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Abstract: This review article focused to highlight the recent studies conducted
to explore the dynamics characteristics of fibre-reinforced composite via.
experimental and numerical approaches for different volume ratios analysed for
various boundary conditions. Because of the benefits in performance, structural
efficiency, and cost that improved composite materials give, they are
progressively being used in aircraft, marine, and other industries. The vibration
effect in most of the applications is unpleasant causing user discomfort, noise,
bodily health problems, and structural endurance problems. It is necessary to
understand dynamic characteristics viz., natural frequencies (w.), damping
characteristics (C), and frequency response function (FRF) of the beam. This
article focused on various fabrication technologies utilised in the manufacturing
of aramid fibre composite beams. Based on the available literature
polymerisation induced self-assembly fabrication technique used to produce the
aramid fibre and FFT analyser is widely used to analyse the dynamic
characteristics of the beam structure.
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1 Introduction

A composite is a blend of two or more elements that can be combined in any way and for
a range of purposes. The idea behind composite materials is that mixing multiple
elements often results in a new material that performs better than its separate constituents.
Composite materials applications have developed gradually over time, infiltrating and
conquering more markets in the process. Composites are preferred because of their
outstanding strength-to-weight ratios, long fatigue life, high stiffness, and other material
features, composite beams have become extremely popular in a variety of forms of
industrial applications in the previous couple of decades. These engineered material
industries, which range from everyday goods to sophisticated technical applications, are
dominated by modern and established composite materials. Construction, military,
automobile, and aerospace industries all used these sophisticated materials. Their
technologies are particularly appealing since they outperform most existing materials,
such as metal, in terms of specific strength, density, lightweight, corrosion resistance, and
temperature capacity (Ishak et al., 2013). High aspect ratio, high porosity, large specific
surface area, and unique nanotechnology effects describe polymer fibre and its
derivatives, making them potential building blocks in a variety of developing applications
(Huang et al., 2004; Deitzel et al., 2001; Pham et al., 2006).

Yang et al. in 2011 initially created aramid nanofibre (ANF), a 1D nanofibre with
great strength and modulus, a large specific surface area, a high aspect ratio, and
excellent chemical stability and thermal by substantial efficiency macroscopic
poly(p-phenylene terephthalamide) (PPTA) fibre. Since 2011, year after year, the number
of publications and citations about ANF has increased especially in the previous three
years, as seen in Figure 1(a). Furthermore, as shown in Figure 1(b), there have been
studies on ANF in a variety of disciplines, including materials science, engineering,
chemistry, and polymer science, demonstrating the growing interest in ANF from a
variety of sources. It’s a promising nanoscale building block that’s been used in a variety
of composite reinforcing applications (Yang et al., 2015; Nasser et al., 2019; Fan et al.,
2012).

Figure 1 Annual ANF publications and citations as reported by ISI Web of Science, (a) numbers
of publications and citations every year (b) the distribution of citing papers across
various fields of study (see online version for colours)

40 400
A * Topics: Aramid nanciiber or Keviar nanofiber (2011-2019) B cremstrvmoiscuar s
o L | Pubications | | Citations = 350 SPECTROSCOPY | 8.2%
ELECTROCHEMISTRY | 10.8%
30 4 1 (-0
& ENERGY FUELS [N I

& , -
B L2sow 3  crvsTALLOGRAPHY [ 00N
2 E &
g T = MECHANICS | TN
=10 200 = o e
8 O & SCIENCE TECHNOLOGY 38.8%
o —

15 4 150 g POLYMER SCIENCE 408%

« —_— -
| ) PHYSICS 48.9%
10 | 100
CHEMISTRY 50.1% |
5 | —‘ ( 50 EMGINEERMNG 5Ta%
=] 1 | | MATERIALS SCIENGE 58.0%
0 L] t ' 1 0 L ¥
2011 202 2013 2014 2015 2016 2007 2018 2019 0 50 250 50

Source:

Year

Yang et al. (2020)

100 150 00
Citing articles



24 J. Akshobya and M.B. Khot

The top-down method is used to make ANF from macroscopic PPTA fibre. DuPont
invented PPTA fibre in the 1960s, which is also Kevlar and Twaron by two commercial
names for the same material (Yang et al., 2020).

Figure 2 PPTA fibre preparation and structural characteristics, (a) Diagram of the manufacturing
pro (b) photographs of PPTA separated fibres [with permission, this image has been
reproduced (Teijin, 2019)] (c) PPTA fibre SEM picture [with permission, this image
has been reproduced (Yang et al., 2019a)] (d) illustration of the PPTA molecular
structure, demonstrating the strong intermolecular interactions in the radial direction
that cause hydrogen-bonded sheets to stack [with permission, this image has been
reproduced (DuPont, 2019)] (see online version for colours)
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Figure 2(a) shows how PPTA fibre is made from PPTA/H,SO. liquid crystals
after polymerisation of terephthaloyl chloride and p-phenylenediamine in an
N-methyl-pyrrolidone/CaCl, system using a dry-jet wet spinning approach (Yang et al.,
2017). Figure 2(b) shows how PPTA fibre after spinning, is post-treated to produce
distinct PPTA fibres with diverse morphologies for different purposes, such as PPTA
pulp, short-cut fibre, and PPTA yarn. As illustrated in Figure 2(c), PPTA fibre has a flat
surface and no active functional groupings, resulting in poor interfacial interaction
between the polymer matrix and PPTA fibre. Because of its stiff molecular chains and
high crystallinity, PPTA fibre, as one of three high-tech polymeric fibres, has outstanding
mechanical capabilities, chemical inertness, and excellent thermal stability as shown in
Figure 2D (Rao et al., 2001; Roenbeck et al., 2019; Grujicic et al., 2013; Cheng et al.,
2005).
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2 Preparation and fabrication methods of ANFs and composite
respectively

Due to its regular molecular chain structure and hydrogen connections between molecular
chains, aramid fibres combine great mechanical capabilities, chemical stability, thermal
stability, low density, and pose many obstacles in the research of ANFs. In 2011, Yang
et al. were the first to disclose the production of ANFs from an alkaline DMSO solution.
Aramid fibre must be pre-treated and then post-treated in all three approaches. The four
basic ways of making ANFs are top-down electrospinning, deprotonation, bottom-up, and
mechanical breakdown polymerisation. It is crucial to note that, whereas the published
articles have gone into great detail about ANF preparation methods, the current review
only presents a quick overview of the combination of ANF and epoxy resin composite.

2.1 Electrospinning

‘Electrospinning’ comes from the term ‘electrostatic spinning’. A high-voltage source, a
capillary tube with a small needle, and a grounded collecting screen are required for the
technique (Kulkarni et al., 2010; Yao et al., 2010). This process resulted in fibre with
smaller diameters as well as excellent mechanical properties. This led to the formation of
the electrospinning technology, which can create nanofibres with diameters ranging from
10 nm to 10 mm. (Park et al., 2007). Figure 3 shows a schematic representation, while
Figure 4 shows a photographic view. A high voltage is required to produce a polymer
solution jet from an electrically charged needle. The solution evaporates or solidifies
before reaching the collector screen, and is collected as an interconnected web of fine
fibres. The spinning solution is connected to one electrode, while the grounded collector
is connected to the other. The solution fluid is maintained in place by surface tension and
is held in place by an electric field delivered to the capillary tube’s end. As the electrical
field intensity increases, the hemispherical surface of the fluid at the capillary tube’s tip
elongates, generating a conic shape known as a ‘Taylor cone’ (Nirmala et al., 2014; Yang
et al., 2019b).

Figure 3 The electrospinning process is depicted in a diagram
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Source: Kulkarni et al. (2010)
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The mechanical properties of the lowest diameter fibres in these branch PPTA fibres
were much greater in aramid fibre produced by the electrospinning process, with Young’s
modulus and tensile strength values of 59 and 1.1 GPa for fibres with a diameter of
2.1 mm, respectively. To forecast the properties of the fibres, a geometrical model based
on a reduction for the size-dependent Young’s modulus was investigated (Yao et al.,
2015).

Figure 4 Photographic image of the electrospinning setup

Source: Kulkarni et al. (2010)

2.2 Mechanically assisted preparation

The chemical structures of ANFs generated with mechanical help are usually not
destroyed, and the original superior mechanical qualities, chemical stability, and
high-temperature resistance of ANFs are maintained. Ifuku et al. (2014) by mechanically
treating para-aramid fibres with NaOH, p-ANFs are created which contain
para-crystallite. Using electrostatic repelling force, it was easy to divide into nanofibre
with large effective mechanical and surface-to-volume ratio characteristics. After hot
pressing at 100 °C, the average tensile strength, Young’s modulus, and strain of P-ANFs
sheets made by the filtering process are 2.0 GPa, 26.8 MPa, and 1.5%, respectively. The
preparation method has a significant impact on these mechanical qualities. Lately,
Gonzalez et al. (2017) have deliberate immersion rotary jet-spinning (IRJS) is a
centrifugal force method for manufacturing nanofibre here the use of high voltage is
avoided. P-ANFs with a diameter of 500-1000 nm were used in the study for effectively
manufacturing using this approach and showed good mechanical properties. The practical
applicability of this method, however, due to the use of sophisticated equipment and low
manufacturing efficiency is severely limited.

2.3 Deprotonation and its improvement

Yang et al. (2011) deprotonation was originally reported in 2011 for the synthesis of an
alkaline DMSO solution yielded ANFs with a diameter of 3-30 nm and a length of up to
10 m. The synthesised ANFs have promising thermal and mechanical properties, as well
as a high aspect ratio, indicating that they could be used as a novel nanoscale building
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block. The deprotonation process, unlike the other two, does not involve the purchase of
heavy equipment or elaborate stages, and merely requires stirring at ambient temperature.
Cao et al. (2013) investigated to make stable ANF dispersions, commercial para-aramid
yarns were immersed in KOH-DMSO solutions. The ANFs were then hydrolysed using
phosphoric acid (PA) and bent with glutaraldehyde (GA). Following that, the ANFs were
vacuum-assisted filtered into macroscopic thin films. However, there are several
drawbacks to fabricating deprotonation of ANFs has several drawbacks, including a
lengthy method (about 7 days) and low preparation efficiency. Luo et al. (2019) the
various ANFs and their films generated from conventional aramid woven, chopped fibre,
and pulp fibre respectively, were examined. The ANFs films formed from chopped fibre
had outstanding mechanical capabilities and thermal stability according to the data, the
material has an ultimate strength of 103.41 MPa and stiffness of 4.70 GPa. Wu et al.
(2019) described a simple vacuum-assisted suction approach for fabricating ANFs
membranes generated by various proton donors (water or ethanol). Because ethanol is a
poorer proton donor, the tensile strength of the ANFs membrane aided by water
(203.92 MPa) is higher than that of the membrane supported by ethanol (141.34 MPa).
Rapakousiou et al. (2020) presented a new approach for producing ANFs that involves
employing oligo-(6-pyrene terephthalamide, oPyrTA) as an oligoamide model for Kevlar
and then deprotonating the nanofibres. Although the deprotonation method has several
advantages, such as mild reaction conditions, a lack of expensive equipment, and simple
operating procedures, the method’s long preparation cycle, and low preparation
efficiency appears to be the main barriers to its industrial application.

2.4 Polymerisation induced self-assembly

To make ANFs, all three procedures require pre-treating aramid fibre and then
post-treating aramid fibre, which is complicated, time-consuming, and inefficient. Yan
et al. (2016) introduced a technique for using methoxy polyethylene glycol (mPEG) as an
interfacial customising and dispersion agent. The presence of mPEG is required for the
production of ANFs.

Figure 5 ANFs’ molecular formula and surface shape are depicted. The ANFs have a
high aspect ratio and excellent thermal stability, as well as improved water solubility in
solvents like water or ethanol. Simple procedures no complicated equipment and great
preparation efficiency for characteristics of the polymerisation induced self-assembly
approach, making it perfect for mass production on a wide scale. There are numerous
techniques for creating ANFs with various structures. Huang et al. (2013) created stiff,
structural units of aromatic aramid molecules that can self-assemble into nanofibre
spontaneously. In Yoshioka and Tashiro (2014) and Yoshioka (2012), aromatic
polyamide nanofibres with trifluoromethyl (CF3) groups were prepared using a
precipitation polymerisation approach using 4, 4-diphenyldicarbonyl chloride and
2, 2-bis (trifluoromethyl) benzidine in a dioxane solution including water. By altering the
content of the reaction fluid, the morphology of the aromatic polyamide nanofibres may
be changed dramatically. The aromatic polyamide nanofibres were found to have high
thermal stability and chemical resistance as-prepared. Yoshioka (2017) then used an
annealing procedure to evaluate the structural changes in aromatic polyamide nanofibre.
Aromatic polyamide nanofibre’ intermolecular hydrogen bonding and crystallinity
increased after annealing, but their surface shape remained constant. These technologies
produce nanofibre that is unsuitable for industrial applications.
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Figure 5 (a) Surface morphology of ANFs (b) TEM (c¢) AFM (d) Molecular structures of ANFs;
Tyndall effect of PPTA nanofibre colloid (see online version for colours)
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Table 1 The benefits and drawbacks of different ANF preparation approach
Preparation method Advantages Disadvantages Time (h)
Electrospinning e Continuous spinning e Complicated steps o 24
e Corrosion equipment
e High cost
Mechanical e Excellent performance e High energy consumption o ~24
disintegration . .
e Requirements for equipment
Deprotonation e Simple steps e Long preparation cycle e ~168
e Mild conditions e Low efficiency
Polymerisation e No need of AMFs e None e N/A
induced

self-assembly * Simple steps

e High efficiency

As shown in Table 1, the advantages and disadvantages of various ANF preparation
approaches were discussed. The polymerisation-induced self-assembly method can be
used to avoid the formation of AMFs and is cost-effective, efficient, and simple to
implement on a large scale. Furthermore, the ANFs as-prepared has excellent mechanical
characteristics and water dispersibility, making them ideal for application in polymer
reinforcement. The following sections look at how ANFs can improve the mechanical
characteristics of a variety of polymers.
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Figure 6 (a) Separated ANF reinforced epoxy nanocomposites with different weight fractions
have different mechanical characteristics (Jung and Sodano, 2020) (b) Mechanical
properties of modified with epoxy ANFs added to epoxy and mechanical characteristics
comparison (Lin et al., 2017) (see online version for colours)
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2.5 ANFs reinforced epoxy resin matrix

The use of nanofillers in polymer nanocomposites often improves the overall
performance of nanocomposites is improved by boosting stress transfer efficiency
between the polymer matrix and fillers (Zhao et al., 2012; Zabihi et al., 2018; Zhang
et al., 2020a). Jung and Sodano (2020) the reinforcing effect of the effects of modified
ANFs with a glycidyl ether silane coupling agent on the mechanical properties of epoxy
resin were investigated. The tensile strength and Young’s modulus of nanocomposites
EANFs (epoxy-functionalised ANFs) reinforced with 1 wt% epoxy-functionalised ANFs
(EANFs) increased by 16.8% and 14.0%, respectively, according to the findings as
shown in Figures 6(a) to 6(b). In Lin et al. (2017), a simple and successful method for
isolating ANFs, as well as how they were used to build nanocomposites with high elastic
modulus and fracture toughness by reinforcing epoxy resin, were also discussed. lijima
and Kamiya (2015) to manufacture functionalised ANFs, silver nanoparticles were
uniformly deposited on the surface of ANFs, which were then mixed with epoxy glue to
make transparent nanocomposites. In addition, to lower the enhanced adhesive strength
and reduce thermal expansion coefficient, m-ANFs reinforced epoxy resin was employed
(Oh et al., 2014a, 2014b; On et al.,, 2017). Furthermore, ANFs have a potential
reinforcement impact on a variety of thermoplastic materials thanks to a combination of
copolymerisation, layer-by-layer (LBL) assembly, direct blending. To improve the
mechanical properties of thermoplastic polyurethane, Koo et al. (2019) created nanoscale
ANFs (TPU). That is, TPU toughness has increased 1.5-fold, with a maximum ultimate
tensile strength of 84 MPa may be reached with an ANFs concentration of only 0.04% by
weight. ANFs provide good reinforcement for epoxy resin matrixes, however non-polar
or weakly polar resin matrixes require additional surface modification. As a result,
innovative and effective surface modification approaches for ANFs must be investigated.
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The benefits of ANF for resin matrix in terms of high impact, dynamic load, temperature
resistance and flame.

Even ANFs also blended other matrices like rubber matrix, cellulose, and composite
interface. But the better performance of aramid fibre reinforced with epoxy resin matrices
gives the good mechanical characteristics for dynamic investigation of composite beam
for different volume ratios and boundary conditions.

2.6 Fabrication of composite beam in various processes

Fabrication of FRP composites starts with the manufacture of fibre preforms, which are
then reinforced with the matrix material using various procedures. Lacing, braiding,
knitting, and sewing fibres together in long mats or sheets produces fibre preforms. With
the help of robotics and a high level of automation is utilised to fabricate, allowing on
every zone of the moulded item, which has complete control over the angle and content
of the fibres (Gascons et al., 2012).

2.6.1 Traditional manufacturing methodologies

Prepregs are made from a blend of fibres and uncured resin that has been
pre-impregnated either with the thermoset or thermoplastic resin and just requires thermal
activation. These prepregs are materials that are ready to use that are cut and placed down
into an open mould (Gascons et al., 2012). They’ve lost weight in a short amount of time
even with coordination with a range of automobile manufacturers, due to the efficient
CFRP composite structure fabrication.

The most popular and widely used open mould composite manufacturing process is
hand lay-up, as shown in Figure 7. Reinforcements are first placed in a mould and a thin
coating of antiadhesive finish is added to make removal easier. The resin component of
reinforcing material is poured or applied with a brush. The resin is compressed into the
fabrics with the roller, ensuring better contact between the reinforcing layers and the
matrix components (Rajak et al., 2019; Sinha et al., 2021).

Figure 7 Process of laying out by hand (see online version for colours)

Roller

Source: Rajak et al. (2019)

The spray-up technique is the same as the hand-lay-up technique. It, on the other hand,
sprays glue and chopped fibres onto a mould with a pistol. At the same time, a roller is
utilised to fuse the fibres into the matrix material. Figure 8 depicts the technique.
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Chopped fibres are more conformable than hand lay-up in an open mould process and are
much faster (Gunge et al., 2019; Perna et al., 2019).
Figure 8 Process of spraying (see online version for colours)

Liquid resin Continuous
roving

Spray gun

Mold

Source: Rajak et al. (2019)

Vacuum bag moulding employs a flexible sheet composed of nylon polyethylene or
polyvinyl alcohol to wrap and seal the item from the outside air (PVA). The vacuum bag
moulding process is frequently used with the hand lay-up technique. The laminate is
made by hand lay-up and sandwiched between the vacuum bag and the moulds to ensure
uniform adhere of fibres into the matrix material (Rajak et al., 2019; Fangueiro, 2011;
Ervina et al., 2019). The air between the mould and the vacuum bag is removed using a
vacuum pump, while the part is compressed using air pressure. Figure 9 depicts the
procedure in detail. With gains in interlaminar shear and flexural characteristics of 18%
and 15% respectively, using a vacuum bagging procedure, hierarchical composites were
created using multiscale carbon fibre reinforcements, which prevented the possibility of
observable for dual reinforcements involving porosity and improper impregnation
(Tcherdyntsev, 2021).

Figure 9 Vacuum bag moulding process (see online version for colours)

To vacuum pump To vacuum gauge

T Breather Fabric T

____________________________ 3 Perforated film

Source: Rajak et al. (2019)

Here injector injects preheated resin under pressure into the composite where
reinforcement is in form of a mat or woven roving in the bottom half of the mould (Awan
et al., 2018). FigurelO illustrates the mechanics of the RTM stands for resin transfer
moulding. RTM supports a wide range of fibre materials and orientations, as well as 3D
reinforcements (Jamir et al.,, 2018; Meola et al., 2016). It produces high-strength,
high-quality composite structural pieces whose surface quality equals that of the mould
(Nawaz et al., 2018).
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Figure 10  Process of resin transfer moulding (see online version for colours)

Resin injector

Source: Rajak et al. (2019)

In vacuum infusion or vacuum aided resin transfer moulding, preform fibres are placed
on a mould, and a perforated tube is positioned between the vacuum bag and the resin
container (VARTM). The resin is pushed using vacuum force via the perforated tubes
over the fibres to cement the laminate structure as shown in Figure 11. This approach is
used because it removes the presence of air in the composite structure, it is perfect for
long structures like boat hulls and wind turbine blades (Davis and Mensah, 2017;
Yalcinkaya et al., 2019). Surface treatments are done to natural fibres to improve the
strength of woven composites. The tensile strength of an epoxy acrylate resin composite
reinforced with alkali-treated flax fibres manufactured utilising the VARTM process
increased by 19.7% (Plummer et al., 2011).

Figure 11  Process of vacuum infusion (see online version for colours)

Vacuum bag To vacuum pump
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Perforated film

Resin inlet

Source: Rajak et al. (2019)

Heat-up mould placed on a mechanical or hydraulic press is used. A ready-to-use
reinforcing package made of prepregs is sandwiched between the mould’s two sides,
which are then pressed together to achieve the required shape. Figure 12 illustrates the
compression moulding process in steps. It has a wide range of applications in the
automobile industry due to its low cycle time, automation, and high productivity with
mechanical properties (Ishikawa et al., 2014). The dispersion of 30% filler elements
including sisal fibre was achieved using the compression moulding SEM and Fourier
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transform infrared spectrometer analysis revealed that particles of zirconium dioxide
(Zr0O2) in an unsaturated polyester matrix (UP) had the best mechanical qualities (FTIR),
X-ray diffraction (Ciampa et al., 2018). Hand lay-up was used to create an epoxy
polymer matrix-based composite with jute fibre reinforcement, which was then
compressed at temperatures ranging from 80°C to 130°C. With a determined tensile
strength of 32.3 MPa, 41.8 MPa flexural strength, and 3.5 Joules impact strength, the
mechanical properties have enhanced (Matveenko et al., 2018).

Figure 12 Compression moulding process (see online version for colours)
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Other than the conventional method of manufacturing the composite even it can be
processed along with advanced manufacturing processes like electrospinning process,
Injection moulding process (Biswas et al., 2019), and automated manufacturing
techniques like automated tape layup (ATL) Filament winding and automated fibre
placement (AFP) are used to fabricate the composite of different types of fibre and
matrices (Bhardwaj and Kundu, 2010; Mouritz, 2012).

Source: Rajak et al. (2019)

3 Dynamic characterisation of the beam structure

Three-dimensional (3D) bodies like beams consist of one larger dimension than the other
two. According to existing circumstances, composite beams and blades have a very
advanced theoretical model. Where the dynamic characteristics like vibration analysis of
beam can be evaluated by all the approaches that are Experimental, Numerical and
Analytical methods to get the results like natural frequencies (w,), Damping
characteristics (C) and frequency response function (FRF) of the beam.

3.1 Experimental approach

The experimental approach not only includes the analysis of the specimens but also
involves the fabrication of composite specimens as discussed above. The focus here is on
measuring vibration with the use of a vibration test rig, which is used to perform the free
vibration experiment. A support frame, an operation platform, and a vibration exciter
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make up the setup rig. The test sample and exciter are suspended from the frame by wire
ropes and springs. Clamping, support, and free at the ends of composite beams by using
different fixtures setup like clamp-free (C-F), fixed-fixed (F-F), and simply supported
beam (S-S) boundary condition (Frketic et al., 2017; Tey et al., 2019).

3.1.1 Experimental setup for vibration analysis

The free vibration experiment is carried out using a vibration test assembly. A support
frame, an operation platform, and a vibration exciter are the essential components. Rope
wire and springs are used to suspend the test sample and exciter or hammer from the
frame. The connections are flexible, and the test sample can appear to be under different
conditions. Clamping, support, and free at the end of composite beams by using various
fixtures in setup (Tey et al., 2019; Mehar et al., 2017; Zhou et al., 2021). The iron frame
was suitably fitted with the test specimens. The fast Fourier transform (FFT) analyser,
transducers, laptop, modal hammer, and wires were all connected to the system. The
program key for the pulse lab shop version-10.0 will be plugged into the computer’s port.
For cantilever, free-free, and fixed-fixed boundary conditions, the beams were subjected
at a particular location using a minor impact with an impact hammer. A force transducer
mounted on the hammer will capture the input signals. An accelerometer was used to
detect the associated vibrations of the specimens on the selected location. The signal is
sensed by the accelerometer mounted on the specimen with bee’s wax, the frequency
spectrum is generated when the data is processed by the FFT analyser. A spectrum
analyser is used to evaluate both the input and output signals, the derived FRF is then
submitted to a computer to extract modal parameters. Using pulse software, the
analyser’s output will be exhibited on the analyser’s screen. Numerous sorts of FRF will
be measured directly (Rajak et al., 2019). Here, Figure 13 shows the vibration setup for
the beam on the frame with equipment connected in return to the computer for the display
of the result (Frketic et al., 2017).

Figure 13  Schematic presentation of experimental vibration setup
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Source: Frketic et al. (2017)
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3.1.2 Natural frequencies (w,)

As shown by the experimental technique, the effect of delamination on the modal
characteristics of a delaminated composite beam is also dependent on the boundary
conditions. As the fibre orientation angle increases, the natural frequency of the
cantilever boundary condition falls. The natural frequency of a delaminated composite
plate increases as the number of layers increases when the cantilever boundary condition
is used. As the aspect ratios increase, the delaminated composite cantilever beam’s
inherent frequency increases (Tita et al., 2003).

The natural frequencies of different composite beam boundary conditions have been
published. In general, the experimental results were under the existing literature. Natural
frequency is determined to be lowest for clamped-free supported beams and highest for
clamped-clamped supported beams (Rafiee et al., 2017).

3.1.3 Damping characteristics (C)

The experimental validation of the current higher-order FE model demonstrates its
resilience. When the volume fraction and aspect ratio values grow, the standardised
CNRC curved shell panel’s fundamental frequency is increasing. The curved shell
panel’s standard fundamental frequency construction reduces as the thickness and
curvature ratio values increase (Frketic et al., 2017).

3.1.4 Frequency response function

Specimens with various fibre orientations and stacking sequences were used in the
experimental dynamic tests. Fibre orientations and stacking sequences have an impact on
natural frequencies and modal damping was studied. Furthermore, the outcomes of these
studies were confirmed by using different software like Labview which encounter all the
magnitude of frequency and plot the graph time v/s magnitude for different volume ratio
at different boundary conditions.

3.2 Numerical approach

The equations motion of first-order shear deformation theory (FSDT) or Timoshenko
beam theory and Hamilton’s principle are used to determine the natural frequency and
mode shapes. And the effects of boundary conditions on the vibration of ANFs beams are
investigated using dynamic models and the effects of ANFs distribution pattern, weight
percentage and volume ratio. The accuracy of this new FSDT is comparable to that of the
previous FSDT has increased due to adding shear correction factor for convergence of
dynamic result. Even dynamic analysis of composite beam also could be found by other
various theories like third-order shear deformation theory (TSDT), higher-order shear
deformation theory (HSDT), classical lamina beam theory (CLBT) and zeroth-order
shear deformation theory (ZSDT) are some examples of refined theories (Mohanty et al.,
2012).
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3.2.1 Micro-mechanical approach

The effective Young’s modulus is evaluated using the modified Halpin-Tsai model,
whereas the effective, Poisson’s ratio and mass density are computed using the rule of
mixture. The FSDT is used to formulate theoretical formulations (Affdl and Kardos,
1976; Thai and Choi, 2013):

1  Longitudinal Young’s modulus (£1):
E =ViE oy +V,Ey 1
2 Transverse Young’s modulus (£5):

E, 1+cnVy

Em 1_’7V/‘

_(Ef/En)-1
(Ef/En)+¢

(@)

¢ is called the reinforcing factor, £ = 2 for a fibre geometry of circular fibres in a
square array’s packing geometry. Where E,, and Eyare the matrix and reinforcement
elastic moduli, respectively. In addition, 1 denotes the reinforcement’s length (Song
etal., 2017).

3 In-plane shear modulus (G1»):

Gy _1+&Vy

Gm l—ﬂVf
(Gr/Gn)-1

n=r—o— <=1
(Gr/Gu)-¢

3

4 Major Poisson’s ratio ($12):

vi2 =Vviaen +Vivm 4)

5  Density (p):
pP= prCN + Vmpm (5)

where Vrand V,, are volume fractions of fibre and matrices, respectively.

3.2.2 Governing equation for FSDT

In terms of thickness co-ordinates, the laminate’s displacement functions u, v and w at
coordinates x, y, and z are extended in a Taylor series according to the First-Order Shear
Deformation theory (Kaw, 2005) where the displacement functions u, v, and w can be
expressed as (Zhang et al., 2020b):

u=uy(x, y)+z0,(x,y)
v=v(x, y)+z0,(x,y) (6)

w=wy(x, y)
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Figure 16  Geometry of composite of beam
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Source: Kaw (2005)

In-plane and transverse displacement components are u, v, and w in the laminate at any
point along the x, y, and z-axes. The displacements along the x, y, and z axes are
represented by uo, vo, and wy, respectively. 6 and 6, are middle plane slopes as well.

3.2.2.1 Elasticity matrix [D]
The beam’s strain and displacement relationships are as follows:

&y = &xy + 2K,

&y = &), + 2K,

Yy = Exyy T ZKny (7)
Vyz = €yz
Vxz = Exzy

Correlation between stress and strain in a beam concerning the fibre matrix coordinate
axis (1, 2, and 3) are

01 Ci G 0 0 0 &
(%) C12 C22 0 0 0 &
T2 (= 0 Cuy 0 0 Y12 (®)

0
723 0 0 0 C55 0 Y23
0 0 0 0 C66 N3

713

The stresses are (o1, 02, T12, 723, 731) and the strain components are (€1, €2, Y12, Y23, Y13)
equivalent to the lamina coordinates (1, 2, 3). Appendix A defines Cj as the matrix of
compliance about the lamina axis (1, 2, and 3). Laminate coordinates represent the
stress-strain relationships for the lamina (x, y, z) as
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Ox On Qo Ou 0 0 Ex
Oy On On Oxn 0 0 &y
Ty =0 Ou QOu 0 0 Vxy ©)
Tyz 0 0 0 KQOss KOss ||7y:
Txz 0 0 0  KQOss KOs |7

The stresses are (ox, 0y, Tuy, Tyz, T-x) and the strain components are (ex, &, Yxy» Vyz> Vox)
according to the coordinates of the lamination (x, y, z). The modified elasticity constants,
known as Q;’s, are defined in Appendix A.

The factor of shear correction is 0.83 (Shah et al., 2019) is used here. In the
consequence of transverse shear stress manifestation, it appears as a coefficient, and it is
used to approximate the shear deformation effect. Low shear modulus causes a
significant effect on continuous shear deformation in multilayered beam and shell finite
elements. The top and bottom sides have zero transverse shear stresses, while the neutral
axis has the highest. As both a result of the constant shear distribution over the thickness,
accuracy declines. As a result, the shear correction factor must be multiplied by the
components of transverse shear stress.

The K’s numerical value is calculated by cross-section form, Poisson’s ratio, and ply
angle for the composite beam. The shear correction factor explains for extension-shear
coupling effect. The shear correction factor fits the beam’s neutral axis with its axis
geometric. The elasticity matrix [D] is obtained as follows:

[D]=[T1[Q;]IT] (10)

The thickness coordinate matrix [7] is used here. As a result, the D-matrix for the FSDT
can be represented as:

0 0 A4
W2
(Ai/'vBi/'vDii):J‘—h/ZQi/(lﬂ Z,2*)dZ —i, j=1,2,4 an

h/2 o
(44y) = .[M 0;()dZ i, j=5,6

The matrices for extensional stiffness, stretching-bending coupling, and flexural stiffness
are [A;], [By], and [Dj] respectively.

3.2.2.2 Strain-displacement matrix
The strain and displacement relation is
{e} =[L1{5} (12)

The operator matrix [L], the in-plane strain matrix, as well as the displacement at any
point on the surface element, are all given.

By multiplying the operator matrix by shape functions, the strain-displacement matrix
[B] is generated.
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[BI=[L]'N, »>r=1,2,3,4,...,9. (13)

As a result, the B-matrix for FSDT can be calculated as follows:

N 0 0 0
ox

o My 0 0
oy

SN, Ny 0 0
ox

» oy o My

51=| ° o (14)

0 0 0o N

oy

o o oN, o,

oy ox

0 o Ny N,

dy
0 0o N 0
L ox ]

Shape function [N]: the interpolation function interpolates the solution between the
discrete values collected at each element’s mesh nodes.

N, =1/4(E+EE) (2 +nm);—>i=1,2,3,4
N =12(0=-&)(p? +nin);—>i=5,7

N, =1/2(2+&E)(1-12);—>i=6,8

N, =(1-¢2)(1-92);>i=9.

s5)

The issuing domain is in the physical coordinate system, whereas the natural coordinate
system is in the natural coordinate system. ({ #, ¢) is used (x, y, and z).

3.2.2.3 Mass matrix [M]

The composite beam element’s element mass matrix is
[M]= | INYLPIN A (16)

where [p] matrix for FSDT is
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I 0 P O O
0 /7 0 0 P
[pI=]/0 0 I 0 O (17)
P 0O 0 Q O
0O P 0 0 Q
3.2.2.4 Element stiffness matrix [K]
The matrix of element stiffness for the considered beam element is
[£.]= ] 1BY1DIBldA (18)

The following free vibration equation is generated by combining all of them about the
global coordinate’s matrix of element mass and stiffness. Non-dimensional natural

2
frequency of beam by using Bernoulli-Euler theory w, = % fﬂ (Song et al.,
T, PL

2018).
[K]-0i[M]=0 (19)

In the Gauss quadrature method, the stiffness [K] and mass [M] matrices are integrated
using this method. The above formula gives the natural frequency (w,) for free vibration
(Park, 2015). Appendix B explains the methodology used in the analysis.

3.2.3 Methodology for FEM

Bellifa et al. (2016) compared the classic First-order and other higher-order shear
deformation theories were used to explain the bending and free vibration analysis of
functionally graded beams, while a simple shear deformation theory with the fewest
unknowns was used to explain the bending and free vibration analysis of functionally
graded beams.

Nguyen et al. (2013) FSDT was used to express axially loaded functionally graded
beams: static and free vibration.

Shahba et al. (2011) the finite element method was used to examine free vibration and
stability of axially functionally graded Timoshenko tapered beams utilising classical and
neoclassical boundary conditions.

Hosseini-Hashemi et al. (2010) presented to solve exact equations of motion, and
analytical analysis based on the FSDT is used. The mechanical properties of the FG
plates were anticipated to change constantly with thickness throughout the study. There’s
also a new shear correction factor formula. The influence of various base stiffness
parameters, as well as different values of aspect ratios and gradient indices, on the free
vibration of FG plates restricted by various combinations of classical boundary
conditions, was then discussed.
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Figure 17  Flowchart for finding natural frequency by FSDT (see online version for colours)

Finding out Material properties using Rule of Mixture

l

Make Strain-Displacement Relation

l

Make Stress-Strain Relation

l

Transform these stress from Local Global co-ordinates

l

Find out Load-Deflection and Moment-Curvature Relation

l

Use Boundary Condition and Find [D] Matrix

l

Find [B] Matrix using Shape Function
Find Stiffness Matrix [K,] = [, [B]'[D][B]dA

Find Mass Matrix [M,] = IAE[N]‘lﬂ][N]dA

l

Find the Natural Frequency, Mode Shape for different
Boundary condition using Finite Element Analysis

Bahmyari et al. (2014) carried out the dynamic response of LCB under distributed
moving masses utilising Based on both FSDT and classical beam theory, the finite
element method (FEM) was developed (CLT). CLT and FSDT equations of motion are
used to discretise beam elements with six and ten degrees of freedom, respectively. As a
result, the beam governing equations, which include the Coriolis, effects using
Newmark’s technique, inertial and centrifugal forces due to moving distributed mass
were spatially discretised and analysed in the time domain. The effect of moving body
speed, incline angle, mass, load length, inertial, Coriolis, layer orientation, and
centrifugal forces by moving distributed mass, as well as friction force, on the dynamic
characteristics of inclined LCB was investigated.

Ganesh et al. (2016), using the equivalent single layer (ESL) theory and the finite
element method, explored the free vibration analysis of delaminated composite plates
(FEM). Their study focuses solely on the free vibration analysis of delaminated
composite plates utilising the FSDT and FE formulation. Simply supported (S-S-S-S) and
cantilever type boundary conditions were used in the study (C-F-F-F). In addition to that
using a fully analytical and computational technique, the deformation of the composite
plate at various locations was evaluated.
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Results and discussion of different composite beam and their dynamic behaviour on
the various boundary condition

Table 2
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Results and discussion of different composite beam and their dynamic behaviour on

the various boundary condition (continued)

Table 2
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Results and discussion of different composite beam and their dynamic behaviour on

the various boundary condition (continued)

Table 2
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Results and discussion of different composite beam and their dynamic behaviour on

the various boundary condition (continued)
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Results and discussion of different composite beam and their dynamic behaviour on

the various boundary condition (continued)

Table 2
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Results and discussion of different composite beam and their dynamic behaviour on

the various boundary condition (continued)
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Balci et al. (2014) conducted a simulation study based on Euler-Bernoulli or classical
beam theory, free vibration analysis of an LCB is conducted. And also using the finite
element approach, a numerical model of the LCB was developed for various boundary
conditions based on varying (//h) ratios for many layers by FSDT. The LCB’s natural
frequencies were determined for each boundary condition and shown in such a way that
the influence of these modifications on the natural frequencies could be seen. For varying
(L«/h) ratios, layer angles, several layers, and their respective placements, eight natural
frequencies for boundary conditions such as clamped-clamped (CC), simple-simple (SS),
and clamped-free (C-F) composite beams were first produced. In all cases, natural
frequencies for all modes decreased as the /A ratio grew.

Wang et al. (2019) examined fundamental frequencies for graphene oxide
powders-reinforced composite beams that were used in the vibration study (GPORC).
The fundamental frequency of the C-C beam is higher than the beam with the H-H
boundary condition, according to the comparison. It’s also worth noting that as the
slenderness ratio rises, the fundamental frequency falls. The greatest fundamental
frequency is found in the X-GOPRC beam, which is the U-GPORC and O-GPORC
beams are then followed.

4 Conclusions

An extensive literature review has been conducted on the fabrication and analysis of
dynamic characteristics as composite beams via numerical and experimental approaches
with different boundary conditions. Based on the resources available the following
conclusions are drawn:

e  The different reinforcement and matrices materials are used to manufacture the
composite beam structure. Most of the researchers used the compression moulding
technique to fabricate composite.

e  The natural frequency is mainly dependent on fibre orientation, aspect ratio and type
of boundary conditions.

e The volume fraction ratio of fibre and matrices, the number of reinforcing layers, and
the thickness of the matrices affect the damping behaviour of beam structures.

e Increasing the number of fibre layers or volume can improve the material’s strength,
dynamic behaviour and stiffness, allowing it to undergo free vibration without
putting a high load on it and reducing the material’s tendency to crack or break.
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Appendix A
When m = cos 0 and #n = sin 6. The transformed [Q] matrix coefficient are:
O = Ciim* +2(Cpy +2Cy ) m*n® + Cyyn*,
O = Cia (m* +1*) +(Ciy + Coy —4Cus ) m?n?,
O3 = Cye +Chye

O =(Ci1 = Cyo =2Cu ) mn+(Cry — Cop +2C44 ) mn®,

4
2,2
mn +C22m )

On =C}, +(2(C12 +4Cuy)

s =C2, +(Cn)’,

Oy =(Ci1 = Cpy —2C 44 )mn® +(Cyy — Coy +2Cy4 ) mn,
053 =GCss,

O = (031 —C3 )mn,

Ous =(C11 =2C1y + Coy —2Ca4 ) m2n? + Cay (m* +n*)
Oss =CZ, +C2,

Q66 = C2 + C66m2

55N

And compliance matrix coefficient are:

E>, (1—=v;3v E> (v3p +vipv E;(1—vpov
Cy = 2( 13 31)’ Cp = 2(32 12 31), Cys = 3( 12 21)’
A A A
Cu =Gya, Css = G, Css = Gi3.
Appendix B

Gauss-Quadrature method

The Gauss-Legendre quadrature is highly beneficial for polynomial function integration.
It can use the n points exactly to integrate a polynomial function of order (2n — 1). If we
take a finite number of calculations in numerical integration. As a result, the integral is
estimated to be:

[ rede=y sy
i=1

where
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M number of points of integration
X; point of integration or sampling
W; coefficient of weight.

The width of a rectangular strip with a height of f{x;) can be regarded as the weighing
coefficient. This form can be used to express any numerical integration. The integration
domain is standardised to —1 < x < —1 in order to generate standard values for the
integration points and weighting coefficient.

As aresult, the stiffness and mass matrices are mixed in the following way:

1 pl
[K.1=[ | [BYLDIBJ] ded

1 pl
[p.1= [ | INTLPINY | dédy

The Jacobian matrix |J] has the following definition:

dx dy

dé  dé
[J]1=

& dy

dn dn

Here, generalised coordinates x and y are used, while natural coordinates ¢ and # are
used.



