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Abstract: An experimental campaign aimed at defining mechanical
parameters of rammed earth is reported. Compressive strength, Young’s
modulus and Poisson’s coefficient are determined on prismatic specimens.
Indirect tension tests and three-point bending tests are carried out as well.
The size and shape of specimens are accurately controlled to gain consistent
results among tests. Interpretation of test results assumes that rammed
earth material has two Young’s moduli, in tension and compression. In
this framework, closed-form solutions for displacements and position of the
neutral axis are properly derived from expressions of the displacement field
assuming both Euler-Bernoulli and Timoshenko beam models, and hence
retrieving the value of Young’s modulus in tension. Results show that the
assumption of bi-modulus material provides estimations of longitudinal stress
reached during three-point bending tests as consistent with compression and
split tests. Also, the Timoshenko model provides slightly less conservative
estimations of Young’s modulus in tension.
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1 Introduction

Collecting soil and arranging it into to erect a shelter against external environment
is as ancient as human being and widespread all over the world under kaleidoscopic
changeable forms. A third of global population, roughly two billions of people settled in
more than 150 countries, lives or works in earthen buildings, homogeneously diffused at
every latitude with very adaptable shapes, from poor settlements to monumental heritage
or contemporary architectures (Houben and Guillaud, 1994; Fratini et al., 2011; Rovero
and Tonietti, 2012; Gamrani et al., 2012; Rovero et al., 2009; Rovero and Tonietti,
2014; Rovero et al., 2020; Boostani et al., 2018; Azil et al., 2020; Liberotti et al., 2016;
Fratini et al., 2015). Over 10% of the World Heritage properties incorporate earthen
structures. CRAterre (International Centre on Earthen Architecture) reports that raw
earth remains today the most widespread building material all around the world. The
main resource employed, raw earth, is intrinsically non-polluting and buildings based
on it can provide liveable micro-climates in extremely warm contexts due to the good
thermal and acoustic isolation properties. Earth is the most affordable resource to build
with, and as a result, employing it extensively can contribute to poverty alleviation and
sustainable development (UNESCO, 2017). According to the Scopus research database,
investigations of earthen-based building materials and technologies has increased
markedly in the last two decades; just journal articles pass from a few per year to several
tens, only as far as concerns engineering, material and environmental sciences. Among
the most debated issues, there are mechanical behaviour, e.g., compressive strength
determination and soil selection, structural response against seismic loads, durability and
thermal conductivity of earth.

Despite the several advantages, earthen material can in fact exhibit undesirable
drawbacks such as reduced mechanical capacity compared to other building materials,
deterioration due to moisture and weathering erosion (Minke, 2005). Nonetheless, the
low-price combined with the high availability and sustainability of this technology
suggests how relevant is, on one hand, to implement new earthen buildings, and on the
other, to calibrate adequate strengthening methods for the protection of monuments and
historical constructions. To these aims, a better understanding of mechanical behaviour
is deemed necessary.

Earthen structures can counteract mechanical compressive actions efficaciously when
low rise buildings with massive walls are implemented. Tensile forces are by far
more dangerous and even moderate earthquakes can cause catastrophic effects, e.g.,
Langenbach et al. (2005). In historical earthen buildings, seismic vulnerability has been
traditionally mitigated employing different techniques, most of them are based on the use
of wood elements. Strengthening systems based on the use of wood are widely spread
among several building cultures all around the world. These systems are investigated, for
example, in Lourenço et al. (2019), Cancino et al. (2014), Briceño et al. (2019), Vissilia
and Villi (2010) and Misseri et al. (2020) and also recommended by some standards and
self-building codes (IAEE, 2004; NMAC, 1982). Wooden tying systems are considered
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beneficial in activating global response of buildings (Ortega et al., 2017). However,
specific evaluations are not so widespread. Michiels (2015) catalogues available timber
strengthening systems and Ortega et al. (2018) try to interpret their contribution through
FEM modelling of a reference building. In Parisi et al. (2019), a timber-reinforced
earthen tower is modelled through nonlinear static analysis and macro-element approach.

Lately, natural or synthetic fibre textiles are also considered, in particular the role
of natural fibre textile, polypropylene and nylon grids adhered to adobe walls throguh
earthen mortar is the object of long-term investigation (Blondet et al., 2019, 2008;
Blondet and Aguilar, 2007; Portugal and Tarque, 2019; Blondet et al., 2011; Bove et al.,
2016; Boostani et al., 2020).

A few national codes consider earthen buildings and related design rules (NSZ,
1998; NMAC, 1982), also for those classified as cultural heritage (INN, 2013); reviews
of available national standards aimed at safety of earthen structures and selection of soils
are reported in Cid et al. (2011) and Jiménez Delgado and Guerrero (2007) respectively.

Whereas, standards for characterisation of mechanical properties of earth-based
materials are still not available; efforts on this are put by RILEM TC 274 (Fabbri et al.,
2018). Hence, remarkable investigation efforts are aimed at the definition of mechanical
characterisation protocols, e.g., Silveira et al. (2013), Rodríguez-Mariscal et al. (2018)
and Illampas et al. (2014) and references reported therein. The main debated issues
concern composition and pre-treatment of raw soil, size and shape of specimens, testing
procedures and instrumentation layout. In Silveira et al. (2013), a compression and split
tests on cylindrical specimens are carried out on existing adobe blocks. Indeed, making
cylindrical cores from bricks sampled on site can be more viable than cutting out prisms.
Also, cylindrical specimens are preferred since this shape can avoid disturbance in stress
distribution that can arise with sharp edges, although installation of deformation sensors
might not be straightforward. However, it is not infrequent that whole adobe blocks
are tested to retrieve compressive strength, resulting in an unavoidable overestimations
due to the confinement effect. As highlighted by Morel et al. (2007), correction factors
for compressive strength depending on aspect ratio available for fired bricks can be
employed, but may not be suitable for stocky earth blocks. Illampas et al. (2014) provide
a detailed review of possible specimen shapes, dimensions and ratios available in the
recent literature. As a result of such a variability, Illampas et al. (2014) remark that it
is not always possible to compare results of different experimental campaigns, which
provide values of compressive strength ranging between 0.6 MPa to 8.3 MPa, although
the most common values belong to the range 0.8 MPa–3.5 MPa. Concerning specimen
instrumentation, Rodríguez-Mariscal et al. (2018) confirm that strains measured throguh
reading of the testing machine, instead of displacement sensors, may lead to erroneous
estimations of the Young’s modulus.

In addition to uniaxial compression tests, indirect tension and three point bending
tests are often exploited to correlate mechanical properties and estimate flexural and
tensile properties. In the indirect tension test, a cylinder or a square prism is compressed
through two thin bars made of steel placed on opposing faces. This causes the block to
split along the plane of load. The test is conceived for hardened concrete (EN-12390-6,
2009), and the elastic solution to the Flamant-Boussinesq problem is adjusted to retrieve
failure stress. In the three point bending test, the specimen is subjected to a single
point force up to failure. International standards aimed at hardened mortar testing
(EN-1015-11, 2019), recommend to evaluate flexural stress through the Navier solution
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of a bent Euler-Bernoulli beam subjected to a point-force; hence, it is assumed that the
tested material behaves symmetrically in tension and compression.

In Caporale et al. (2014a, 2014b) and Parisi et al. (2015), the bi-modulus model
is applied to earthen material. Already in the studies by de Saint-Venant (1864),
it was recognised that some materials can exhibit different elastic behaviour when
tightened or compressed. Bending of beams not following Hooke’s law is considered
by Timoshenko and Goodier (1930), who provide, through equilibrium considerations,
the shifted position for neutral axis. Effective modulus of stiffness for pure bending
is then provided by Marin (1962). Ambartsumyan (1695) rediscovers the idea of
bi-modulus materials and broaden the model to two-dimensions; applications concern
fibre-reinforced composites, which exhibit relevantly different behaviour depending on
the material-coordinate system (Reddy, 2004). Modified constitutive models based on
the signs of principal stress or strain are found in Jones (1997), Bert (1977) and Tran
and Bert (1982) and references reported therein.

Provided the discontinuity in the constitutive law due to material bi-modularity, very
few problems can be solved analytically and dedicated iterative algorithms must be
calibrated to solve general-loading plane-stress problems. Yao and Ye (2004a, 2004b)
employ the beam model for pure bending and lateral force bending. He et al. (2009)
focus on fast iterative solutions to plane stress problems assuming a constitutive model
for which elasticity constants depend on the signs of principal stresses; a similar
approach is employed by Zhang et al. (2011, 2016). A detailed review on recent
advances is provided in Sun et al. (2010). Furthermore, functionally-graded, bi-modulus
materials with unchanged Poisson’s ratio are considered in He et al. (2018). No-tension
and no-compression materials, which can be regarded as bi-modular, are analysed
by Kanno (2011) employing tools of convex analysis. Variational principles, which
make use of internal variables to characterise the tensions/compression state, have been
defined as well in Du and Guo (2014) and Du et al. (2016).

Recent experimental investigations confirm that the asymmetry of positive and
negative stress-strain relations is typical of both organic and inorganic materials, such
as concrete, ceramics (Mattos et al., 1992), graphite (Liu et al., 1998), and biological
materials (Janmey et al., 2007; Rosakis et al., 2015). Tests on brittle materials such as
concrete made of quartzite and Portland cement demonstrate that compression modulus
can range up to three times that in tension (Du et al., 2016). This can be also the case
of raw earth. In Parisi et al. (2015), a wide experimental campaign on adobe bricks is
reported and bi-modulus material assumption is employed to interpret tests. In Caporale
et al. (2014a, 2014b, 2015), experimental results are employed and effects of bi-modulus
assumption are assessed through FEM micro-mechanical analysis.

In this study, the experimental campaign reported in Section 2 encompasses
uniaxial compression tests, indirect tension tests and three-point bending tests on
specimens created for the purpose. Then, interpretation of the mechanical behaviour
of specimens subjected to three-point bending tests is carried out assuming compacted
earth as a bi-modulus material. Differently from previous studies, here, solution to the
equilibrium problem is obtained stemming from the displacement field equations. Then,
enforcing compatibility and constitutive behaviour enables to solve equilibrium and
retrieve displacement equations. Both Euler-Bernoulli and Timoshenko beam models are
employed with the aim of incorporating also the shearing effect on the deflection due
to the reduced slenderness of specimens subjected to this test. Analytical investigation
is reported at the beginning of Section 3. Application of the analytical model to the
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experimental outcomes is reported later on in the same section. Discussion on results
and conclusions are drawn at the end of the paper.

2 Materials and methods

2.1 Specimens and tests

Raw earth employed to produce specimens has been collected on a selected site in the
nearby of a little town called Terranuova Bracciolini in Tuscany, Italy, where earthen
constructions used to be traditional. The collected raw earth was air-dried in a controlled
environment so as to reach homogeneous relative humidity. Then, cleaning and grinding
phases permitted to reach a raw material homogeneous at sight. Vegetal inclusions and
little stone chips had to be removed, so sifting was carried out employing a set of
standard sieves with looser mesh equal to 2 mm. After having reached a controlled size,
earth was dried for 24 hrs in an electric ventilated oven at 60°C.

To fabricate the earth slurry, a controlled quantity of water was added to the dusty
soil. Earth was weighted after the drying phase and 11% ratio of water was added so as
to reach adequate workability of the slurry, based on the results of several variations of
water percentage. Mixing earth and water was carried out with an electric mixer kept
at low speed so as to make a slurry as homogenous as possible. For each batch, mixing
was controlled in time, five minutes were considered enough for water to accommodate
among grains. After these phases, the slurry was casted into the moulds and adjusted
manually by applying gentle pressure. After 48 hours, specimens were de-moulded and
left drying in controlled environment, i.e., 20°C temperature and 40% relative humidity,
for at least 28 days.

Figure 1 Reference specimens undergoing, (a) uniaxial compression test, where omega shaped
extensometers and displacement transducers are clearly visible
(b) three-point bending test (c) indirect tension test

After the curing time, specimens were measured in terms of volume and weight. The
apparent bulk density was evaluated; the average value obtained is γ = 1.951 g/cm3

(with coefficient of variation CoV = 0.014). The raw earth employed for specimens was
subjected also to granulometry test after the curing phase. The grain size distribution
has been carried out through sieving in order to separate the following fractions: sand
(ϕ > 63µm), silt (4µm < ϕ < 63 µm) and clay (ϕ < 4µm). Two specimens, RE-1 and
RE-2, of 11.7 g and 10.7 g respectively were analysed. Results show a silty sand for
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the composition. In particular, for RE-1, it is found 53% of sand, 28% of silt and 19%
clay. For RE-2 proportions are 55% sand, silt 27% and clay 18%.

Samples subjected to mechanical tests were labelled according to two alphanumeric
codes, XX-YY. The first code stands for test type (XX-), the second code is the
progressive number of specimen (YY). The tests carried out and the related samples
are:

• Uniaxial compression (UC) to determine Young’s modulus, compressive strength
and Poisson’s coefficient. One sample made of eight prismatic specimens,
(a× a×H), with labels UC-YY and nominal dimensions 60 × 60 × 210 mm
was prepared.

• Three-point bending (TB) to determine maximum deflection and stress. One
sample made of 6 prismatic specimens, (a× a× L), labelled TB-YY and with
nominal dimensions 60 × 60 × 240 mm was prepared.

• Indirect tension test (IT) to estimate tensile strength. One sample made of 13
cubic specimens, (a× a× a), with labels IT-YY and nominal dimensions 60 ×
60 × 60 mm.

Load rate for tests were adjusted based on the available standards on other materials,
basically hardened mortar and concrete. The common framework considered was to keep
the test as smooth as possible and, at the same time, to possibly reach failure of the
specimens in no more than 120 s. All the tests were carried out employing a 50 KN
load cell (TCLP-5B, Tokyo Sokki Kenkyujo C. Ltd). For uniaxial compression tests, a
load rate of 100 N/s was employed so that failure occurred in the range 65 s–115 s. For
three-point bending tests, the load rate equal to 10 N/s was set, so that failure occurred
in the range 75 s–120 s. For indirect tension tests, the load rate equal to 20 N/s was
set so that failure occurred in 80 s–100 s. All the tests were carried out in displacement
control so as to follow the equilibrium path also after the peak load was reached.

Concerning instrumentation and measurements, the global displacement parameter,
i.e., in the direction of the applied load, was recorded directly by the test press.
Moreover, for the uniaxial compression tests two 50 mm omega-shaped extensometers
were placed at mid height to record strains in the direction of load and along the
orthogonal one, see Figure 1(a). Two cantilever displacement transducers were placed
over the upper steel plate transmitting load so as to control any asymmetry during tests.
The load was applied monotonically up to failure for all tests and the tangent Young’s
modulus was evaluated at one third of the compressive strength recorded, in agreement
with Rodríguez-Mariscal et al. (2018). Monotonic load application was preferred to
avoid premature compaction phenomena, microcracking, and consequently development
of inelastic strains on unloading branches possibly induced by cyclic loading.

For specimens, a prismatic shape rather than cylindrical was employed for
convenience with respect to the available equipment in the laboratory. All the specimens
show the same length of the minimum side, i.e., 60 mm. Such a dimension was chosen
with the aim of reducing the consequences of possible defects and size of grains, anyway
at most equal to 2 mm.

Concerning geometric proportions, for specimens subjected to uniaxial compression
tests, nominal dimensions a× a×H = 60 × 60 × 210 mm, it was considered to
provide an edge to height ratio, (a/H), higher than to 1/3, so as to assure a sufficiently
broad middle third to apply the 50-mm omega shaped extensometers. More slender
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specimens might have been considered, but this was avoided due to the possibility of
damaging them during test preparation.

For the specimens subjected to three-point bending tests, nominal dimensions a×
a× L = 60 × 60 × 240 mm, the edge to length ratio, (a/L), suggested for hardened
mortar specimens in EN-1015-11 (2019) and equal to 4 was kept the same. Also, the
proportions prisms edge – free span, i.e., distance between supports, L0, is equal to 2/5.
This is the value suggested in EN-1015-11 (2019) for mortar specimens, hence, in TB
sample, edge is a = 60 mm and free span is L0 = 150 mm.

Concerning the dimensions and proportions of specimens subject to indirect tension
tests, it was decided to keep the same cross section dimension of other specimens. Cubic
shape of specimens, instead of cylindrical, is employed. Indeed, assuming the cylinder
inscribed in the square-base specimen, the compressed circular cross section is loaded
by the two antipodal concentrated forces. As a result, tension stress develops in the
direction orthogonal to the load.

Figure 2 Results of, (a) uniaxial compression tests on prismatic specimens (b) three-point
bending tests on prismatic specimens classified TB1 (c) indirect tension tests on
prismatic specimens

2.2 Test results

Concerning uniaxial compression tests, results in terms of stress – strain diagrams are
reported in Figure 2(a). All the specimens showed a recognisable linear elastic phase
up to around half of the maximum load reached. After that point, load increases more
slowly and a slightly nonlinear elastic phase commences before reaching the peak. After
reaching peak load, softening occurred slowly. The test was considered concluded after
having reached 80% of the peak load. Specimens showed sub-vertical cracks in the
phase prior to peak, demonstrating a correct execution of the test, see Figure 3. Stress
is computed dividing the recorded force over the cross section area. Strain is is obtained
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directly from the measurements of the vertical extensometer with 50 mm base length.
The compressive Young’s modulus was evaluated as the secant modulus at one third of
the peak stress.

Figure 3 Cracked reference specimen subjected to uniaxial compression test

Figure 4 Stress – strain diagram for specimen UC-01 superposed to the Poisson’s coefficient
– strain diagram as per refined by moving average over three values
(see online version for colours)

To evaluate the value of Poisson’s coefficient, the records of the two extensometers were
employed. The ratio vertical-to-horizontal strains was considered for the records in the
linear-elastic phase of the test. In fact, for all specimens, after an initial phase, strain
recordings converge to a fairly stable response before peak load. The reference value
of the Poisson’s coefficient is evaluated as follows. First, the values of moving average
spanning three values are evaluated in the recordings of vertical-to-horizontal strains
ratio (multiplied for –1), then, the arithmetic average of the moving average values is
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computed. The minimum value between the arithmetic average and the value of the
coefficient recorded at one third of peak stress, i.e., same point where the compression
Young’s modulus was evaluated, is picked as the Poisson’s coefficient. Figure 4 shows
the stress strain diagram for a reference specimen superposed to the correspondent graph
of the vertical-to-horizontal strains ratio plotted over vertical strains.

For a sub group of specimens, diagrams appear well clustered and the same quality
of the equilibrium path was recorded. For specimens UC-02, UC-06 and UC-07, a
stiffer linear elastic branch can be recognised. In particular, for specimen UC-07, which
exhibited the stiffest response, also the highest peak stress was reached, while UC-02
and UC-06 are comparable to the others in terms of peak values.

The average peak stress is σc = 2.567 MPa (st. dev. = 0.412 MPa and coefficient of
variation, CoV = 0.161). The average value of Poisson’s ratio in compression is νc =
0.0449 (st. dev. = 0.0329 and CoV = 0.73) and average value of Young’s modulus is Ec

= 2,239 MPa (st. dev. = 1,282 MPa, CoV = 0.57). If the subset of specimens UC-03,
UC-04 and UC-05, UC-07 and UC-08, is considered, the average value of the Young’s
modulus is much more stable, Ec = 1,462 MPa (st. dev. = 292 MPa, CoV = 0.20).

For three-point bending tests, results in terms of load – displacement diagrams
are reported in Figure 2(b). All the specimens showed an initial accommodation
phase, possibly connected to indentation, and a clear linear elastic trend in a second
stage, up to the maximum load reached. Then, load falls abruptly due to the sudden
opening of a central vertical crack and the formation of two stumps. Specimens showed
a sub-vertical crack in correspondence of the loaded cross section, as showed in
Figure 1(b), demonstrating a correct execution of the tests. The average peak load reach
is satisfactorily stable, Wmax = 1,030 N (st. dev. = 150 N, CoV = 0.145).

Results of the indirect tension tests are showed in Figure 2(c) in terms of load
and displacement, as recorded during tests. All the specimens failed exhibiting a clear
vertical crack under the steel cylinder of the kind represented in Figure 1(c). The
maximum indirect tension stress reached was evaluated as σit = 2Wmax/(Aπ); where
Wmax is the maximum recorded load and A is the area of the vertical cross section of
the specimen aligned with the loading plane. Experiments provide fairly stable results,
with average σit = 0.29 MPa (st. dev. = 0.057 MPa, CoV = 0.197).

3 Bi-modulus beam under a point force

3.1 Statement and solution of the equilibrium problem

In this section, the solution, in terms of displacements, for a doubly-supported beam
under a point force is evaluated according to Ambartsumyan (1695). In particular,
material of the beam is considered isotropic and shows two different Young’s moduli:
Ec, when it is compressed, and Et, when it is tensioned; the two moduli can be
related by means of a coefficient n = Et/Ec. Shear moduli and Poisson’s coefficient
are also different if the cross section of the beam is tensioned or compressed, Gc =
Ec/2(1 + νc) and Gt = Et/2(1 + νt). Given the necessary condition of symmetry in
the compliance stress tensor: νt/Et = νc/Ec, it follows that n = νt/νc. The differential
problem is stated and solved in closed form stemming from the definition of the
pertinent displacement field, and imposing compatibility condition and constitutive
relations of the bi-modulus material. Differently from previous models, here, the solution
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in terms of displacement equations is retrieved for the pin-pin beam loaded by a point
force assuming both the Euler-Bernoulli model (EBM) and the Timoshenko model (TM),
i.e., accounting for the effect of transverse shear on deflections.

For an orthogonal coordinate system as represented in Figure 5(a), the displacement
field for EBM includes displacements components in x- and z-directions, u(x, z) and
w(x, z) respectively, and assumes the following form:

{
u(x, z) = u0(x)− z w0,x(x)

w(x, z) = w0(x)

(1a)
(1b)

where u0(x) and w0(x), are the x- and z-direction displacements, respectively, of
midline axis; and subscript (),x denotes ∂()/∂x.

Figure 5 Scheme of the bent beam assuming a bimodulus material, (a) reference system,
dimensions and load case (b) the beam cross section showing asymmetrical strains
and discontinuous stress through the height (c) equivalent cantilever beam

For TM, the displacement field includes the displacements components in x- and
z-directions, ũ(x, z) and w̃(x, z) respectively, and rotation of transverse normals about
the x-axis, ψ̃(x); it assumes the following form:{

ũ(x, z) = ũ0(x) + z ψ̃(x)

w̃(x, z) = w̃0(x)

(2a)
(2b)

where superscript ·̃ employed for displacement functions and any other variable denotes
reference to TM. Strain-displacement equations follows directly; for EBM:{

ϵxx(x) = ϵ0(x) + z ϵ1(x) = u0,x(x)− z w0,xx(x)

γxz = 0

(3a)
(3b)

For TM, it yields:{
ϵ̃xx(x) = ϵ̃0(x) + z ϵ̃1(x) = ũ0,x(x) + z ψ̃,x(x)

γ̃xz(x) = γ̃0(x) = w̃0,x(x) + ψ̃(x)

(4a)

(4b)
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where ϵ1(x) and ϵ̃1(x) are the part of longitudinal strains due to bending, and varying
linearly with z coordinate. From equation (4b), it is seen that transverse shear strains in
TM are constant through the thickness, which can constitute a gross approximation of
reality (Reddy, 2004), and identically zero in EBM. Explicating constitutive equations
for the isotropic bi-modulus beam it yields for EBM:

σxx = Q11

{
ϵ(0)xx + zϵ(1)xx

}
(5)

τxz = Q55

{
γ(0)xz

}
= 0 (6)

And for TM:

σ̃xx = Q11

{
ϵ̃(0)xx + zϵ̃(1)xx

}
(7)

τ̃xz = Q55

{
γ̃(0)xz

}
(8)

where Qij are the plane-stress-reduced stiffness coefficients (Reddy, 2004, 2006).
Resultant forces and moments can be expressed, for the EBM, as:

Nxx =

∫ h

−h

σxx dz = Aϵ0 −B ϵ1 (9)

Mxz =

∫ h

−h

σxx z dz = B ϵ0 −D ϵ1 (10)

Qxz =Mxz,x (11)

And for the TM, as:

Nxx =

∫ h

−h

σxx dz = A ϵ̃0 +B ϵ̃1 (12)

Mxz =

∫ h

−h

σxx z dz = B ϵ̃0 +D ϵ̃1 (13)

Qxz =

∫ h

−h

τxz dz = S γ̃0 (14)

where for both EBM and TM bi-modulus homogeneous beam, A, B, D and eventually
S assume the following form:

A =

∫ zc

−h

Ec dz +

∫ h

zc

Et dz = Ec(h+ zc) + Et(h− zc) (15)

B =

∫ zc

−h

Eczdz +

∫ h

zc

Et z dz = −1

2
(Ec − Et)(h

2 − z2c ) (16)
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D =

∫ zc

−h

Ec z
2 dz +

∫ h

zc

Et z
2 dz =

1

3
(Ec(h

3 + z3c ) + Et(h
3 − z3c )) (17)

S = K2

∫ zc

−h

Gc dz +

∫ h

zc

Gt dz = K2(Gc(h+ zc) +Gt(h− zc)) (18)

where zc, or z̃c in its place if the TM is referred, is the oriented distance of neutral
axis, i.e., evaluated from z = 0 towards the compressed part of the cross section, see
Figure 5(b), where it is represented the case of zc < 0. Then, differential equations of
equilibrium for the doubly supported EBM beam are:

{
Nxx,x = 0

Mxz,xx = 0

(19a)
(19b)

While for the TM:
Nxx,x = 0

Mxz,x = Qxz

Qxz,x = 0

(20a)
(20b)
(20c)

For EBM, substituting equations (9) and (10) into equation (19) in view of equation (3)
yields the following seventh-order system of ODE:

{
Au0,xx −Bw0,xxx = 0

B u0,xxx −Dw0,xxxx = 0

(21a)
(21b)

For TM, substituting equations (12), (13) and (14) into equation (20) in view of
equation (4) yields the following sixth-order system of ordinary differential equations
(ODE):

A ũ,xx +B ψ̃,xx = 0

B ũ,xx +D ψ̃,xx − S(w̃,x + ψ̃) = 0

S(w̃,xx + ψ̃,x) = 0

(22a)

(22b)

(22c)

Considering symmetry of geometry and load, the deflection of the simply supported
beam of length a, subjected to a concentrated force W , can be investigated considering
a cantilever beam clamped in x = z = 0 and free in x = a/2, subjected to a point force
W/2 in a/2, Figure 5(c).

According to this equivalent geometry layout, for the EBM beam, to solve the
system of equation (21), the following seven boundary conditions (BCs) must be
satisfied:

u(0) = w(0) = w′(0) = 0

Mxz(a/2) = Nxx(a/2) = 0

Qxz(a/2) = −W/2

Mxz(0) =Wa/4

(23a)
(23b)
(23c)
(23d)
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For the TM beam, to solve the system of equation (22), the following six BCs must be
satisfied:

ũ(0) = ψ̃(0) = w̃(0) = 0

Mxz(a/2) = Nxx(a/2) = 0

Qxz(a/2) =W/2

(24a)
(24b)
(24c)

Equations (21) and (23) provide, for the EBM, the following displacement functions:

u(x) = −BWx(x− a)

4(B2 −AD)
(25)

w(x) =
AWx2(3a− 2x)

24(B2 −AD)
(26)

Equations (22) and (24) provide, for the TM, the following displacement functions:

ũ(x) = −BWx(x− a)

4(B2 −AD)
(27)

w̃(x) =
AWx2(3a− 2x)

24(B2 −AD)
− Wx

2S
(28)

ψ̃(x) =
AWx(x− a)

4(B2 −AD)
(29)

It is worth noting that x-direction displacements, equations (25) and (27), are identical
for the two models. Transverse, z-direction, displacement equations, equations (26) and
(28), differ in the part that estimate the effect of shearing forces on the beam deflection.

Neutral axis depth can be retrieved imposing that, for z = zc or z = z̃c, longitudinal
strains, equations (3a) and (4a) for the EBM and TM, respectively, are zero. This yields,
for the EBM:

zc = h

(
1− 2

1 +
√
n

)
(30)

similarly to the results obtained by Timoshenko and Goodier (1930), Yao and Ye (2004a)
and Parisi et al. (2015). And for the TM:

z̃c =
h (1− 2

√
n+ n)

n− 1
(31)

It is noted that equation (30) is coincident equation (31). Indeed, the TM strain
displacement equation (4a) depends on midline stretching, ũ0,x(x), and on the
x-derivative of transverse normal rotations, ψ̃,x(x). Strains depending on midline
stretching are identical for the EBM and the TM beam [cf. equations (25) and (27)].
The x-derivative of transverse normal rotations, ψ̃,x(x), coincides with the opposite of
the second derivative of transverse displacements, −w̃,xx(x). In fact, the contribution
offered by shear to transverse displacements, w̃(x), equation (28), depends linearly on
x. Hence equation (4a) for z = z̃c offers:

ũ0,x(x) + z̃c ψ̃,x(x) = ũ0,x(x)− z̃c w̃,xx(x) = 0 (32)
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which provides equation (31).
Through the analytical model, it is possible to assess the value of longitudinal

elasticity modulus in tension, related to the one in compression by means of coefficient
n. Differently from other materials, e.g., fibre composites, for concrete and brittle
materials, the coefficient n tends to take values less than unity. As a result, in a bent
beam with upward curvature, e.g., Figure 5(a), cross section turns out to exhibit a wider
area subjected to tension than that compressed, and the neutral axis moves away from
the most stretched edge Figure 5(b). Hence, for materials that show n < 1, compression
and tension stresses show peak values respectively higher and lower than those obtained
through the classic Navier solution.

Figure 6 For a reference beam a = 600 mm, h = 60 mm, fixed value of load W = 1,000 N,
and Ec = 30 GPa, variation in the deflections normalised to span along geometrical
axis for varying values of coefficient n assuming EBM and TM
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For a reference case, i.e., a = 600 mm spanning beam, cross section height 2h =
120 mm, loaded by W = 1,000 N and Ec = 30 GPa, Figure 6, shows the diagrams
of z-displacements, w(x), normalised with respect to span, i.e., a, over position along
x axis. The assumption of bi-modulus material induces remarkable increase in the
expected deflections at mid point which passes from around 1/300 of the span for n =
1 up to more than three times for low values of n.

Moreover, concerning predictions provided by the two beam models, it is seen how
TM provides more conservative estimations, i.e., higher values of normalised deflection,
for decreasing values of the coefficient n. Specifically, the difference in estimations of
normalised deflection at mid-span for the two models passes from 1/10,000 of the span
with n = 1 to more than 1/2,000 of the span for n = 0.05. These correspond to an
absolute mismatch among the two estimates of 0.063 mm for n = 1 and 0.279 mm for n
= 0.05. Hence, the effect of shearing on deflections is worth to evaluate especially when
bi-modulus behaviour is markedly relevant. This fact is more notable in Figure 7, which
shows for the same reference beam of Figure 6, the decrease in absolute deflections at
midspan for coefficient 0 ≤ n ≤ 1.

Also, while the effects on deflections might be looked at as only marginally relevant
for the practice of structural design, the corresponding effects on stress and position
of neutral axis are more pronounced. The depth of cross section subjected to traction
passes from half the height, i.e., h, for n = 1 to around 82% of the whole section. As a
consequence the maximum tension stress reached shows more than 38% decrease; as a
counterbalancing effect, the compression stress heightens.

3.2 Application of the analytical model to experimental results

Application of the analytical model to the experimental campaign reported in Section 2
aims at retrieving an estimation of longitudinal stresses reached during three-point
bending tests consistently with the bi-modulus material model. Due to the constitutive
model, longitudinal stress is neither equal nor symmetric with respect to the neutral axis,
which is shifted from the middle of cross section, see Figure 5(b).

To interpret results of the three-point bending tests, outcomes of uniaxial
compression tests are employed, in particular, values of Poisson’s coefficient and
compression Young’s modulus. The average values considered for Ec and νc refer to
the sub-group of UC-specimens that showed the most clustered response, hence, Ec =
1,462 MPa and νc = 0.0391. Each TB-specimen was analysed individually considering
the maximum force and the associated total displacement of the load application point,
i.e., including possible indentation effects, see values collected in Table 1.

Table 1 Maximum force and the associated displacement of the load application point for
three-point bending tests

TB-1 TB-2 TB-3 TB-4 TB-5 TB-6

W [N] 1,231 1,114 907 1,158 1,063 841
wexp [mm] 0.546 0.426 0.387 0.419 0.406 0.362

Then, employing equations (7), (26) and (28), value of coefficient n is retrieved through
iterations up to reaching the value of z-direction displacement in the middle of the
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specimen, i.e., w(a/2) or w̃(a/2). The value obtained analytically of w(a/2) or w̃(a/2),
and consequently n, is considered accurate with respect to experimental value, i.e., value
of η reported in Table 1, within a 1e-4mm tolerance.

To show the effects of the bi-modulus behaviour on the analysed set of specimens,
Figure 8 shows the longitudinal stress distribution at mid-span cross section for
specimen TB-1. If the single-modulus assumption is considered, i.e., n = 1, then,
estimations of deflections at midspan differs between the EBM and TM, Figure 8(a), but
stress distribution and value coincide. Assuming a bi-modulus behaviour, Figure 8(b),
and imposing that deflection estimation coincides with recorded value, i.e., w̃(a/2) =
w(a/2) = wexp, return an asymmetrical stress distribution and neutral axis position since
Ec ̸= Et. Estimations of EBM and TM differs in terms of stress and neutral axis
position, n ̸= ñ, and are represented respectively with dashed lines and continuous black
lines.

In Table 2, the results of the estimations carried out according to the single- and
bi-modulus models are reported. For the single-modulus model, i.e., that employed
currently to interpret all the three-point bending tests, the stress reached at peak load is
on the average σ = 1.073 MPa, that is 42% of the average compressive strength, σc =
2.547 MPa, and more than three times the average value of indirect tension strength,
σit = 0.29 MPa.

Figure 8 For specimen TB-1, subjected to a maximum point force W = 1,231 N,
corresponding to mid span deflection, wexp = 0.546 mm, stress distribution along
height assuming, (a) single modulus behaviour which provides a symmetrical
distribution and different values of deflection for EBM and TM assuming
E = 1,634 MPa (b) bi-modulus behaviour which provides an asymmetrical
distribution of stress and the deflection value recorded during tests
(see online version for colours)

If instead the bi-modulus model is employed, much more reasonable predictions can
be carried out in terms of maximum tension stress reached at the most stretched fibre.
Values are on the average lower for both EBM and TM, and more realistic. For EBM,
average tensile stress estimated is σt = 0.653 MPa, which is 25.6% of the compressive
strength and nearly two times the recorded values of stress reached during the indirect
tension tests. Similar thresholds are attained for the TM.
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Figure 9 For the EBM and TM, (a) value obtained for the coefficient n plotted over the
corresponding mid span deflection, w(a/2)1 (b) depth of the stretched part of the
cross section, normalised to the height plotted over the midspan deflection, w(a/2),
found analytically2

(a) (b)

Notes: 1for each pointer the relative error with respect to experimental outcome of
each deflection value found through the analytical model is indicated.
2vertical dotted lines highlight the diference between estimations of the EBM and TM.

Table 2 Results of the analytical evaluations for the single- and bi-modulus models
interpreting stress distribution of tested rammed earth specimens TB-i, considered as
a beam under a point force with cross section 60 mm × 60 mm and free length
150 mm; Ec = 1,462 MPa and νc = 0.0391, as deduced from uniaxial compression
tests

ID
Single modulus Bi-modulus

EBM TM

σ n σt zt ñ σ̃t z̃t

TB-1 1.260 0.031 0.754 51.01 0.036 0.762 50.47
TB-2 1.135 0.037 0.692 50.31 0.043 0.700 49.70
TB-3 0.923 0.032 0.558 50.84 0.037 0.564 50.28
TB-4 1.183 0.040 0.723 50.05 0.046 0.733 49.40
TB-5 1.081 0.037 0.660 50.32 0.043 0.668 49.70
TB-6 0.854 0.032 0.517 50.87 0.037 0.522 50.32

Av 1.073 0.035 0.651 50.56 0.040 0.658 49.98
CoV 0.133 0.090 0.132 0.007 0.095 0.132 0.008

Notes: Values reported in the table are σt, estimated tension stress at the most stretched
fibre; zt depth of neutral axis evaluated as the positive distance from the most
stretched edge; the superscript ·̃, refers to values for TM.

As a result of the asymmetric stress distribution, the estimation for the Young’s modulus
in tension takes values ranging 3.6–4.0% of the compression modulus. Figure 9(a),
shows the evaluations provided by the two models in terms of the n and ñ coefficients.
For each pointer, the relative error on the estimation of the midspan deflection provided
by TM and EBM with reference to the experimental value recorded, wexp, is reported,
the two series are effectively aligned and each couple of pointers represents a tested
specimen. The vertical distance between markers of the EBM and TM series highlights
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the difference in estimations of Young’s modulus in tension, which is, for the EBM,
10% lower of the TM, on the average, cf. Table 2. As a result of the n and ñ coefficients
values, most of the cross section is subjected to tensile stress, since the neutral axis
places at around the upper sixth of the cross section, i.e., roughly at 50 mm compared
to a 60 mm-height section. Concerning this, Figure 9(b), shows for each specimen, the
depth of the stretched part of the cross section normalised to the total height of the
specimen plotted over the deflection value. The stretched depth ranges 82%–85% of the
cross section. Comparing the two bi-modulus models, it is seen that for the EBM, stress
and coefficient n are slightly lower for all the specimens, consequently, neutral axis is
deeper if compared to the predictions of the TM beam.

The proposed approach was implemented in a Python module for automated
determination of the elastic modulus in tension, the compressive and tensile stress for
the bimodular beam model of Euler-Bernulli and of Timoshenko, using the experimental
data obtained through three points bending test (load and deflection) and compression
test (elastic modulus in compression). The implementation will be documented and made
available on https://github.com to promote reuse for correct mechanical interpretation of
brittle materials, such as mortar, concrete and rammed earth.

4 Conclusions

This paper presents the results of an experimental campaign exploited to provide more
robust interpretation of the three-point bending test. Tests on rammed earth specimens
were carried out to accurately evaluate the most relevant mechanical properties. From
uniaxial compression tests, Young’s modulus, Poisson’s coefficient and compressive
strength are deduced; indirect tension tests and three point bending tests are also
employed to complete the characterisation.

Stemming from the consideration of rammed earth as a material that shows
two different Young’s moduli, for tension and compression, the equilibrium problem
of a bent beam under a point force is stated and solved assuming both standard
Euler-Bernoulli and Timoshenko beam models.

For a reference case, it is shown that the contribution of shear on deflection increases
when the modulus in tension is noticeably lower than that in compression, which is
the case of brittle materials, such as concrete and rammed earth. It is shown that
the contribution of shearing on deflections is worth considering when the bi-modulus
behaviour is markedly relevant. Although the effects of shear might be considered only
marginally relevant on deflection values for design purposes, in these cases, i.e., brittle
materials, the neutral axis position defines a much wider area of the cross section
subject to tension. As a result, the most stretched edge reaches values of tensile stress
remarkably lower than those estimated by the standard single modulus Euler-Bernoulli
beam.

Solution in terms of displacements is then employed to interpret outcomes of the
experimental campaign. Based on the Young’s modulus in compression determined on
prismatic specimens, it is possible to interpret the three-point bending tests in a sounder
way estimating the tension stress, the coefficient relating the two modulus and the depth
of the neutral axis. The analytical estimations return values of the tensile stress much
more realistic if compared to the outcomes of indirect tensile stress tests.
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Results show that earthen materials can exhibit a remarkably low tensile Young’s
modulus; in the analysed cases, values range around 4% of the modulus in compression
evaluated during tests. For the straight applicability and clarity, the model presented can
be considered suitable either to analyse future experimental campaigns and to interpret
already existing data.
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