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Abstract: Gait analysis compares the gait characteristics of people with health 
issues to those of a control group in order to detect gait abnormalities. This 
comparison is carried out by evaluating a number of gait parameters with 
discrete values. Gait data, on the other hand, is time-series data and must be 
assessed using a different approach. The purpose of this study was to develop a 
quantitative measure that takes into account time-series data for comparing the 
gait characteristics of two groups of individuals using clustering. The gait data 
were collected using an optical motion capture system. An adaptive  
density-peaks clustering technique with a shape-based similarity measure was 
employed to compare gait characteristics. The results demonstrate that the 
proposed adaptive density-peaks clustering technique, which employs dynamic 
derivative time wrapping distance measurement, outperforms three  
state-of-the-art clustering algorithms for comparing the gait characteristics 
using time-series gait data. 
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capture system; biomechanics. 
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1 Introduction 

Gait analysis plays a crucial role in diagnosing and rehabilitating patients with movement 
disorders (Papi et al., 2018). The terms ‘kinematics’ and ‘kinetics’ are used to describe 
the gait patterns. Kinematic gait parameters describe the linear and angular displacement, 
velocity, and acceleration of motion captured using multiple optical cameras, whereas 
kinetic parameters collected from force platforms describe the forces that cause motion 
and joint moments. Both parameters comprise valuable quantitative information in gait 
pattern analysis. 

Traditional clinical gait analysis is used to compare gait characteristics and identify 
gait pattern differences in spatiotemporal, kinematic, and kinetic gait parameters of 
people with particular health conditions (e.g., post-stroke, cerebral palsy, autism 
spectrum disorder, etc.) using multiple gait cycles. This comparison analysis is usually 
done using descriptive statistics and independent t-tests. Pogemiller et al. (2020) 
investigated if differences exist in gait patterns between Charcot-Marie-Tooth (CMT) 
disease type I and type II in childhood to young adults using a two-tailed Student t-test 
(Pogemiller et al., 2020). Starbuck at al. (2021) used the Shapiro-Wilks test to determine 
whether or not walking patterns varied between individuals with late-onset Pompe 
disease. Discrete outcome measures such as maximum hip adduction angles during stance 
and maximum sagittal and frontal hip, knee, and ankle angles during stance were 
obtained from the kinematic and kinetic data. Fujita et al. (2020) assessed women’s gait 
characteristics with distal radius fracture (DRF) using a Student t-test for continuous 
variables and the Chi-square tests for categorical variables. Krauss et al. (2012) compared 
gait variables for knee joint kinematics in subjects with knee osteoarthritis and healthy 
controls using paired t-test (Krauss et al., 2012). Wu et al. (2021) investigated the effects 
of levodopa on mild parkinsonian symptoms patients’ gait performance (MPS). They 
conducted an acute levodopa challenge test to determine the effect of levodopa on the 
gait performance of (MPS) using the Kolmogorov–Smirnov test. Khan et al. (2020) 
examined if repeated movements used in sports training had an effect on children’s gait. 
They examined the gait patterns of physically active children to those of age-matched 
controls. To evaluate their walking patterns, a motion capture and analysis system and a 
student t-test were utilised. However, traditional gait analysis uses discrete values such as 
mean, maximum, and range of gait parameters extracted from a sequence of gait data and 
neglects essential gait information embedded in the dynamic sequences. Gait data, on the 
other hand, is a time series that is an ordered sequence of values of a gait variable at 
equally spaced time intervals. Thus, the analysis of time-series gait data requires a more 
appropriate approach to investigate gait alterations. Hence, researchers have used other 
methods to analyse time-series gait data such as attractor attributes, nonlinear dynamics 
analysis (Iqbal et al., 2015), multifractal analysis, cross-correlations (Muñoz-Diosdado, 
2005), maximal Lyapunov exponent (Vieten et al., 2013), and clustering. However, the 
examination of pattern similarity for time-series data is a challenging task. 

Among these methods, clustering is one of the well-known unsupervised methods in 
data mining that does not require a prior knowledge of group allocation and has been 
applied to analyse and quantify various time-series data such as the electrocardiogram 
(ECG) (Hautamaki et al., 2008) and gait data (Kuntze et al., 2018; Zgolli et al., 2018). 
Syczewska et al. (2021). performed a clustering analysis to categorise the patients based 
on the gait characteristics and indices analysed. The clustering was accomplished through 
the use of connectivity-based clustering and the weighted group approach using medians 
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(averaged linkage clustering). Yeh et al. (2010) proposed a simple fuzzy c-means based 
method for clustering the heartbeats from ECG signals. Tseng et al. (2020) analysed the 
possible relationship between common aging diseases such as diabetes, obesity, and 
hypertension using participants’ ECGs. They implemented K-means clustering which is 
one of the most common clustering algorithms used for time-series data. The gait pattern 
of children with cerebral palsy was clustered using sparse K-means by Abbasi et al. 
(2020). Their clustering approach presented that it was capable of weighting and ranking 
the influential variables inside the clustering. However, this conventional method uses the 
statistical means as the centres of the clusters resulting in clusters that are not 
interpretable and fluctuate due to random initialisation. To overcome this problem, 
Arthur et al. (2007) proposed the k-means++ algorithm that initialises the centroids far 
away from each other to avoid some poor clustering that the original k-means causes. As 
an alternative to these two algorithms, k-medoids was introduced. Huy et al. (2016) 
presented an efficient implementation of k-medoids clustering for time-series data with 
dynamic time wrapping (DTW) distance measurement. The idea behind this method was 
to use the actual members of the dataset as clusters’ centres (Hautamaki et al., 2008; 
Niennattrakul and Ratanamahatana, 2007). K-medoids is simple, effective, and robust to 
outliers, however, it is unsuitable for clustering arbitrary shaped groups of objects. 
Although k-means, k-menas++, and k-medoids are simple to run, they are not highly 
accurate with noisy data. Density-based spatial clustering of applications with noise 
(DBSCAN) Ester et al. (1996) was presented to overcome some of the drawbacks 
mentioned above. DBSCAN does not require the number of clusters specified by users 
and typically has higher accuracy than k-means. Wang et al. (2021) proposed a model for 
QRS detection in ECG signals based on U-Net and DBSCAN that comprise of three 
steps: preprocessing, building a U-Net model, and spatial clustering of applications with 
noise using density-based clustering (DBSCAN). Unlike conventional techniques, the  
U-net model can extract features automatically with little preprocessing and user 
adjustments. Following U-Net prediction, DBSCAN was capable of achieving clusters to 
find the R-peaks in the absence of knowledge of the number and duration of the QRS 
complexes. To accomplish non-invasive blood glucose monitoring and 
prediabetes/diabetes screening using ECG, Li et al. (2021) developed a method of 
combining DBSCAN and CNN (DBSCAN-CNN). The results indicated that the 
percentages of correct categorisation were increased. However, its drawbacks are 
ineffective distance measure, high computation cost, and inability to cluster data with 
different densities. Finally, the density-peaks clustering algorithm proposed by Rodriguez 
and Laio (2014) in 2014 has recently become popular due to its insensitivity to the 
‘density parameter.’ Regardless of the shape or dimensionality of the data, the  
density-peaks technique groups it into clusters in a single step. Cluster centres have a 
higher density than surrounding areas and are separated from sites with higher densities 
by a relatively considerable distance (Jiang et al., 2019). However, several challenges 
remain and need to be addressed. The first and most important one is that the arbitrarily 
defined cut-off distance might affect the local density of data points, resulting in 
misclassified data points. 

The main motivation of this paper is the presentation of a study that aims to develop a 
quantitative method that incorporates time-series gait data analysis, in contrast to the 
traditional gait analysis approach, in order to investigate gait pattern alterations 
associated with a specific target group using an adaptive density-peaks clustering 
approach. Specifically, this study investigated which gait parameters significantly 
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differed on the target group and contributed to separate gait patterns for individuals in 
this group. The proposed method was first validated using synthetically generated time 
series control charts and then applied to the gait data collected from target and control 
groups; 5–12 years old children active in sports, and an age-matched control group, 
respectively. Gait data were collected in a motion capture and analysis laboratory using 
ten optical cameras and two force platforms. 

2 Methods 

2.1 Participants 

A total of 24 children aged 5–12 years old participated in this study. Of these, 14 children 
(eight girls, six boys) with a mean age of 10.1 ± 2.3 years, a mean height of 152.1 ± 14.9 
cm, and a mean weight of 46.3 ± 18.4 kg were considered active in sports, particularly 
swimming with regular daily training. The control group comprised an additional ten 
children (five girls, five boys), with a mean age of 9.7 ± 1.14 years, a mean height of 
146.2 ± 8.9 cm, a mean weight of 38.6.0 ± 7.6 kg, and no regular training in any sports at 
the time of data collection. All participants were able to walk freely without the use of a 
cane or mechanical aid and injury-free at the time of data collection. 

2.2 Data collection 

The current study was approved by the University’s institutional review board. 
Participants and their parents were given verbal explanations about the purpose and 
methods of the study before signing written informed consent forms. The data was 
gathered in the motion capture and analysis laboratory. The three-dimensional trajectories 
of reflective markers placed on the participant’s skin were tracked using a ten-camera 
Vicon optical motion capture system (Oxford Metrics; Oxford, UK) sampling at 100 Hz. 
To collect kinetic data, two 60 cm wide, 90 cm long, and 15 cm tall force plates (Bertec; 
Worthington, OH, USA) with a sampling frequency of 1000 Hz were used. 

The lower body plug-in model Vicon Curzon-Jones and Hollands (2018) was used as 
a guide for marker placement. 16 reusable, reflective markers have been applied to the 
body with double-sided adhesive tape. Table 1 contains a collection of marker names, 
descriptions, and locations. The body weight was measured with a weight measurement, 
and the height was measured with the wall-mounted stadiometer before starting the data 
collection. A measuring tape and a vernier caliper were used to measure leg length, knee 
width, and ankle width. Once body measurements were collected, the anthropometrical 
data was entered as input for the subject information in the Vicon Nexus 2.6 software. 
Several practical trials were conducted to acclimate participants to the laboratory setting. 
The data collection rate was set to 100 samples per second, and the children were urged 
to complete at least eight trials. Five of the participant’s best trials were chosen for 
analysis, with best defined as a trial in which the person stepped on each force plate once 
without glancing down at their feet and walked at their normal pace. The trials took place 
on an unmarked 16-foot corridor within the motion capture and analysis facility. Each 
participant was assigned a starting position. The start line was placed eight feet from the 
centre of two force plates, allowing participants to reach steady-state velocity before 
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reaching the force plate region. They were instructed to walk at a comfortable pace, 
looking straight ahead, not down, and to foot just once on each force plate. 
Table 1 Vicon plug-in gait lower body marker configuration adapted from Vicon 

documentation 

Marker 
label Definition Position on body 

LASI Left ASIS Left anterior superior iliac spine (ASIS) 
LPSI Left PSIS Left Posterior superior iliac spine (PSIS) 
RASI Right ASIS Right anterior superior iliac spine (ASIS) 
RPSI Right PSIS Right Posterior superior iliac spine (PSIS) 
LTHI Left thigh Over the lower lateral 1/3 surface of the left thigh 
LKNE Left knee On the flexion-extension axis of the left knee 
LTIB Left tibia Over the lower 1/3 surface of the left shank 
LANK Left ankle On the lateral malleolus along an imaginary line that passes through 

the transmalleolar axis 
LHEE Left heel On the calcaneous at the same height above the plantar surface of the 

foot as the toe marker 
LTOE Left toe Over the second metatarsal head, on the mid-foot side of the equinus 

break between fore-foot and mid-foot 
RTHI Right thigh Over the upper lateral 1/3 surface of the right thigh 
RKNE Right knee On the flexion-extension axis of the right knee 
RTIB Right tibia Over the upper 1/3 surface of the right shank 
RANK Right ankle On the lateral malleolus along an imaginary line that passes through 

the transmalleolar axis 
RHEE Right heel On the calcaneous at the same height above the plantar surface of the 

foot as the toe marker 
RTOE Right toe Over the second metatarsal head, on the mid-foot side of the equinus 

break between fore-foot and mid-foot 

2.3 Data analysis 

After collecting data with the motion capture system, gait events were determined using 
force plates that detected foot-strike and foot-off events. The system identified markers 
based on the lower body marker configuration, and spatiotemporal parameters were 
computed using the Vicon Nexus 2.6 software. To confirm that the markers were 
properly labeled, the procedure begins with calculations using the static plug-in gait 
pipeline, followed by the plug-in gait dynamic pipeline. The start and endpoints of 
dynamic trials were modified to give sufficient continuous data, and any gaps in the 
dynamic trials were filled to get an appropriate model. After processing the data with the 
Nexus 2.6 program, the data was transferred to visual 3-D software, where a standard gait 
model was constructed to capture all the gait kinematic and kinetic parameters. To offer a 
more complete picture of the gait cycle, data from both the right and left sides were 
incorporated. Each individual received five successful trials. While being retrieved, all 
the spatiotemporal, kinematic, and kinetic data were z-normalised, and time normalised 
in Visual 3-D. To remove the high-frequency components in the signal, the kinetic data 
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were filtered using a fourth-order, zero-lag, low-pass Butterworth filter with a cut-off rate 
of 6.0 Hz. Figure 1 depicts a representative sample of a subject’s normalised gait 
kinematic. 

Figure 1 The processed gait data of a subject in x, y, and z directions and the product of them 
respectively (see online version for colours) 

 

Note: right hip angle. 

A correlation filter technique presented by Curzon-Jones and Hollands (2018) was 
employed to exclude significantly related features from our cluster analysis. The filter 
approach detects and filters strongly linked characteristics automatically, depending on a 
user-defined threshold value, using the pairwise Pearson correlation function. 34 
spatiotemporal, kinematic, and kinetic gait characteristics remained after this analysis to 
be employed in clustering. (The parameters are labeled in Figures 2 and 3). 

2.4 Analysis of time series gait data  

We present a clustering-based method to compare the gait kinematics and kinetics of two 
groups of subjects. Clustering is an unsupervised method that analyses data and groups 
them into clusters. The clustering, given a dataset of n data points T = {t1, t2,…tn}, the 
process of unsupervised partitioning of T into C = {C1, C2,…Ck}. In such a way that 
homogeneous data is grouped together based on a specific similarity metric. Then, Ci is 
called a cluster, 

Where 1
k

i i jiT U C and C C for i j== ∩ = ∅ ≠  (1) 

As a first step of the proposed method, a shape-based distance metric, derivative dynamic 
time warping (DDTW) Keogh and Pazzani (2001) is used to calculate similarities 
between two time-series gait data before grouping them into clusters. The traditional 
dynamic time warping (DTW) has been successfully used in many domains, but it might 
also provide pathological results. The main drawback observed in DTW is trying to 
explain the variability in the y-axis by warping the x-axis, resulting in misalignments 
where a single point on one time series maps onto a large subsection of another time 
series. However, this can be prevented by not considering the y-values of data points in 
DDTW. In the DTW, time normalised distance between two time series data A and B is: 

( ) ( )
( )

1

1

, . ,
( , )

,

n
i i i ii

n
i ii

d q c w q c
D A B

w q c
=

=

 
 =   
 


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 (2) 
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where n represents the number of observations in each time series, d (qi, ci) is the distance 
between qi and ci and w(qi, ci) is a weight between qi and ci. The best alignment path 
between A and B is: 

( )0 arg min ( , )PP D A B=  (3) 

The distance measured (qi, ci) obtained using the DDTW is the square of the difference 
between the estimated derivatives of qi and ci. The following estimate method is used 
because it is more resistant to outliers. 

( )1 1 1( ) ( ) / 2[ ]       1
2

i i i i
x

q q q q
D q i m− + + − −+

= < <  (4) 

where m is the number of data points in the squence. This estimate is just the average of 
the slopes of the lines connecting the point and its left neighbour, as well as the slopes of 
the lines connecting the point and its left neighbour and right neighbour. 

DTW and DDTW are used to transform time series data to the upper triangular 
matrices (Dm) that show the DTW and DDTW distances between each subject and trial, 
Tn =(1, 2 ,…, n) for each gait parameter for the clustering analysis. 

Density-peaks clustering Li et al. (2021) seeks to discover cluster centres having a 
larger density than surrounding regions in a single step, independent of the form of the 
data. As a result, they have a significant distance to places with a larger density. Densities 
are determined using a cut-off kernel, with neighbourhood specified by a predefined 
cutoff distance (dc). This specifies a hyperball with a dc) radius in D-dimensional space. 
The algorithm then determines the number of data points contained within this ball. Three 
essential parameters must be considered; ρi is the local density of data point i; δi is the 
minimum distance between data point i and other data points with higher density; and γi = 
ρi x δi is the product of the other two (Rodriguez and Laio, 2014). The original algorithm 
selects k points as the cluster centres based on ρ and δ. This is because cluster centres are 
expected to have a high value for both of them. However, it was not defined how exactly 
the selection should be made. In general, the problem is how to threshold the selected 
feature δ. We are proposing an adaptive cut-off distance to find this value. Cluster centres 
are assigned based on density and minimum distance in the original algorithm. This is 
due to the fact that cluster centres are anticipated to have a high value for both. However, 
it was not specified how the decision should be done precisely. In general, the issue is 
how to determine the threshold for the selected minimum distance. Thus, we propose 
using an adaptive cut-off distance to determine this value. 

Let M ={x1, x2,…, xn} a dataset with n data points. Each xi has M attributes. 
Therefore, xij is the jth attribute of a data point xi. The Euclidean distance between the 
data points xi and xj can be expressed as follows: 

( ),ij i j i jd d x x x x= = −  (5) 

The local density ρi of the data point xi is defined as 

( )( ),i i j cj i
d x x dρ ω

≠
= −  (6) 

with 
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x
< 0

ω
0, > 0


= 


 (7) 

where dc is the cut-off distance. In fact, ρi is the number of data points adjacent to the data 
point xi. The minimal distance δi between data point xi and any other data points xi’ with a 
higher density ρi’ is given by 

( )
( )

'
'

:

' '

min , , . .

max ,
i i

i
ij iij

i
i ii

d if s t i

d otherwise
ρ > ρ ρ > ρ

δ
 ∃= 


 (8) 

The local density is computed using the following equation: 
2

2
ij

i j c

d
exp

d
ρ

 
= − 

   (9) 

An adaptive cut-off distance is formulated as exponential moving average and used to 
eliminate the influence from the cut-off distance, as follows: 

1 1
1 1

i i
c c

s sd Vt d
n n

−      = + −      + +      
 (10) 

where i
cd  is the cut-off distance at data point i 

Vt the value of data point i 
1i

cd −  the cut-off distance at data point i-1 

s smoothing factor which follows the formula: [2∕(selected #of points to be 
averaged + 1)] and n is the number of points to be averaged. 

2.5 Validation of the proposed method 

The accuracy of the proposed method was first tested externally using a synthetic dataset. 
The proposed method’s results were then evaluated internally based on the collected gait 
data. The two most practical internal cluster validation methods are used to evaluate the 
results, Dunn Index (DI) (Dunn, 1973) and Silhouette Index (SI) (Rousseeuw, 1987). 

The DI aims to identify sets of clusters with a slight variance between the cluster’s 
data points and well separated, where the centres of different clusters are far apart from 
each other. A higher (DI) value indicates a better clustering. 

The DI for c number of clusters is defined as: 

( )
( )

min
1 1 max

1

,
min

 l

i j
i k i j k diam c

l k

dist c c
DI ≤ ≤ + ≤ ≤

≤ ≤

  
=      

 (11) 

where 

dist(ci, cj) is the distance between cluster c_i and c_j where 

dist(ci, cj) = min
, xi ci xj cj∈ ∈ d(xi, xj), where 
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d(xi, xj) the distance between data points  xi∈ci, xj∈cj 

diam(cl) the diameter of the cluster cl, where 

( ) ( ) )
1 2

1 1 2,
max ,

xl xl cl
diam c d xl xl

∈
=  

The SI for each point, on the other hand, indicates how similar it is to members of its own 
cluster when compared to data points from other clusters. The silhouette value SIi for the 
ith point is defined as 

( )( ) max ,i i i i iSI b a a b= − ⁄  (12) 

where ai is the average distance between the ith point to the other points in the same 
cluster as i, and bi is the minimum average distance from the ith point to points in a 
different cluster minimised over clusters. The silhouette value ranging from –1 to 1 
shows that i is well suited to its own cluster but not well correspondent to others. If it 
approaches one, the data point is assigned to a suitable cluster. If it is close to –1, it 
indicates that data has been misassigned. Finally, if it is close to zero, the data point may 
be assigned to additional clusters. 

3 Results 

The statistical analyses were conducted using MATLAB 2020a custom code. The 
proposed method’s accuracy was first tested externally using a dataset that contains 600 
examples of control charts (Pham and Chan, 1998) with six different classes. For the time 
series pattern, z-normalisation is an essential pre-processing step that allows the warping 
techniques or the clustering techniques to be applied to mainly focus on the structural 
similarities or dissimilarities rather than on the amplitude-driven ones. Z-score 
normalisation is a process of normalising the data that mainly to avoid the outlier issue. It 
transforms the data by converting the data to a common scale where an average number 
equals zero, and a standard deviation is one. The formula used for Z-normalisation is 

given by, ,value μz
σ

−=  where μ is the mean value of the feature and σ is the standard 

deviation of the feature z-normalisation makes the features of the data less sensitive to the 
outliers in contrast to the min-max scaling. 

After data normalisation, the proposed model and three other state-of-the-art 
clustering algorithms, k-means, k-medoids, and DBSCAN, were executed to measure the 
inter-cluster distances and intra-cluster distances. Figure 2 presents a graph of DI values 
(y-axis) as a function of the number of clusters (x-axis) for different clustering 
algorithms. However, the main interest was to measure DI values for six clusters, as we 
know there are six different data groups in the control charts dataset. Because of this, all 
the clustering techniques performed weakly for the other numbers of clusters. From graph 
(a), it is clear that the proposed algorithm reached out to the highest DI values in DDTW 
(DI = 0.9986) but the second-highest DI value in DTW (DI = 0.6324). K-medoids also 
equally performed with the proposed model in DDTW (DI = 0.9845) but better in DTW 
(DI = 0.9245). However, as seen from the graphs, DI values are much higher in DDTW 
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than DTW in general. These results indicate that DDTW might perform better over DTW 
using our gait data. 

Figure 2 Comparison of Dunn’s indexes of the proposed method along with three other state-of-
the-art clustering methods using (a) DTW and (b) DDTW on control charts with six 
classes (see online version for colours) 

 
(a)     (b) 

Note: y-axis-di and x-axis=#of clusters. 

After validating the proposed method using the synthetic dataset, the method was applied 
to the study of participants’ gait data. Before this process, a one-way analysis of variance 
(ANOVA) test was run to assess if participants in the study have similarities in height, 
weight, and age. No significant differences were found for age (F= 1.22, P= 0.23), height 
(F = 0.67, P = 0.10), or weight (F = 1.8, P = 0.13). Therefore, the two groups’ 
characteristics were considered matched because all the P-values were greater than 0.05. 

A total of 120 gait trials were collected from all the participants. Thus, the size of the 
distance matrices for each gait parameter was 120 by 120. The number of clusters was set 
to two because the aim was to identify differences between the two subject groups. After 
building DDTW based distance matrices, the proposed model with traditional clustering 
algorithms, k-means, k-medoids, and DBSCAN, were applied to group these calculated 
distances into two clusters representing the target and control groups. Each gait parameter 
was clustered independently. If the data points are cumulated together and very close to 
each other, the target group’s gait pattern in that gait parameter is similar to the control 
group. Otherwise, a significant difference occurs. We also compared the performance of 
the proposed model with traditional clustering algorithms using DTW and DDTW 
distance measurements. The only input for the proposed model was the pair distance 
metrics between datapoints. A maximum of 200 iterations was run to execute the  
k-means algorithm. Random two points representing the two clusters were also initialised 
while executing k-means. To execute the k-medoids algorithm, the partitioning around 
medoids algorithm (PAM) was used [reference]. In contrast to the k-means algorithm, the 
PAM selects data points as centres. The PAM algorithm is based on searching all dataset 
elements for k numbers of medoids. For DBSCAN, three parameters were specified as 
the number of minimum points: 5, epsilon: 0.5, and the distance function: euclidian. 

The cluster results were measured with the DI using DTW and DDTW, as shown in 
Figures 3 and 4, respectively. The value of both indexes is from 0 to 1, and as the value is 
higher, the greater the result of the cluster. The primary aim of the DI measurement is to 
maximise the distance between clusters while minimising the distances within the cluster. 
If a threshold for this fit is specified, we can check if the results of the cluster are 
applicable by comparing their respective threshold value and the threshold value can 
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influence the outcome of the assessment. We set DI levels to 0.7 in order to keep a more 
precise clustering result (Huang et al., 2014). 

Figure 3 Dunn index for internal clustering validation using DTW measurement (see online 
version for colours) 

 

It can be observed in Figure 3 that only a single parameter, ankle dorsiflexion was able to 
reach a higher DI that indicates the distances between data points in the target and control 
groups are maximised by all four algorithms. Although some of the DI values of the 
clustering methods were close to or higher than the 0.7 threshold value, none of the 
clustering methods could group gait parameters into two clusters, except ankle 
dorsiflexion. For instance, DI of the proposed method, k-means, k-medoids, and 
DBSCAN were higher than the threshold, 0.9240, 0.7843, 0.8756, and 0.7182 on ankle 
dorsiflexion, respectively. DI value gathered for cycle time was very close to the 
threshold value for the DBSCAN method, 0.6812. Similarly, DI for knee power and 
eccentric ankle power for DBSCAN were 0.6353 and 0.5677, respectively. The chart also 
shows that DIs for pelvic tilt given by the proposed model (DI=0.6357) and k-means  
(DI = 0.6678) were promising. This was also true for hip flexion obtained by the 
proposed model (DI = 0.6834), k-means (DI = 0.6634), and k-medoids (DI = 0.6315). 
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The same experiment was run using the DDTW similarity measurement. As seen in 
Figure 4, seven gait parameters were grouped into two clusters with higher DI values by 
the proposed model. These gait parameters are pelvic tilt-degree (DI = 0.8450), hip 
flexion-degree (DI = 0.8055), hip abduction-degree (DI = +0.8678), knee flexion-degree 
(DI = 0.7156), ankle dorsiflexion-degree (DI = 0.7465), ankle plantarflexion  
moment-Nm/kg (DI = 0.8289), and concentric ankle power-W/kg (DI = 0.9480) with 
have a higher index that indicates the distances between data points in the target and 
control groups are maximised. It can also be observed that there is a consistency with 
these gait parameters among the other clustering methods. DIs for the same gait 
parameters obtained by the other clustering methods were either higher than the threshold 
or very close to the threshold value. For instance, DIs for the concentric ankle power for 
all the clustering methods were higher than the threshold, proposed model (DI = 0.9480), 
k-means (DI = 0.8280), k-medoids (DI = 0.7215), and DBSCAN (DI = 0.8775). 

Figure 4 Dunn index for internal clustering validation using DDTW measurement (see online 
version for colours) 

 

The SI also supports DI results. Figure 5 shows only the significant gait parameters with 
higher DI values between the two groups with their cluster medians. As shown in the 
figure, SI values are for pelvic tilt-degree (sport trainees median = 0.9387 and control 
group median = 0.9299), hip flexion-degree (sport trainees median = 0.9198 and control 
group median = 0.9144), hip abduction-degree (sport trainees median = 0.9092 and 
control group median = 0.9155), knee flexion-degree (sport trainees median = 0.8778 and 
control group median = 0.8682), ankle dorsiflexion-degree (sport trainees median = 
0.9156 and control group median = 0.9188), ankle plantarflexion moment-Nm/kg (sport 
trainees median = 0.9214 and control group median= 0.9290), and concentric ankle 
power-W/kg (sport trainees median = 0.9050 and control group median = 0.8935). These 
high SIs indicate that a data point is well matched to its own cluster and poorly matched 
to another cluster. Thus, the clustering solution is appropriate. 
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Figure 5 Clustering evaluations in terms of silhouette index (SI) (see online version for colours) 

 

4 Discussion 

This study presented a density-peaks clustering algorithm using an adaptive cut-off 
distance based on the exponential moving average to compare gait parameters of two 
groups of children. This algorithm was also compared with the other three state-of-the-art 
clustering algorithms using different similarity measurements, DTW and DDTW. The 
main contribution of this work is that it incorporated a clustering algorithm to analyse 
gait data, unlike other research works that have used descriptive statistics and 
independent t-tests that neglect essential gait information. The time-series gait data 
should and can be analysed by a more appropriate approach, such as the proposed 
adaptive density-peaks clustering algorithm using DDTW distance measurement. 
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There are several advantages to using the proposed adaptive density-peaks clustering 
algorithm over other well-known clustering techniques. Unlike DBSCAN, it identifies 
density-peaks as points surrounded by enough other points with lower density by 
detecting outliers of a density-distance plot. As a result, it seeks a greater distance 
between two density-peaks, and this distance must be greater than the distance between 
another arbitrary point. Many clustering algorithms require the user to set many 
parameters. For instance, k-means and k-medoids require assigning randomly selected 
initial points and iterations to execute the algorithms, but these parameters are intuitive 
and particularly sensitive to user choice. Randomly selecting initial points for each 
centroid might result in different clusters. In contrast, the density-peaks algorithm 
requires only one input, cut-off distance. However, this cut-off distance can affect the 
local density of data points, influencing the clustering results. We addressed this problem 
by developing an adaptive cut-off distance using an exponential moving average in our 
work. Thus, we eliminated defining intuitive cut-off distance by users. Compared with 
other clustering approaches, the proposed density-peaks clustering algorithm achieved the 
highest DI and SI values that mean data points in each cluster were well matched to its 
own cluster. 

Traditional DTW has been used successfully in a variety of domains for time-series 
data clustering, but it might also provide pathological results. The main drawback 
observed in DTW is trying to explain the variability in Y-axis by warping X-axis. This 
can result in counterintuitive alignments. However, this problem can be prevented by not 
considering the Y-values of data points in DDTW. We evaluated this by running the 
proposed algorithm using DTW and DDTW as the similarity measurements. To do that, 
we used a publicly available dataset that contains 600 examples of control charts with six 
different classes. Among the four clustering algorithms that we tested, only k-medoids 
and density-peaks clustering using DDTW were able to group data points into six clusters 
with very high accuracy; DI values were 1 for both methods. The number of clusters that 
were correctly identified using DTW was just two. As a result of our findings, we can 
conclude that DTW is inaccurate and should not be considered as a subroutine in 
DBSCAN, density-peaks clustering, or k-means. However, it performed well with  
k-medoids. 

To the best of our knowledge, no work has examined gait differences between two 
groups of children using clustering. Our main findings revealed that five key kinematic 
and two kinetic parameters, including pelvic tilt (degree), hip flexion (degree), hip 
abduction (degree), knee flexion (degree), ankle dorsiflexion (degree), ankle 
plantarflexion moment (Nm/kg), and concentric ankle power (W/kg), differ between 
children participating in sports and age-matched control groups, with no difference in 
spatiotemporal data. The clinical research backs up the findings of this clustering 
analysis. Below, we discuss possible explanations for these findings. 

Because of repetitive adduction, athletes place a great deal of strain on their hip 
adductor muscles during training and competition (Keskinen et al., 1980; Grote et al., 
2004; Pollard and Fernandez, 2004). As a result, a number of musculoskeletal injuries 
associated with this repetitive motion have been documented (Kennedy et al., 1978; 
McMaster and Troup, 1993; Grote et al., 2004). Because of the additional stress placed 
on those muscles by sports trainees, the repetitive adduction activated by hip adduction 
muscles may also affect gait patterns. During walking, the ankle usually moves in the 
sagittal plane. Each gait cycle includes two stages of plantar flexion and dorsiflexion. 
Sports trainees have greater ankle flexibility than other novice children, which explains 



   

 

   

   
 

   

   

 

   

    Adaptive density-peaks clustering for gait analysis 159    
 

    
 
 

   

   
 

   

   

 

   

       
 

why the ankle plantarflexion moment, concentric ankle power, and ankle dorsiflexion 
differ between these two groups in our findings (Johnson et al., 1987). In each gait cycle, 
the knee also goes through two phases of flexion and extension. The results revealed that 
the target group’s knee joint kinematics patterns differed from those of the control 
groups. Sports trainees’ knees have excessive thigh abduction due to hip and knee flexes, 
according to Stulberg et al. (1980). 

In each gait cycle, only one arc of hip extension and flexion occurs. Our findings also 
revealed that hip flexion during the stance phase differed between the target and controls. 
Even though the upper limb produces the majority of the force in many sports, lower limb 
joints are used in tandem with the upper limb to produce maximum force (Stulberg et al., 
1980), affecting sports trainees’ hip movement and stability. Sport trainees are also 
subjected to extreme stress on the hip abductor muscle as a result of repetitive adduction 
during their activities, which may explain differences in their gait patterns. The pelvis 
moves in all three planes while walking, and the magnitudes of pelvic motion are affected 
by walking speed (Lewis et al., 2017). The sagittal plane pelvic tilt effect suggests that 
both groups may use different control strategies while walking. Significant changes in 
pelvic tilt may result in differences in hip kinematics, as the pelvis is important in 
balancing the centre of the body’s mass during progression. These findings may indicate 
that the control group shifts the body mass centre further than the target group leading to 
greater anterior pelvic inclination and bending of the hip in the two phases (Kindregan  
et al., 2015). For a variety of reasons, sports trainees may be less forward, including tight 
hip flexors/extender muscles. Hip extensor weakness, hip flexor contracture, or the 
spasticity of the hip flexor and balance and distal deformity can all cause anterior pelvic 
tilts (Brunner and Rutz, 2013). As the spatiotemporal parameters for our participants 
were not different for both sides, the difference in the structure of the participant’s body 
could hardly be determined and played a role. 

Although the accuracy achieved appears to be impressive, the proposed algorithm can 
be improved further by incorporating some other methods for calculating the densities of 
the data points. Optimisation techniques can also be used to improve the effectiveness of 
the proposed clustering method. Users must also decide on the number of clusters, but a 
manual selection of cluster centres can influence the clustering result. This issue must be 
addressed in the future. 

5 Conclusions 

The study made two significant contributions:  

1 developing an effective quantitative method for analysing time-series gait data in 
order to investigate the gait patterns of children participating in sports 

2 improving the density peak clustering algorithm by incorporating an adaptive cut-off 
distance measure. In this article, an extensive comparison of four clustering 
algorithms on DTW and DDTW distance measurements has been made for gait 
datasets collected from our motion capture laboratory. 

This study demonstrates that the proposed density-peaks clustering-based method using 
DDTW distance measurement outperforms the other three state-of-the-art clustering 
algorithms and is a viable means to compare gait parameters of individuals from two 
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groups. Our clustering method is density-peaks-based, but cut-off distance is adaptive 
and initial input to execute the method is unnecessary. Out of all the accuracies obtained, 
pelvic tilt, hip flexion, hip abduction, knee flexion, ankle dorsiflexion, ankle 
plantarflexion moment, and concentric ankle power differ between sports trainees and 
age-matched control groups. In the future, we plan to improve the proposed method’s 
effectiveness by employing optimisation techniques. 
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