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Abstract: India is the second largest flood affected country in the world. Every 
year floods have a deleterious effect on people, agriculture and infrastructure. 
Due to its high population density and poor infrastructure, the damage caused 
by floods in India is exacerbated forcing millions of people to migrate from one 
place to other. Therefore, there is a need to devise flood mitigation strategies 
that would forecast future floods in real time. In this paper, machine learning 
techniques have been used for forecasting floods in the northern districts of 
Bihar. Experimental results showed that, in addition to traditional 
meteorological parameters rainfall and temperature, certain parameters like 
vapour pressure, cloud cover, wet day frequency, crop evapo-transpiration and 
surface evapo-transpiration had a severe impact on the performance of a flood 
forecasting model. 
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1 Introduction 

India is the 7th largest country in the world, with an area of 3.2 million square kilometres 
and 7500 km long coastline (Jain et al., 2007). Thus, India is vulnerable to different 
natural hazards like earthquakes, tsunamis, cyclones, and floods due to its drastically 
varying geography and climate (NDMA, 2017). As per the UNISDR report on Economic 
Losses, Poverty, and Disasters in 2017 (Wallemacq et al., 2018), India is the 4th biggest 
country in terms of losses due to floods and tsunami. Frequent floods in Indian region 
have also resulted in malnutrition and stunted growth among children (Wallemacq et al., 
2018). India is the second largest flood affected nation in the world (UNDRR, 2020). 
Floods in India are probably the most recurrent natural hazards (NIDM, 2018).  
23 out of 35 states and union territories are prone to floods (NIDM, 2018). According to 
the 2016–2017 annual report (NDMA, 2017), around 12% of India’s land is susceptible 
to flood or river erosion. During 1970–2009, natural disasters have affected more than 
1.86 billion people, more than 150,000 people have lost their lives in India (Parida et al., 
2021). Floods, tsunamis, cyclones and earthquakes have led to economic damages worth 
over 80 billion dollars (USD) (Wallemacq et al., 2018). Every year, floods in India have 
severely hit its population, agriculture and other infrastructure. From 1953 to 2016 floods 
affected an area of 460 million hectare, more than 2040 million people have been 
affected (Central Water Commission, 2018). Due to floods more than 1.05 lakh people 
have lost their lives and damage of 347581 crore rupees (Central Water Commission, 
2018) have been recorded. Hence, floods severely threaten India's environment, its people 
and its economy. 

To overcome the challenges posed by floods, effective disaster management is 
necessary. Disaster management comprises four phases viz. disaster mitigation phase, 
disaster preparedness phase, disaster response phase and disaster recovery phase (NIDM, 
2002). In disaster mitigation phase, structural and non-structural measures such as 
designing early warning systems, building hazard resistant constructions and defining 
land use policies are carried out (NIDM, 2002). Early forecasting can give more time 
which helps in better planning and preparation for response to floods. In disaster 
preparedness phase, preparation of plans for dealing with disasters and training of 
individuals through mock drill activities takes place (NIDM, 2002). In disaster response 
phase, plans designed during preparedness phase are implemented for minimising the  
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losses (NIDM, 2002). Finally, disaster recovery phase focuses on restoration of basic 
services and reconstruction of damaged infrastructure along with damage estimation 
(NIDM, 2002). 

Historical data plays an important role in implementation of ML techniques for flood 
forecasting. For this study, meteorological data (1991–2002), considering seven features, 
of most flood affected districts of Indian state of Bihar obtained from Climatic Research 
Unit, University of East Anglia (Mitchell and Jones, 2005; Allen et al., 1998) were used 
by the ML algorithms for forecasting floods. 

This paper is organised as follows: Section 2 provides an overview of related work. 
ML based flood forecasting model using six ML techniques is explained in Section 3. 
Experimental results and performance of ML techniques is analysed in Section 4 followed 
by concluding remarks and future scope in Section 5. 

2 Related work 

In India, floods prominently occur due to heavy rainfall during monsoon season and poor 
drainage system. Poor soil permeability and sudden occurrence of heavy rainfall often 
causes flash floods in various parts of the country (NIDM, 2018). In addition to this, 
heavy rainfall causes heavy discharge from upstream stations. Therefore, river water 
level at downstream stations exceeds the danger level and breaches river embankments 
leading to flooding in the close vicinity of the river bank. 

Flood forecasting in these areas is delayed until a huge amount of water is discharged 
from the upstream station, which gives extremely limited time for preparation to first 
responders and response teams. Once rainfall forecasting and other meteorological 
parameters are known, we can compute whether or not rainfall will lead to flooding in the 
region. This information can be used to issue early flood warning. Therefore, early 
forecasting would enable agencies to timely devise better plans to deal with situations 
arising due to floods. Physical models for forecasting floods require parameters like 
coefficients of channel roughness, hydrological time series data and parameters in 
relation to river geometry for prediction of river water level (Panda et al., 2010). 
However, these parameters are difficult to obtain in desired affected regions (Panda et al., 
2010). Therefore, data driven flood forecasting models are used for early flood warning. 
ML techniques are widely used for designing data driven flood forecasting models 
(Ghose, 2018; Thirumalaiah and Deo, 1998; Panda et al., 2010; Nayak et al., 2005b; 
Lohani et al., 2014; Tiwari and Chatterjee, 2010; Sahay and Srivastava, 2014; Nayak and 
Ghosh, 2013). 

In Ghose (2018), a three layer back propagation neural network model was proposed 
for predicting runoff on a daily basis for Govindpur basin on Brahamani river, Orissa, 
India. In Thirumalaiah and Deo (1998), neural network was applied on storm hydrograph 
data to forecast floods in real time in the Bhasta river region of Maharashtra, India. This 
flood forecasting model was trained using error backpropagation, conjugate gradient and 
cascade correlation algorithm. The trained neural network model consisted of three feed 
forward layers. The aforementioned models provided flood warnings with a lead time  
of upto 3 h. In Panda et al. (2010), an artificial neural network was used to analyse  
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historical data of Kushabhadra branch of Mahanadi delta in Orissa, India. Hourly water 
level data of monsoon period (2006) was used to train feed forward neural network 
(FFANN) model with Levenberg-Marquardt (LM) back propagation. The trained model 
was subsequently tested on monsoon period data of 2001. Water level was predicted with 
a lead time of upto 5 h. Performance of FFANN model was compared with the MIKE 
11HD hydrodynamic model (DHI, 2004) and it was found that the former performed 
comparatively better on two performance metrics: Nash-Sutcliffe index and root mean 
square error (RMSE). 

In Nayak et al. (2005b), a rainfall run-off forecasting model for floods in Kolar basin, 
Madhya Pradesh (India) was proposed. This model was trained using a fuzzy inference 
system by combining the features of fuzzy computing and artificial neural networks 
(ANFIS). Also, its performance was compared with the performance of artificial neural 
network based model (ANN model) (Nayak et al., 2005b) and fuzzy inference system 
(FIS model) (Nayak et al., 2005a) on three metrics: coefficient of efficiency, RMSE and 
coefficient of correlation, while considering hourly monsoon period data for the duration 
1987–1989. The comparison showed that though ANFIS and FIS models performed 
equally well for shorter lead time, ANFIS performed comparatively better for larger lead 
time. In Lohani et al. (2014), Takagi Sugeno (T-S) fuzzy inference system (FIS) (Takagi 
and Sugeno, 1985) was modified as Threshold Subtractive Clustering based Takagi 
Sugeno (TSC-T-S) fuzzy inference system for flood forecasting. The T-S FIS was 
modified to support rare (high to very high river flow) hydrological events while 
supporting different member functions. The TSC-T-S based FIS was used for computing 
clusters to predict rare (high to very high river flow) and frequent (low to medium river 
flow) hydrological situations. This model forecast rare and frequent hydrological events 
with lead time of upto 6 h. In Tiwari and Chatterjee (2010), a wavelet-bootstrap-ANN 
(WBANN) based flood forecasting model was proposed. Hourly monsoon period data of 
five years (2001–2005) was decomposed into sub-components using wavelet transform. 
These sub-components were re-sampled using bootstrapping and were used to train the 
WBANN model. WBANN model was used for hourly flood forecasting in Mahanadi river 
basin with a lead time of upto 10 h. In Sahay and Srivastava (2014),  
a wavelet-genetic-ANN (WGANN) based flood forecasting model was proposed for floods 
in Kosi and Gandak rivers of India. Wavelet transform was used to decompose  
time-series data into sub-components. Further, genetic algorithm was used to optimise 
initial parameters of ANN. WGANN model was used to forecast river water level with a 
lead time of upto 24 h. 

Focusing on urban flooding, Nayak and Ghosh (2013) proposed a support vector 
machine classifier which predicts extreme rainfall using meteorological parameters. This 
model can forecast extreme rainfall which can cause floods, with a lead time of upto 48 h. 
This forecasting model has low precision (0.1). 

Flood forecasting models discussed above are based on rainfall-runoff data. These 
models forecast floods with a lead time varying from 1 h (minimum) to 48 h (maximum). 
This lead time is too short for first responders and response agencies. Further, the above-
mentioned forecasting models only considered precipitation and temperature for 
forecasting floods. These models ignored parameters like vapour pressure, cloud cover, 
crop evapo-transpiration, surface evapo-transpiration and wet day frequency, which can 
have an effect on total rainfall and can be useful indicators for flood occurrences.  
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This paper considers these parameters along with the existing parameters used by other 
ML forecasting models for forecasting floods. 

This paper focuses on designing ML based flood forecasting models that consider 
seven meteorological parameters, namely precipitation, temperature, evapo-transpiration, 
surface evapo-transpiration, vapour pressure, cloud cover and wet day frequency. Since 
these meteorological parameters can be ascertained a month in advance, forecasting of 
floods can be timely done. This in turn would provide ample time to first responders and 
response agencies to prepare and plan in order to prevent floods turning into disasters. 
Further, the impact of considering additional five features for forecasting floods is 
studied based on experimental based comparisons. The proposed ML based flood 
forecasting models are discussed next. 

3 ML based flood forecasting models 

In India, Bihar is the most flood prone state where 73% of its land area faces a recurrent 
threat of flood (Singh, 2013). High water discharge from mountain regions of Nepal 
causes rise in water levels of many rivers in Northern Bihar, which in turn results in 
drastic floods in the plains of Northern Bihar. These plains are drained by Gandak, Burhi 
Gandak, Bagmati, Adhwara, Kamla Balan, Kosi and Mahananda rivers. These rivers have 
high discharge and large volume of sediments which can cause floods. River basins of 
these rivers as shown in Figure 1, span across an area of 52928 km2 out of which 
40225 km2 is prone to floods (Water Resource Department, 2021). These river basins 
lead to floods in districts of Northern Bihar namely East Champaran, Mujaffarpur, 
Samastipur, Khagaria, Bhagalpur, Madhubani, Patna, Katihar, West Champaran, 
Sitamarhi, Darbhanga, Begusarai, as depicted in Figure 2. The shades depict the 
magnitude of occurrences of floods with dark shade depicting higher occurrences and 
lighter shades depicting lower occurrences of floods. Distribution of flood occurrences 
for these districts between 1991 and 2002 has been depicted in Figure 3. During this 
period, a total of 201 flood occurrences were recorded across 12 districts of Northern 
Bihar (India). Highest number of flood occurrences were recorded in Samastipur district, 
whereas lowest number of flood occurrences were observed in Madhubani district. 

This paper focuses on using ML techniques to forecast floods in such plains of 
Northern Bihar. For this, monthly average of historical meteorological data (1991–2002) 
of twelve afore-mentioned flood affected districts of Northern Bihar has been used 
(Climatic Research Unit, University of East Anglia) (Mitchell and Jones, 2005; Allen et 
al., 1998). This dataset was labelled using the data mentioning the flood occurrences in 
the same region for the same period available in the state’s flood management portal 
(FMISC, http://www.fmis.bih.nic.in/). Monthly average of features like temperature, 
cloud cover, crop evapo-transpiration, surface evapo-transpiration, precipitation, vapour 
pressure and wet day frequency have been used for forecasting floods in the twelve afore-
mentioned flood affected districts of Northern Bihar. This data needs to be pre-processed 
before ML models can be applied on it. Data pre-processing is discussed next. 
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Figure 1 River basins in Bihar (see online version for colours) 

 
Source: http://wrd.bih.nic.in 

Figure 2 Flood affected districts in northern Bihar (see online version for colours) 
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Figure 3 Flood occurrences in flood affected districts (1991–2002) (see online version for 
colours) 

 

3.1 Data preprocessing 

The dataset considered in this work has varying ranges for above mentioned features. 
Higher range features would influence the analysis and suppress the importance of lower 
range features (Singh and Singh, 2020). This would make forecasting model insensitive 
to certain features thereby leading to poor classification performance. Data normalisation 
can be used to normalise the data to a common scale. The proposed model normalises the 
data using using min-max scaler (Jayalakshmi and Santhakumaran, 2011). The min-max 
scaler is defined as given below: 

' min

max min

X X
X

X X
−

=
−

 

where Xmax and Xmin denote maximum and minimum values of feature (X) respectively. 
The value of X’ would vary from 0 to 1. 

Classification based ML techniques can be used for classification of flooding and 
non-flooding events in flood affected districts of Northern Bihar. Classification 
techniques used for flood forecasting model are briefly discussed next. 

3.2 Classification techniques 

Flood forecasting dataset discussed above is labelled and therefore classification 
techniques can be appropriately used. In this paper, classification techniques like Naive 
Bayes (Rish, 2001), Logistic Regression (Cabrera, 1994; Peng et al., 2002), support 
vector machine (SVM) (Evgeniou and Pontil, 2001; Zhang, 2012), Random Forest (Biau, 
2012; Breiman, 2001) and k-nearest neighbour (Guo et al., 2003; Laaksonen and Oja, 
1996) have been used to classify the above discussed flood forecasting data. These 
techniques are briefly discussed below: 
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Naive Bayes: Naive Bayes classifier is a probabilistic learning model based on the Bayes 
theorem (Rish, 2001). The classifier considers each pair of features independent of each 
other. Let there be a set X of n variables or features as X = (x1, x2, x3, …, xn) and y be the 
target class then probability of y when X has already happened can be defined as: 

( ) ( ) ( )
( )

|
|

P X y P y
P y X

P X
=  

where P(y|X) is a probability of target class y given predictor attributes X, P(X|y) is the 
probability of predictor attributes X given target class y, P(y) is the probability of target 
class y and P(X) is the probability of predictor attributes. In Naive Bayes technique, 
where predictor attributes are considered to be independent, equation (2) becomes:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2
1

1 2

| | ... |
| ,...,

...
n

n
n

P x y P x y P x y P y
P y x x

P x P x P x
=  

Further, as per Naive Bayes technique, for all tuples in the dataset, P(x1)P(x2)...P(xn) 
remains the same and therefore equation (3) becomes: 

( ) ( ) ( )1
1

| ,..., |
n

n i
i

P y x x P y P x y
=

∝ ∏  

For multi-class classification problem, the maximum probability of predictor class is 
computed as (Rish, 2001): 

( ) ( )
1

|
n

y i
i

y argmax P y P x y
=

= ∏  

Logistic regression: It is a classification technique that uses a logistic function to classify 
data into two or more discrete classes (Cabrera, 1994; Peng et al., 2002). Logistic 
function Lθ(x) is defined in terms of linear function Z as: Lθ(x) = sigmoid (Z), where Z is a 
linear function defined as Z = β0 + β1X and X = (x1, x2, x3, …, xn) is a set of input features, 
β0 and β1 are the intercept and weights respectively. Lθ(x) defined above can be written as: 

( ) ( )0 1

1
1 X

L X
e β βΘ − +

=
+

 

The cost function of Logistic Regression is a Sigmoid function which allows the value of 
the cost function strictly between 0 and 1. 

Support vector machine (SVM): It is a classification technique that maps data points into 
N-dimensional space (Evgeniou and Pontil, 2001; Zhang, 2012). SVM aims to find a 
hyperplane in N-dimensional space that distinctly classify the data points. Amongst the 
number of hyperplanes that can distinctly classify the data points, SVM computes the 
hyperplane having maximum margin or distance from data points. This optimal 
hyperplane is determined by maximising the margin of the SVM using the hinge loss 
function (Rosasco et al., 2004) given below: 

( )( ) ( )
( )0 if * 1

, ,
1 * else

y f x
c x y f x

y f x
⎧ ≥

= ⎨ −⎩
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Random forest classifier: It is an ensemble classification technique that uses multiple 
decision trees to classify dataset (Biau, 2012; Breiman, 2001). Random Forest uses 
bootstrapping approach to build multiple decision trees using randomly selected data 
from the dataset. The classification of the sample data is based on voting mechanism 
where each decision tree classifies the given sample data and votes for the resultant 
output class. The class having maximum votes is chosen as the class of the sample data. 

k-Nearest Neighbours (KNN): It is a supervised classification technique that classifies a 
sample data using plurality of vote from its nearest k-neighbours (Guo et al., 2003; 
Laaksonen and Oja, 1996). The k-nearest neighbours can be computed using distance 
metrics like Manhattan distance, Euclidean distance etc. The class to which maximum 
number of k-neighbours belong is chosen as a class for the sample data. 

Artificial neural network (ANN): It is a classification technique inspired by the neural 
network structure in the human brain (Gurney, 1997). It is defined as a network of nodes, 
called artificial neurons, where each node in the network is connected with other node in 
the network. Synapses, which connect neurons, carry signal or information to the nodes. 
Weights are assigned to each synapses or connection in the network. Optimal weights are 
obtained through backpropagation method with the help of weight optimisation process 
like stochastic gradient descent. 

The above mentioned classification based ML techniques can be used to classify the flood 
forecasting data. These techniques have been applied to the flood forecasting dataset 
which comprises 1728 instances, out of which 201 instances represent flood occurrences. 
Results produced by these techniques are compared on various performance metrics. 
These metrics are discussed next. 

3.3 Performance metrics 

Performance of a ML model can be measured with the help of different values like True 
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) 
which are obtained from confusion matrix or error matrix. Performance evaluation of ML 
models involves arriving at a confusion matrix using the results obtained from testing the 
models. Confusion matrix depicts the number of correct and incorrect predictions made 
by the ML model. In case of binary classification, confusion matrix has two rows and two 
columns, where the row represents actual values and the column represents predicted 
values or vice-versa. For the flood forecasting model, the four values present in the 
confusion matrix are – flooding events that were predicted as flooding events, i.e., True 
Positives (TP), non-flooding events predicted as non-flooding events, i.e., True Negatives 
(TN), non-flooding events predicted as flooding events, i.e., False Positives (FP) and 
flooding events predicted as non-flooding events, i.e., False Negatives (FN), as shown in 
Figure 4. These have been used to compute different performance metrics like accuracy, 
precision, recall, F-measure and AUC-ROC for evaluating the performance of 
aforementioned ML models after applying on both two feature dataset and seven feature 
dataset for forecasting floods. The performance metrics used to evaluate ML based 
forecasting models, presented in this paper, are briefly discussed below. 
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Figure 4 Confusion matrix for flood forecasting model 

  Predicted Values
  Positive Negative 

Actual 
Values 

Positive Flooding events that were predicted 
as flooding events (TP) 

Flooding events predicted as 
non-flooding events(FN) 

Negative Non-flooding events predicted as 
flooding events (FP) 

Non-flooding events predicted 
as non-flooding events (TN)  

Accuracy is defined as the ratio of sum of true positives and true negatives to the total 
number of instances, i.e., proportion of correct predictions, is given as (Liu et al., 2014): 

TP TNAccuracy
TP TN FP FN

+=
+ + +

 

where TP, TN, FP and FN are true positive, true negative, false positive and false 
negative respectively. 

Precision is defined as the proportion of positives determined that were actually correct. 
It is the ratio of true positive (TP) to the total number of positive predicted instances 
(TP + FP) and is given as (Liu et al., 2014): 

TPPrecision
TP FP

=
+

 

Recall is defined as a proportion of actual positives determined correctly. It is the ratio  
of true positive (TP) to the total number of actual positive instances and is given as  
(Liu et al., 2014): 

TPRecall
TP FN

=
+

 

F-measure is defined as a harmonic mean of precision and recall and is given as  
(Liu et al., 2014): 

2 Precision RecallF Measure
Precision Recall
× ×− =

+
 

Area under receiver operating characteristic (ROC) curve (AUC-ROC) provides the 
aggregate performance measure across all thresholds used for the classification. It is a 
probability of the classification model to rank the positive instance more highly then the 
negative instance. It is an area under the ROC curve, i.e., area under the curve plotted 
between true positive rate (TPR) and false positive rate (FPR) for different threshold 
values, where TPR and FPR are computed as given below (Liu et al., 2014): 

TPTPR
TP FN

=
+

 and TPFPR
FP TN

=
+

 

The experimental results and analysis of applying above mentioned ML models on the 
flood forecasting dataset is discussed next. 
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4 Experimental results 

As discussed above, ML models KNN, LR, NB, RF, SVM and ANN were applied on the 
normalised flood forecasting dataset with two features (2F): temperature and 
precipitation, and normalised flood forecasting dataset with seven features (7F): 
temperature, precipitation, vapour pressure, crop evapo-transpiration, evapo-
transpiration, cloud cover and wet day frequency. The information related to the 
experiments has been given in Table 1. Experimental results were obtained for each ML 
model with 2F and 7F within the below mentioned experimental setup, using stratified 5-
fold cross validation (Berrar, 2018). Minimum, maximum, mean and standard deviation 
for Accuracy, Precision, Recall, F-measure and AUC-ROC were computed across the five 
folds. 

Table 1 Experimental setup 

Operating system Windows 10 
Processor Intel i7@2.80 GHz 
RAM 16 GB 
Tool Python 3.7.7 
Two features (2F) Monthly Average (Temperature and Precipitation) 
Seven features (7F) Monthly Average (Temperature, Precipitation, vapour Pressure, 

Crop Evapo-transpiration, Evapo-transpiration, Cloud Cover and 
Wet day frequency) 

Number of folds 5 
Learning rate in ANN 0.05 
No. of decision trees in 
RF 

20 

Value of k in k-NN 5 

4.1 Accuracy 

Accuracy of all models for 2F and 7F has been given in Table 2. It can be noted from 
Table 2 that SVM(2F), LR(2F), KNN(2F), ANN(2F) and RF(2F) models have almost 
similar mean accuracy ranging between 0.893 and 0.899. However, maximum accuracy 
obtained by these five models exceeds 0.9. Amongst 2F models, SVM(2F) has the least 
standard deviation. NB(2F) performs the worst in terms of mean accuracy. In case of all 
7F models, KNN(7F) and RF(7F) have comparatively higher mean accuracy than 
SVM(7F), LR(7F), ANN(7F) and NB(7F) with NB(7F) performing the worst amongst all 
the models. Further, KNN(7F) and RF(7F) were able to achieve maximum accuracy of 
0.945 and 0.942 respectively. Furthermore, KNN(7F) and RF(7F) also have 
comparatively lower standard deviation amongst all the models. When comparing mean 
accuracy of all 2F and 7F models, it can be noted from the histogram, as shown in  
Figure 5, that the models SVM(7F), LR(7F), KNN(7F), ANN(7F), RF(7F) and NB(7F) 
have higher mean accuracy when compared to the respective mean accuracy obtained by 
them for 2F models. Further, the accuracy of the models SVM(7F), LR(7F), KNN(7F), 
ANN(7F) and RF(7F) is better than accuracy of all 2F models. Though NB(7F) model has 
comparatively poor mean accuracy than SVM(2F), LR(2F), KNN(2F), ANN(2F) and 
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RF(2F), its mean accuracy is comparatively better than the mean accuracy of NB(2F) 
model. Thus, it can be inferred that considering all features improves the overall accuracy 
in terms of forecasting floods. Moreover, in case accuracy is the key performance 
indicator, KNN(7F) and RF(7F) can be used for forecasting floods. 

Figure 5 Histogram for mean accuracy of all flood forecasting models (see online version  
for colours) 

 

Table 2 Accuracy of all flood forecasting models 

Accuracy 
Model Min Max Mean SD 
ANN(2F) 0.882 0.905 0.896 0.009 
KNN(2F) 0.875 0.91 0.897 0.013 
LR(2F) 0.887 0.91 0.898 0.008 
NB(2F) 0.844 0.864 0.852 0.007 
RF(2F) 0.884 0.901 0.893 0.006 
SVM(2F) 0.89 0.908 0.899 0.005 
ANN(7F) 0.879 0.934 0.909 0.019 
KNN(7F) 0.925 0.945 0.934 0.008 
LR(7F) 0.893 0.919 0.912 0.01 
NB(7F) 0.846 0.872 0.861 0.01 
RF(7F) 0.922 0.942 0.932 0.007 
SVM(7F) 0.896 0.936 0.92 0.015 

4.2 Precision 

Precision of all models for 2F and 7F has been given in Table 3. High precision is 
desirable for flood forecasting models, as high precision is an indicator of more true 
positives and fewer false positives. Higher true positive value would indicate more flood 
occurrences are classified as floods whereas less false positives would indicate that lesser 
non-flood occurrences are classified as floods. Flood forecasting models having higher 
true positives and lower false positives would be more preferable for forecasting floods. 
It can be noted from Table 3 that mean precision value obtained using SVM(2F), LR(2F), 
ANN(2F), KNN(2F), RF(2F) and NB(2F) models range from 0.425 to 0.698 where 
highest mean precision value is obtained using SVM(2F) and lowest mean precision value 
is obtained using NB(2F). Further, mean precision value of SVM(2F) is larger than 
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maximum precision values of ANN(2F), KNN(2F), RF(2F) and NB(2F). Further, it can 
also be noted from the table that minimum precision value of SVM(2F) is better than 
mean precision values of KNN(2F), RF(2F) and NB(2F). However, SVM(2F) model has 
comparatively higher standard deviation than ANN(2F), KNN(2F), RF(2F) and NB(2F) 
models. This may be attributed to high maximum precision value obtained using 
SVM(2F). Amongst all 2F models, NB(2F) model has worst mean precision but also least 
standard deviation. In case of all features, SVM(7F) and RF(7F) models have 
comparatively higher mean precision than KNN(7F), LR(7F), ANN(7F), NB(7F) with 
NB(7F) performing the worst amongst all 7F models. Though SVM(7F) and RF(7F) 
models have highest mean precision value, the standard deviation of RF(7F) is less than 
the standard deviation of SVM(7F) model. Further, it can be noted from the histogram, 
shown in Figure 6, that all 7F models have higher mean precision value in comparison to 
those obtained using 2F models. Therefore, it can be inferred that considering all features 
improves the overall precision in terms of forecasting floods. Hence, if precision is used 
as the key performance indicator, RF(7F) model can be used for forecasting floods. 

Figure 6 Histogram for mean precision of all flood forecasting models (see online version  
for colours) 

 

Table 3 Precision of all flood forecasting models 

Precision 
Model Min Max Mean SD 
ANN(2F) 0.5 0.652 0.603 0.054 
KNN(2F) 0.457 0.667 0.58 0.077 
LR(2F) 0.529 0.846 0.651 0.11 
NB(2F) 0.4 0.443 0.425 0.015 
RF(2F) 0.5 0.636 0.565 0.043 
SVM(2F) 0.6 0.833 0.698 0.089 
ANN(7F) 0.486 0.923 0.639 0.152 
KNN(7F) 0.674 0.778 0.738 0.035 
LR(7F) 0.583 0.875 0.723 0.109 
NB(7F) 0.43 0.475 0.454 0.018 
RF(7F) 0.684 0.875 0.755 0.076 
SVM(7F) 0.586 0.909 0.755 0.109 
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4.3 Recall 

Recall of all models for 2F and 7F, has been given in Table 4. High recall is desirable for 
flood forecasting models, as high recall is an indicator of more true positives and fewer 
false negatives. More true positives would indicate more flood occurrences are classified 
as floods whereas fewer false negatives would indicate that fewer flood occurrences are 
classified as non-flood occurrences. It can be noted from Table 4 that mean recall value 
obtained using all 2F models range from 0.249 to 0.772 where highest mean recall value 
is obtained using NB(2F) model and lowest mean recall value is obtained using SVM(2F) 
model. Further, minimum recall value of NB(2F) model is comparatively better than 
maximum recall value of KNN(2F), RF(2F), ANN(2F), LR(2F) and SVM(2F) models. 
However, standard deviation of NB(2F) model is also highest amongst all 2F models. In 
case of all features, NB(7F) obtained highest mean recall value with least standard 
deviation. Minimum recall value of NB(7F) is comparatively better than maximum recall 
value of KNN(7F), RF(7F), SVM(7F) and LR(7F) models. Maximum recall value of 
NB(7F) is also highest amongst all 2F and 7F models. When comparing mean recall 
value of six models on both two features and all features, it can be noted from the 
histogram, shown in Figure 7, that all 7F models have higher mean recall values in 
comparison to those obtained using 2F models. Except NB(7F) model, standard deviation 
of 7F models is higher in comparison to standard deviation of 2F models. Thus, it can be 
inferred that considering all features improves the overall recall in terms of forecasting 
floods. Moreover, if recall is used as the key performance indicator, NB(7F) model can 
be used for forecasting floods. 

Figure 7 Histogram for mean recall of all flood forecasting models (see online version  
for colours) 

 

4.4 F-measure 

As observed above, though SVM(7F) has the highest mean precision value, it has low 
mean recall value. Also, NB(7F) model has least mean precision value but highest mean 
recall value. Thus, in order to have a right balance between precision and recall,  
F-measure has been used to evaluate the performance of all the 2F and 7F models.  
F-measure of all models for 2F and 7F, has been given in Table 5. It can be noted from 
Table 5, that mean F-measure value obtained using all 2F models range from 0.359 to 
0.546 where highest mean F-measure value is obtained using NB(2F) model and lowest 
mean F-measure value is obtained using SVM(2F) model. Further, minimum F-measure 
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value of NB(2F) is better than mean F-measure value of RF(2F), ANN(2F), LR(2F) and 
SVM(2F) models. Furthermore, minimum F-measure value of NB(2F) is better than 
maximum F-measure value of SVM(2F) and LR(2F) model. Standard deviation of 
NB(2F) is lowest amongst all 2F models. While considering all features, mean F-measure 
value of KNN(7F) model is highest. Further, minimum F-measure value of KNN(7F) 
model is better than mean F-measure value of NB(7F), ANN(7F), SVM(7F) and LR(7F) 
models. When comparing mean F-measure value of six models on both two features and 
all features, it can be noted from the histogram, shown in Figure 8, that all 7F models 
have higher mean F-measure values in comparison to those obtained using 2F models. 
However, standard deviation of SVM(7F), LR(7F) and ANN(7F) models increases and 
standard deviation of NB(7F), KNN(7F) and RF(7F) models decreases in comparison to 
standard deviation of corresponding 2F models. Among 7F models, LR(7F) has worst 
mean F-measure but still its mean F-measure is comparatively better than mean F-
measures of all 2F models except NB(2F) model. Thus, it can be concluded that in case 
F-measure is the key performance indicator, KNN(7F) model can be used for forecasting 
floods. 

Table 4 Recall of all flood forecasting models 

Recall 
Model Min Max Mean SD 
ANN(2F) 0.225 0.425 0.328 0.068 
KNN(2F) 0.375 0.55 0.463 0.065 
LR(2F) 0.22 0.4 0.279 0.065 
NB(2F) 0.634 0.875 0.772 0.098 
RF(2F) 0.293 0.475 0.369 0.06 
SVM(2F) 0.2 0.375 0.249 0.066 
ANN(7F) 0.3 0.95 0.658 0.253 
KNN(7F) 0.55 0.8 0.676 0.084 
LR(7F) 0.341 0.55 0.428 0.099 
NB(7F) 0.85 1 0.94 0.049 
RF(7F) 0.525 0.725 0.632 0.065 
SVM(7F) 0.3 0.725 0.483 0.139 

Figure 8 Histogram for mean F-measure of all flood forecasting models (see online version  
for colours) 
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Table 5 F-measure of all flood forecasting models 

F-measure 
Model Min Max Mean SD 
ANN(2F) 0.327 0.507 0.421 0.064 
KNN(2F) 0.427 0.563 0.51 0.053 
LR(2F) 0.316 0.478 0.385 0.061 
NB(2F) 0.491 0.576 0.546 0.032 
RF(2F) 0.387 0.514 0.442 0.041 
SVM(2F) 0.314 0.462 0.359 0.058 
ANN(7F) 0.447 0.768 0.602 0.13 
KNN(7F) 0.638 0.771 0.702 0.047 
LR(7F) 0.431 0.603 0.525 0.067 
NB(7F) 0.596 0.633 0.612 0.016 
RF(7F) 0.649 0.722 0.682 0.031 
SVM(7F) 0.436 0.707 0.574 0.1 

From the above performance comparisons of the ML models, it can be inferred that 
RF(7F) and KNN(7F) models performed comparatively better than the other ML models 
used for flood forecasting on most of the performance parameters. In order to ascertain 
their overall performance across classification thresholds with respect to other ML 
models were evaluated by computing area under the ROC curve (AUC-ROC). The 
comparison of ML models on AUC-ROC is given next. 

4.5 AUC-ROC 

AUC-ROC of all models for 2F and 7F, has been given in Table 6. It can be noted from 
Table 6 that mean AUC-ROC value obtained using all 2F models range from 0.864 to 
0.924 where highest mean AUC-ROC value is obtained using NB(2F) model and lowest 
mean AUC-ROC value is obtained using KNN(2F) model. Further, mean AUC-ROC 
value of NB(2F), ANN(2F), LR(2F) and RF(2F) models are almost similar. Furthermore, 
standard deviation of NB(2F) is better than standard deviation of all 2F models except 
ANN(2F). It can be noted from the histogram, shown in Figure 9, that all 7F models have 
higher mean AUC-ROC value in comparison to those obtained using 2F models. Mean 
AUC-ROC value of NB(7F) model although lowest in all 7F models, is still larger than 
mean AUC-ROC value of all 2F models. Mean AUC-ROC value obtained using all 7F 
models range from 0.937 to 0.965. Amongst 7F models, RF(7F) model has highest mean 
AUC-ROC value. Further, the comparisons of the ML models on their ROC curves for 
maximum and minimum values, as shown in Figures 10 and 11 respectively, shows that 
area under the ROC curve for both maximum and minimum values is best for RF(7F) 
model. Additionally, minimum AUC-ROC value of RF(7F) model is larger than mean 
AUC-ROC value of KNN(7F), LR(7F), SVM(7F) and NB(7F) models. RF(7F) model also 
has least standard deviation amongst all 7F models. Thus, it can be inferred that the 
overall performance of RF(7F), in terms of AUC-ROC across all classification thresholds, 
is best amongst all ML models and thus RF(7F) model can be preferred over all other ML 
models for forecasting floods. 
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Figure 9 Histogram for mean AUC-ROC of all flood forecasting models (see online version  
for colours) 

 

Figure 10 ROC curve for all flood forecasting models (for maximum value) (see online version 
for colours) 

 

Figure 11 ROC curve for all flood forecasting models (for minimum value) (see online version  
for colours) 
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Table 6 AUC-ROC of all flood forecasting models 

AUC-ROC 
Model Min Max Mean SD 
ANN(2F) 0.91 0.932 0.919 0.008 
KNN(2F) 0.818 0.916 0.864 0.036 
LR(2F) 0.898 0.931 0.915 0.011 
NB(2F) 0.909 0.934 0.924 0.009 
RF(2F) 0.89 0.926 0.913 0.013 
SVM(2F) 0.857 0.913 0.893 0.019 
ANN(7F) 0.931 0.966 0.955 0.013 
KNN(7F) 0.92 0.973 0.947 0.021 
LR(7F) 0.927 0.954 0.944 0.01 
NB(7F) 0.923 0.953 0.937 0.012 
RF(7F) 0.954 0.975 0.965 0.008 
SVM(7F) 0.907 0.969 0.94 0.022 

It can be noted from the above that for all performance metrics 7F based ML models have 
performed comparatively better than their respective 2F based ML models. Thus, 
considering features like vapour pressure, cloud cover, evapo-transpiration, crop evapo-
transpiration and wet day frequency, in addition to the two features considered by earlier 
ML models, has improved the forecasting ability of the ML models. Further, amongst the 
7F based ML models, KNN(7F) and RF(7F) models have performed reasonably well in 
almost all performance parameters. Moreover, KNN(7F) performed the best in F-measure 
and RF(7F) performed the best in AUC-ROC. Furthermore, SVM(7F), ANN(7F) and 
LR(7F) have an average performance in almost all the parameters. NB(7F) performed the 
worst amongst all the models; however its performance is best in the case of recall. 

From above, it can be inferred that all features, instead of only two features in the 
dataset, should be considered for forecasting floods. Further, from amongst all the above-
mentioned ML models, KNN(7F) and RF(7F) models were able to perform comparatively 
better in terms of classifying floods and thus can be used for forecasting floods. 

5 Conclusion 

This paper focused on designing ML based classification models for forecasting floods. 
Most of the studies involving forecasting floods considered parameters like temperature 
and precipitation. However, parameters like vapour pressure, cloud cover, wet day 
frequency, crop evapo-transpiration and surface evapo-transpiration may also influence 
the occurrence of floods and therefore were also considered, along with the two 
parameters, for forecasting floods. In this study, monthly meteorological data of 12 most 
flood affected districts of Northern Bihar (India) for a period 1991–2002 obtained from 
Climatic Research Unit, University of East Anglia and state’s flood management portal 
was considered. Classification models like NB, LR, SVM, KNN, RF and ANN were 
applied on this labelled dataset. The experimentation considered two features(2F), as per 
the existing literature, and seven features(7F), as proposed in this paper. Above 
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mentioned ML models were trained and tested using stratified 5-fold cross validation on 
both 2F and 7F datasets. The comparison of these 2F and 7F models were carried out on 
performance parameters like accuracy, precision, recall, F-measure and AUC-ROC and it 
was observed that the ML models were able to forecast comparatively better when they 
considered seven features. Thus, it can be inferred that additional five features considered 
in this study lead to improvement in the effectiveness of the models in forecasting floods. 
Further, amongst these classification models, RF(7F) and KNN(7F) models performed 
comparatively better than the other ML models on most of the performance parameters. 
Furthermore, while comparing the overall performance of all the ML models across 
multiple thresholds, the performance of RF(7F) model was the best and thus RF(7F) 
model can be preferred over all other ML models for forecasting floods. 
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