possible to use FEM at the macro-scale, we employ the rule of mixtures for
computational efficiency, which is given by

X̄ =

∑
i XiPi∑
i Pi

(17)

where Xi is the thermal properties of the ith RVE cube in this case. Pi as a weighting
factor is expressed in volume fraction. This model considers that the inhomogeneous
distribution of SWCNTs inside the CNT reinforcement material makes the volume
fractions in different cubes inconsistent. We can observe that this form of conversion can
reasonably consider the uncertainty of volume fraction, agglomeration, and dispersion
caused by the irregular distribution of CNTs in macroscopic modelling.
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3.2 Stochastic modelling

We account for uncertainties at different scales, i.e., uncertainties in the material
including the interfaces between phases, the micro-structure and uneven distribution of
the filler inside the material, see Table 2. The boundary conditions have been assumed
as deterministic.

Table 2 Model uncertainties (see online version for colours)

Scale Inputs Mean Standard deviation Type of distribution Sources

Micro Thermal conductivity 2006 227.2 Ghosh et al.
of fibre (2010)

Thermal conductivity 0.20 0.013 Moisala et al.
of matrix (2006)

Interface resistance 35 8.66 Freitag et al.
(2009)

Meso Aspect ratio 58 1.8 Bui et al.
(2011)

Agglomeration index 0.4 0.15 Vu-Bac et al.
(2015b)

Dispersion index 0.58 0.18 Vu-Bac et al.
(2015b)

Macro Volume fraction 0.0235 0.01 Shokrieh and
Rafiee (2010)
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After defining a probability density function (PDF) including variance and mean
value of all uncertain input parameters, we use Latin hypercube sampling (LHS) to
design experiments for specific stochastic modelling (Iman and Conover, 1980). This
method can determine the mean, standard deviation, and variance of the actual physical
model’s output parameter through the PDF of the various input parameters. During
the implementation of LHS, we can obtain a N ×m design matrix, where m is the
input parameters and N is the number of intervals where the cumulative probability
curve is equally divided. Subsequently, we map the obtained design matrix to the real
physical model to calculate the actual target output value (Novák et al., 1998). LHS
optimises the sampling cost by randomly generating multiple input parameters, which
can greatly reduce the calculation cost and reduce the sampling time compared with
Monte Carlo sampling (MCS) (Keitel et al., 2012). The surrogate models are applied
for the uncertainty analysis to largely reduce the computational cost.

4 Numerical results and discussion

The model output is the macroscopic thermal conductivity of the composite. The
input parameters are the thermal conductivity of matrix, fibre and interface (Kapitza
resistance), the aspect ratio, the agglomeration index, the dispersion index and volume
fraction.

4.1 Multi-scale modelling results

The output parameter at the micro-scale is the interface resistance. The outcomes at
meso and macro scales are homogenised thermal conductivity.

Table 3 The distribution of properties in material region

Numbers Vf (%) Thermal conductivity (W/mk) Numbers Vf (%) Thermal conductivity (W/mk)

1 0.99 0.314063 9 3.85 0.735386
2 1.32 0.219208 10 0.95 0.375841
3 3.60 0.474656 11 1.08 0.484727
4 2.86 0.558519 12 2.07 0.548841
5 2.14 1.001029 13 4.23 0.487791
6 3.68 0.407369 14 2.63 0.423529
7 4.61 0.968785 15 1.99 0.433960
8 3.31 0.483864 16 4.14 0.794539

Notes: Thermal conductivity in Voigt model: 0.59363663 (W/mk) (volume fraction: 2.71%).

Figures 14 and 15 show the temperature distribution inside the RVE. Figure 16 shows
the predicted macroscopic thermal conductivity w.r.t the RVE size, which converges to
a stationary size at some point.

Figure 17 shows a principal macroscopic model. The thermal conductivity of each
cube with different Vf and aspect ratio extracted from the meso-scale and presented
in Table 3 yields a final thermal conductivity of 0.59363663 (W/mk). This value is
compared to values in the literature in Table 4, in which the FEM-RVE values are
obtained through stochastic multi-scale modelling.
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Figure 14 Temperature distribution of composites within RVEs (see online version
for colours)

Figure 15 Temperature distribution of inner fibres within RVEs (see online version
for colours)

4.2 Machine learning modelling results

We first focus on the PSO hyper-parameter tuning. There is an overview of the selected
hyper-parameters summarised in Table 5. Besides, Table 6 illustrates the results of
all models, in which Deep neural network with two hidden layers yields the best
performance among all the machine learning models though all of them are reliable
enough to predict the thermal conductivity performance of composites.
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Table 4 The comparison between experimental value and FEM-RVE predictive value

Literature κm
Materials Thermal conductivity (W/mk)

properties Vf Experiment value RVE-FEM value Percent error

Yang et al. Diglycidyl ether 1% 0.2375 0.2192 7.70%
(2010) of bisphenol 3% 0.3506 0.3189 9.04%

A (0.13 W/mk) 5% 0.4479 0.4238 5.36%
Kapadia et al. Ethylene 0.5% 0.35 0.3214 8.17%
(2014) terpolymer (RET: 1% 0.3619 0.3683 1.73%

Elvaloy 4170 1.5% 0.3496 0.3633 3.77%
0.32 W/mk) 2% 0.3616 0.3938 8.17%

2.5% 0.3956 0.4291 7.80%
3.4% 0.4015 0.4091 1.85%

Table 5 Hyper-parameters tuning

ML method Hyper-parameters Definition Interval Optimum value

Random Cp Complexity parameter [0, 1] 0
forest Min-sample-split The minimum samples for split [2, 5] 2

M The maximum depth of tree [1, 10] 5
Max-DT The maximum numbers of [1, 6,000] 4,500

regression tree
Gradient λ The learning rate [0.001, 0.99] 0.01
boosting N The maximum number of [100, 6,000] 4,500
machine regression tree

Dia Interaction depth [1, 10] 4
Artificial Nhn The number of neurons in [1–100] 26
neural hidden layer
network λ The learning rate [0.001–1] 0.01
Deep Nhn The number of neurons in [1–100] [64, 64]
neural hidden layer
network (2 λ The learning rate [0.001–1] 0.01
hidden Epochmax The maximum epoch [1–1,0000] 2,000
layers)

Table 6 Predictive performance in ML models (see online version for colours)

ML method Training Test

R2 RMSE R2 RMSE

Random forest 0.8912 0.1742142 0.8431 0.1429053
Gradient boosting machine 0.9231 0.0918721 0.9012 0.1145233
Artificial neural network 0.9253 0.0832968 0.8187 0.1646913
Deep neural network 0.9998 0.0678237 0.9319 0.0579143

Figure 18 shows the convergence on training and validation datasets for deep neural
network models. Figure 19 illustrates the scatter plot of the RF in test set; the majority
of the predictions are distributed on the Y = T line. The points above the line indicate
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over-predicted data. Figure 20 shows the predictive performance of the GBM while
Figures 21 and 22 refer to the results obtained by the neural network with a single
hidden layer (ANN) and the deep neural network with two hidden layers (DNN),
respectively. DNN expectedly outperforms not only the ANN but all other ML models
which for instance the R2 value suggests. The predicted performance is more accurate
when the thermal conductivity is below 0.6 since the training set’s data distribution is
more concentrated in the interval [0–0.6].

Figure 16 Thermal conductivity versus RVE size (see online version for colours)

Figure 17 Macro-scale modelling of material region

Table 7 indicates the computational cost of different ML approaches. The RF and
GBM are the least costly ones while the DNN is computationally expensive. However,
compared to the computational cost of the stochastic multi-scale model, all ML models
are more efficient. For example, the multi-scale model simulation in Table 3 takes 80.5
hours on the cluster with 16 cores at 2 sockets (Intel Xeon e5-2650 v2) – (32 cores with
multi-threading enabled) in simulation at micro and meso-scales. It also takes 71.2 hours
with the macroscopic 2.71% volume fraction in continuum mechanics modelling on the
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cluster with the same computational cores. This sample runs for a total of 151.7 hours
on those scales. On the contrary, the training times of machine learning models are
all less than an hour on the same computing configuration. As the number of samples
increases, the training time will also grow. Figure 23 displays how the computational
time increases with enlargement of sample size. RF is apparently least sensitive and due
to its highest complexity, the DNN has the most significant increase in time.

Figure 18 The loss function w.r.t epoch in training with TensorFlow (see online version
for colours)

Figure 19 The predictive performance of RF in test set (see online version for colours)
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Figure 20 The predictive performance of GBM in test set (see online version for colours)

Figure 21 The predictive performance of ANN in test set (see online version for colours)

Table 7 Time complexity in ML models

ML method Time complexity Computation time

Regression tree O(log2 n) 12.63 s
Random forest O(m(logn)) 30.21 s
Gradient boosting machine O(mn logn) 226.13 s
Artificial neural network O(mn2) 1,896.75 s
Deep neural network O(n3) 1,531 s (25 m 31 s)

Note: n is the samples number.
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Figure 22 The predictive performance of DNN in test set (see online version for colours)

Figure 23 The time complexity among ML models (see online version for colours)

5 Conclusions

We proposed a computational framework using surrogate models through five steps: data
preparation, model selections, hyper-parameter tuning, model training, evaluation and
prediction. This five-step framework can systematically and comprehensively address a
number of related problems in composites design.

We then used this framework to conduct an implementation: nano-composite
thermal conductivity. The thermal conductivity of PNCs has been predicted by a
data-driven enhanced hierarchical multi-scale method. We conducted a multi-scale
stochastic analysis from micro-, meso- to macro-scale via three processes: bottom-up
modelling, stochastic modelling, and machine learning models. At each scale, the
effective parameters are extracted and transferred to the next higher length scale. The
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interfacial resistance is modelled at the microscopic scale, where the SWCNT and its
surrounding matrix are simplified into an equivalent fibre. The equivalent fibres are
used at the meso-scale, where the agglomeration and dispersion are accounted for. At
the macro-scale, the material consists of cubes with different material properties.

In addition, we performed a multi-scale stochastic analysis quantifying uncertainties
at different length scales. Seven parameters are selected as random parameters, namely
the thermal conductivity of fibre, the thermal conductivity of matrix, interface resistance,
aspect ratio, agglomeration index, dispersion index and volume fraction. Machine
learning methods have been used subsequently to structure those surrogate models.
We exploited tree-based and neural network-based models. All surrogate models yield
reasonable results. This data-driven approach can greatly reduce the requirements for
multi-scale stochastic modelling in engineering materials design, reducing computational
time and computational cost. In summary, the following conclusion can be summarised:

1 The five-steps computational framework using surrogate models enables efficient
DDM to design complex materials.

2 Every machine learning model has a good predictive ability; the predictive
performance of Deep neural networks (DNN) is the best but also computationally
most expensive.

3 RF yields the lowest computational cost but of the cost of a lower accuracy.

4 PSO with ten-fold CV has a significant impact on hyper-parameter tuning.

5 The neural network-based models incur more computational cost for the increase
of samples according to the computational complexity.
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