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Abstract: This paper aims to provide an effective analytical approach
to study the family of Fisher’s reaction-diffusion equation, namely the
reduced differential transform method. These equations are well-known in
mathematical biology and have a wide range of applications, including
population dynamics, combustion theory, genetic propagation, stochastic
processes, and a prototype model for a spreading flame. The proposed
method’s leverage over other analytical approaches is its capability to handle
the nonlinear terms without discretisation, perturbation, or calculation of
unneeded terms. The obtained results are more precise and reliable and
show a high level of agreement with the exact solution. The convergence
criteria and error analysis are also addressed in this paper. The straightforward
applicability of the proposed method to convert the complex nonlinear partial
differential equation into a simple algebraic system makes it a promising
computational method. In this paper, we also provide the algorithm which
can be easily implemented in MATLAB.
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1 Introduction

The Fisher’s reaction diffusion equation is a nonlinear partial differential equation which
describes a wide class of physical nonlinear phenomena. It was created in order to
trigger the gene distribution within a population. The equation is named after Ronald
Aylmer Fisher, and it describes natural population propagation, mass transfer, chemical
reaction processes, and heat, as defined by Andrey Nicolaevich Kolmogorov. In this
paper, we consider the Fisher’s equation

∂ζ

∂t
=

∂2ζ

∂ξ2
+ αζ (1− ζ) , (1)

∂ζ

∂t
=

∂2ζ

∂ξ2
+ αζ (1− ζγ) , (2)

and a nonlinear diffusion equation of the Fisher type

∂ζ

∂t
=

∂2ζ

∂ξ2
+ αζ (1− ζγ) (ζ − ρ) , 0 ≤ ρ ≤ 1. (3)

where γ, α are the diffusive and reactive constants and γ ≥ 0, α ≥ 0. Equation (1) was
suggested by Fisher as a model for mutant gene propagation, with denoting the density
of advantageous mutations. Chemical kinetics (Malfliet, 1992), logistic population
growth models (Murray, 1977; Britton, 1986), flame propagation (Frank-Kamenetskii,
2015; Williams, 2018), neurophysiology (Tuckwell, 1988), auto catalytic chemical
reactions (Fife and McLeod, 1977; Aronson and Weinberger, 1988), branching Brownian
motion processes (Bramson, 1978), gene-culture waves of advance (Aoki, 1987), the
spread of early farming in Europe (Ammerman and Cavalli-Sforza, 1971; Ammerman
and Avalli-Sforza, 2014), and nuclear reactor theory (Canosa, 1973) all use this equation.

To obtain the analytical and numerical solution of equations (1)–(3) an enormous
amount of effort has been made in the last decade. Travelling wave solution was
offered by Ablowitz and Zepetella (2014) while Canosa (1973) applied nonlinear
eigenvalue problem to obtain the shock-like travelling waves of Fisher’s equation.
The wavelet-Galerkin method was used by Cattani and Kudreyko (2008) to find
the numerical solution of Fisher’s equation. A pseudo spectral method was used
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by Daniel and Shizgal (2006). Gazdag and Canosa (1974) used an accurate space
derivative (ASD) approach, while Garey and Shen (1995) used a least-squares FEM.
The Sinc collocation approach was used by Khaled (2001). Larson (1978) investigated
the solution’s transient behavior and examined the nonlinear Fisher’s style equations’
time-asymptotic convergence. For Fisher’s equation, Mickens (1994) created a new
class of FDM. Mittal and Jiwari (2009) conducted research by combining the Fisher
equation with logistic nonlinearity. Moving mesh technique was used by Qiu and
Sloan (1998). Using the model problem FRD equation, Rizwan (2001) investigated
the relationship between nodal integral system and FDM. Tan et al. (2007) uses the
homotopy analysis approach to obtain a family of travelling waves of the Fisher
equation. For the numerical solution of the FRD equation, Sahin and Ozmen (2014)
used a B-spline Galerkin method. Tang and Weber (1991) used a Petrov Galerkin FEM
to investigate it numerically. Verma et al. (2014) investigated the solution of nonlinear
FRD equations using the classical lie symmetry procedure. Nonlinear transformations
were introduced by Wang (1988) find the explicit and exact solitary solutions of the
generalised FRD equation. Using the Adomian decomposition approach, Wazwaz and
Gorguis (2004) were able to obtain exact solutions to FRD type equations. For the FRD
equation, Tamsir and Huntul (2021) suggested the extended cubic B-spline differential
quadrature approach (EMCB-DQM). For the Fisher equation, Dag et al. (2010) proposed
an exponential cubic B-spline algorithm, while Sahin and Ozmen (2014) proposed a
quadratic B-spline Galerkin process. Crank-Nicolson (CN) finite difference scheme,
ASDs method and discrete singular convolution (DSC) method were proposed by
Zhao and Wei (2003). To solve the Fisher’s equation,Sahin and Ozmen (2014) used
a quintic B-spline collocation method on a uniform mesh, while Mittal and Dahiya
(2016) used a quintic B-spline differential quadrature method. For the numerical solution
of the nonlinear Fisher equation, Chandraker et al. (2014) suggested a semi-implicit
finite difference scheme. Abbas et al. (2014) developed a collocation method based
on cubic trigonometric B-spline functions, which they tested using the wave equation.
Mickens and Oyedeji (2019) proposed travelling wave solutions to the modified Burgers
and diffusionless Fisher’s equations, and Agbavon et al. (2019) analysed the Fisher’s
equation numerically by taking the diffusion term to be smaller than the reaction term.
Veeresha et al. (2019) apply q-homotopy analysis transform method to find the solution
of nonlinear time-fractional Fisher’s equation. Loyinmi and Akinfe (2020) combine two
analytical approaches, namely Elzaki transform and homotopy transform perturbation
method, to the family of FRD equations in search of an exact solution. Akram et al.
(2021) introduce an unconditionally stable and convergent numerical approach to study
time-fractional Fisher equation whose result shows an excellent agreement with the exact
solution. Many researcher has proposed different numerical approach to study integer
and fractional order nonlinear PDE (Adiguzel et al., 2021; Gulbahar et al., 2015; Pankov
et al., 2021; Shokri et al., 2018, 2022; Shorki, 2012; Kumar and Verma, 2021; Mandal
and Bira, 2021; Yokus and Yavuz, 2021; Yokus et al., 2015; Tamsir et al., 2018a, 2018b;
Spiteri and Ruuth, 2002; Sahin et al., 2008; Soori, 2018; Rohila and Mittal, 2018;
Onyejekwe, 2018; Mittal and Arora, 2010; Mittal and Jain, 2013; Dag and Ersoy, 2016;
Shukla and Tamsir, 2016).

Due to the nonlinearity of PDEs, there is no single best approach for an equation.
On some models/problems, some approaches converge quicker to an exact solution,
while others do not. That is why nonlinear models require a wide range of analytical,
semi-analytical, and computational methods to enhance the integration of the solutions
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obtained using these methods. This became the motivation behind this investigation.The
paper presents the reduced differential transform method (RDTM) to obtain the solution
of a one-dimensional nonlinear FRD type equation.

The paper is organised as follows: in Section 2, a description of RDTM is given,
and it also addresses convergence and error analysis of RDTM. The procedure for
implementing the RDTM is discussed in Section 3. Section 4 discusses the algorithm for
MATLAB coding of Burger’s Fisher reaction diffusion equation (BFRDE). In Section 5,
numerical results are presented for family of a one-dimension nonlinear Fisher’s reaction
– diffusion equation with graphical and tabular illustrations. The conclusion of the
proposed method is given at the end of Section 6.

2 Preliminaries of RDTM

For better understanding, some fundamental concept of RDTM are discussed in this
section. Consider a function θ (ξ,Υ) of two variables and assume that it can be
expressed θ1 (ξ) .θ2 (Υ). According to the concept of a one-dimensional differential
transform, θ (ξ,Υ) can be written as follows:

θ (ξ,Υ) =

( ∞∑
ι=0

Θ1 (ι) ξ
ι

)( ∞∑
l=0

Θ2 (ι) Υ
ι

)
,

=
∞∑
κ=0

Θκ (ξ) Υ
κ, (4)

where Θκ (ξ) is known as Υ-dimensional spectrum function of θ (ξ,Υ). The definition
of RDTM mention as follow (Moosavi Noori and Taghizadeh, 2021):

Definition 1: If the function θ (ξ,Υ) is analytic and continuously differentiable w.r.t
space and time in the domain of interest, then let

Θκ (ξ) =
1

κ!

[
∂κ

∂Υ
θ (ξ,Υ)

]
Υ=Υ0

, (5)

where Θκ (ξ) the Υ – spectrum function is the transform function. θ (ξ,Υ) and Θκ (ξ)
stands for the original and transform function respectively in this paper.

Definition 2: The differential inverse transform Θκ (ξ) is defined as (Moosavi Noori
and Taghizadeh, 2021):

θ (ξ,Υ) =
∞∑
κ=0

Θκ (ξ) (Υ−Υ0)
κ
. (6)

Combining equations (5) and (6),we get

θ (ξ,Υ) =

∞∑
κ=0

1

κ!

[
∂κ

∂Υ
θ (ξ,Υ)

]
Υ=0

(Υ−Υ0)
κ
. (7)

From equation (7), it is clear that the concept of RDTM is derived from two-dimensional
differential transform method. To demonstrate the concept of RDTM, consider NLPDE
in terms of operator
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ℑ [θ (ξ,Υ)] + ℜ [θ (ξ,Υ)] +N [θ (ξ,Υ)] = ϕ (ξ,Υ) , (8)

with initial condition

θ (ξ, 0) = φ (ξ) ,

where ϕ (ξ,Υ) is inhomogeneous term, N represent nonlinear operator, ℑ = ∂
∂Υ ℜ

is a linear operator which has partial derivative. According to RDTM, we construct
following recursive formula:

(κ+ 1)Θ(κ+1) (ξ) = Φκ (ξ)−ℜ [Θκ (ξ)]−N [Θκ (ξ)] , (9)

where (κ+ 1)Θ(κ+1) (ξ), Φκ (ξ), ℜ [Θκ (ξ)], N [θ (ξ,Υ)] are reduced transform form of
L [θ (ξ, y)], ϕ (ξ,Υ), ℜ [θ (ξ,Υ)], N [θ (ξ,Υ)] respectively. Applying reduced differential
transform to initial condition, we get

Θ0 (ξ) = φ (ξ) . (10)

Substituting equation (10) into equation (9) and by straight forward recursive
computation, we get the values of Θκ (x) for different values of κ. The nth term
approximated solution is given by inverse transformation for the set of Θκ (ξ) for κ =
1, 2, 3, 4, ... as follows:

θ (ξ,Υ) =

n∑
κ=0

Θκ (ξ) Υ
κ. (11)

The exact solution of the stated problem is

θ (ξ,Υ) = lim
n→∞

n∑
κ=0

Θκ (ξ) Υ
κ. (12)

The fundamental operation performed by RDTM can be easily proved using
equations (5) and (6) and are listed in Table 1.

Table 1 Fundamental operation of RDTM

Original function Transformed function

θ1(ξ,Υ)± θ2(ξ,Υ) Θ1 (ξ)±Θ2 (ξ)

λθ (ξ,Υ) λΘρ (ξ)
∂θ(ξ,Υ)

∂ξ

∂Θρ(ξ)

∂ξ
∂θ(ξ,Υ)

∂t
(ϑ+ 1)Θϑ+1 (ξ)

∂θ(ξ,Υ)
∂ξ ∂Υ

(ϑ+ 1)
∂Θϑ+1(ξ)

∂ξ

θ1 (ξ,Υ) θ2 (ξ,Υ)
∑ℓ

η=0 Θ1,η (ξ)Θ2,ℓ−η (ξ)

ξAΥB ξAδ (h−B) where δ (h−B) =

{
1, h = B

0, h ̸= B
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2.1 Error and convergence analysis

The convergence and error estimation has been addressed in detail by Moosavi Noori
and Taghizadeh (2021). The idea of Moosavi Noori and Taghizadeh (2021) was to
yield the sufficient condition for convergence of the method for NLPDE. We recall the
theorems which guarantees the convergence of RDTM for the general operator equation
ℑ [θ (ξ, y)] + ℜ [θ (ξ, y)] +N [θ (ξ, y)] = ϕ (ξ, y).

Theorem 1: If ζk (ω, τ) = Vl (ω) (τ − τ0)
l, then the series solution

∑n
i=0 ζl (ω, τ) for

equation (5) ∀ l ∈ N ∪ {0}.

1 is convergent, if there exist 0 < η < 1 such that ∥ζl+1∥ ≤ η ∥ζl∥

2 is divergent, if there exist η > 1 such that ∥ζl+1∥ ≥ η ∥ζl∥.

The truncation error of the series equation (9), which is a specific case of Banach’s
fixed point theorem (BFPT), is investigated in Theorem 1 (BFPT).

Proof: See Moosavi Noori and Taghizadeh (2021) for the proof.

Theorem 2: Suppose
∑n

i=0 ζi (ω, τ)is required series solution, where ζl (ω, τ) =

Vk (ω) (τ − τ0)
l, converges to ε (ω, t). If

∑n
i=0 ζi (ω, τ) is the truncated series used to

approximate the solution and then estimated maximum absolute truncated error is as
∥ε (ω, t)−

∑m
i=0 ζi (ω, τ)∥ ≤ 1

η−1η
j+1 ∥ζ0∥ where η = max {ηi, i = 0, 1, ..., j}.

Proof: See Moosavi Noori and Taghizadeh (2021) for the proof.

From Theorems 1 and 2, it is concluded that series solution obtained using RDTM for
nonlinear equation ℑ [θ (ξ, y)] + ℜ [θ (ξ, y)] +N [θ (ξ, y)] = ϕ (ξ, y), converges to an
exact solution when there exist 0 < η < 1 such that ∥ζl+1∥ ≤ η ∥ζl∥ , for ∀ l ∈ N ∪ {0}.
In addition ∥ε (ω, t)−

∑m
i=0 ζi (ω, τ)∥ ≤ 1

1−ηη
m+1 ∥ζ0∥ represents maximum estimated

absolute truncated error.

3 Implementation of RDTM to Fisher’s reaction diffusion equation

3.1 Case 1

Considering reactive and diffusive constant value, i.e., the parameter values α = 1,
γ = 1 equation (2) reduces to

∂ς

∂t
=

∂ς

∂ξ2
+ ς(1− ς), (13)

with initial condition

ς (ξ, 0) = γ. (14)

For the exact solution of Case 1 see Loyinmi and Akinfe (2020). Applying RDTM to
equations (13) and (14), the transformed recursive formula and initial condition is
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(κ+ 1) ζ(κ+1) (ξ) =
d2ζκ (ξ)

dξ2
+ ζκ (ξ)−

κ∑
i=0

ζi (ξ)ζκ−i (ξ) , (15)

ζ0 (ξ) = γ. (16)

Using the transformed condition equation (16) in equation (15), the coefficient of series
solution can be obtained for κ = 0, 1, 2, 3, 4, 5, ...

For κ = 0, equation (15) reduces to

ζ1 (ξ) =
d2ζ0 (ξ)

dξ2
+ ζ0 (ξ)− ζ0

2 (ξ) . (17)

Substituting equation (16) in equation (17), we get

ζ1 (ξ) = γ − γ2. (18)

For κ = 1, equation (15) reduces to

2ζ2 (ξ) =
1

2
(ζ1 (ξ)− (ζ0 (ξ) ζ1 (ξ) + ζ1 (ξ) ζ0 (ξ))) . (19)

Substituting equations (16) and (18) in equation (19), we get

ζ2 (ξ) =
1

4

(
γ − γ2

)
(1− 2γ) . (20)

For κ = 2, equation (15) reduces to

ζ3 (ξ) =
1

3

(
ζ2 (ξ)−

(
2ζ0 (ξ) ζ2 (ξ) + ζ2

1
(ξ) ζ1 (ξ)

))
. (21)

Substituting equations (16), (19) and (18) in equation (21), we get

ζ3 (ξ) =

(
1

12

(
γ − γ2

)
(1− 2γ)−

(
1

6

(
γ2 − γ3

)
(1− 2γ) +

(
γ − γ2

)2))
. (22)

For κ = 3, equation (15) reduces to

4ζ4 (ξ) =
d2ζ3 (ξ)

dξ2
+ ζ3 (ξ)−

3∑
i=0

ζi (ξ)ζ3−i (ξ) . (23)

Substituting equations (16), (18), (19) and (22) in equation (23), we get

ζ4 (ξ) =
1

4

{
1

12

(
γ − γ2

)
(1− 2γ)−

(
1

6

(
γ2 − γ3

)
(1− 2γ)

+
(
γ − γ2

)2)− ((1

6

(
γ2 − γ3

)
(1− 2γ)−

((
γ3 − γ4

)
(1− 2γ)

+
(
γ − γ2

)2))
+

1

2

(
γ − γ2

) ((
γ − γ2

)
(1− 2γ)

))}
. (24)
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In the same way, the remaining coefficient of the series solution can be obtained using
the MATLAB software package. The analytical approximate solution in series form up
to fourth approximation using equation (12) is given by:

ζ (ξ, t) = γ +
(
γ − γ2

)
t+

1

4

(
γ − γ2

)
(1− 2γ) t2

+

(
1

12

(
γ − γ2

)
(1− 2γ)−

(
1

6

(
γ2 − γ3

)
(1− 2γ) +

(
γ − γ2

)2))
t3

+
1

4

{
1

12

(
γ − γ2

)
(1− 2γ)−

(
1

6

(
γ2 − γ3

)
(1− 2γ) +

(
γ − γ2

)2)
−
((

1

6

(
γ2 − γ3

)
(1− 2γ)−

((
γ3 − γ4

)
(1− 2γ) +

(
γ − γ2

)2))
+

1

2

(
γ − γ2

) ((
γ − γ2

)
(1− 2γ)

))}
t4 + ... (25)

Case 2

By considering the parameter values α = 6, γ = 1 equation (2) reduces to

∂ζ

∂t
=

∂ζ

∂ξ2
+ 6ζ (1− ζ) , (26)

with initial condition

θ (ξ, 0) =
1

(1 + eξ)
2 . (27)

For the exact solution of Case 2 see Loyinmi and Akinfe (2020). Applying RDTM to
equations (26) and (27), the transformed recursive formula and initial condition is

(κ+ 1) ζ(κ+1) (ξ) =
d2ζκ (ξ)

dx2
+ 6ζκ (ξ)− 6

κ∑
i=0

ζi (ξ)ζκ−i (ξ) , (28)

ζ0 (ξ) =
1

(1 + eξ)
2 . (29)

Using transformed condition equation (29) in equation (28), the coefficient of series
solution can be obtained for κ = 0, 1, 2, 3, 4, 5, ...

For κ = 0, equation (28) reduces to

ζ1 (ξ) =
d2ζ0 (ξ)

dξ2
+ 6ζ0 (ξ)− 6ζ2

0
(ξ) . (30)

Substituting equation (29) in equation (30), we get

ζ1 (ξ) =
10 eξ

(1 + eξ)
3 . (31)

For κ = 1, equation (28) reduces to
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2ζ2 (ξ) =
d2ζ1 (ξ)

dξ2
+ 6ζ1 (ξ)− 6

1∑
i=0

ζi (ξ)ζ1−i (ξ) . (32)

Substituting values from equations (29) and (31) in equation (32), we get

2ζ2 (ξ) =
10 eξ

(
4e2ξ − 7eξ + 1

)
(1 + eξ)

5 + 6

(
10 eξ

(1 + eξ)
3

)

− 12

(
1

(1 + eξ)
2

)(
10 eξ

(1 + eξ)
3

)
, (33)

ζ2 (ξ) =
25 eξ

(
2eξ − 1

)
(1 + eξ)

4 . (34)

For κ = 2, equation (28) reduces to

3ζ3 (ξ) =
d2ζ2 (ξ)

dξ2
+ 6ζ2 (ξ)− 12ζ2

0
(ξ)− 6ζ2

1
(ξ) . (35)

Substituting values from equations (29), (31) and (34) in equation (35), we get

3ζ3 (ξ) = −
50 eξ

(
33e2ξ − 8e3ξ − 18eξ + 1

)
(1 + eξ)

6 +
150 eξ

(
2eξ − 1

)
(1 + eξ)

4

−

(
300 eξ

(
2eξ − 1

)
(1 + eξ)

6

)
− 6

(
10 eξ

(1 + eξ)
3

)2

, (36)

ζ3 (ξ) = −
50 eξ

(
15e2ξ − 20e3ξ + 18eξ − 5

)
3(1 + eξ)

6 . (37)

For κ = 3, equation (28) reduces to

4ζ4 (ξ) =
d2ζ3 (ξ)

dξ2
+ 6ζ3 (ξ)− 12ζ0 (ξ) ζ3 (ξ)− 12ζ1 (ξ) ζ2 (ξ) . (38)

Substituting values from equations (29), (31), (34) and (37) in equation (38), we get

ζ4 (ξ) =
25 eξ

(
386e2ξ + 392e3ξ − 575e4ξ + 80e5ξ − 152eξ + 5

)
2(1 + ex)

8

−
75 eξ

(
15e2ξ − 20e3ξ + 18eξ − 5

)
3(1 + eξ)

6

+

(
50 eξ

(
15e2ξ − 20e3ξ + 18eξ − 5

)
(1 + eξ)

8

)
−

(
1, 500e2ξ

(
2eξ − 1

)
(1 + eξ)

7

)
, (39)

ζ4 (ξ) =
50eξ

(
506 e2ξ + 32e3ξ − 575e4ξ + 80e5ξ − 12eξ − 55

)
4(1 + eξ)

8 . (40)

In the same way, using the MATLAB software package the remaining coefficient of
the series solution can be calculate.The analytical approximate solution of equation (26)
with initial condition equation (27) is
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θ (ξ, t) =
1

(1 + eξ)
2 +

(
10 eξ

(1 + eξ)
3

)
t+

1

4

(
25 eξ

(
2eξ − 1

)
(1 + eξ)

4

)
t2

+

(
50 eξ

(
15e2ξ − 20e3ξ + 18eξ − 5

)
3(1 + eξ)

6

)
t3

+
50eξ

(
506 e2ξ + 32e3ξ − 575e4ξ + 80e5ξ − 12eξ − 55

)
4(1 + eξ)

8 t4 + ... (41)

Case 3

Considering the parameter values α = 1, γ = 6 in equation (2), it reduces to

∂ζ

∂t
=

∂ζ

∂ξ2
+ ζ

(
1− ζ6

)
, (42)

with initial condition

ζ (ξ, 0) =
1

3

√(
1 + e

3
2 ξ
) . (43)

For the exact solution of Case 3 see Loyinmi and Akinfe (2020). Applying RDTM to
equations (42) and (43), the transformed recursive formula and initial condition is

(κ+ 1) ζ(κ+1) (ξ) =
d2Θκ (ξ)

dξ2
+Θκ (ξ)

−
κ∑

i=0

i∑
ι=0

ι∑
ν=0

ν∑
ω=0

ω∑
ρ=0

ρ∑
ℓ=0

Θℓ (ξ)Θρ−ℓ (ξ)Θω−ρ (ξ)

Θν−ω (ξ)Θι−ν (ξ)Θi−ι (ξ)Θκ−i (ξ) , (44)

ζ0 (ξ) =
1

3

√(
1 + e

3
2 ξ
) . (45)

Using transformed initial condition equation (43) in equation (44), the coefficient of the
series solution can be calculated.

For κ = 0, equation (44) reduces to

ζ1 (ξ) =
d2ζ0 (ξ)

dx2
+ ζ0 (ξ)− (ζ0 (ξ))

7
. (46)

Substituting equation (45) in equation (46), we get

ζ1 (ξ) =
e

3
2 ξ
(
e

3
2 ξ − 3

)
4
(
1 + e

3
2 ξ
) 7

3

+
1(

1 + e
3
2 ξ
) 1

3

− 1(
1 + e

3
2 ξ
) 7

3

. (47)

For κ = 1, equation (44) reduces to
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2ζ2 (ξ) =
d2ζ1 (ξ)

dξ2
+ ζ1 (ξ)

−
1∑

i=0

i∑
ι=0

ι∑
ν=0

ν∑
ω=0

ω∑
ρ=0

ρ∑
ℓ=0

ζℓ (ξ)ζρ−ℓ (ξ) ζω−ρ (ξ) ζν−ω (ξ)

ζι−ν (ξ) ζi−ι (ξ) ζκ−i (ξ) . (48)

Substituting equations (45), (47) in equation (48), we get

ζ2 (ξ) =
1

2



227e3ξ + 13e
3
2 ξ + 25e6ξ − 25e

9
2 ξ − 656 e3ξ

(
1 + e

3
2 ξ
)2

−344 e
3
2 ξ
(
1 + e

3
2 ξ
)2

− 352e6ξ
(
1 + e

3
2 ξ
)2

+672e3ξ
(
1 + e

3
2 ξ
)4

+ 448e
3
2 ξ
(
1 + e

3
2 ξ
)4

−792e
9
2 ξ
(
1 + e

3
2 ξ
)2

+ 112e6ξ
(
1 + e

3
2 ξ
)4

+448e
9
2 ξ
(
1 + e

3
2 ξ
)4

− 128
(
1 + e

3
2 ξ
)2

+112
(
1 + e

3
2 ξ
)4

+ 16(
1 + e

3
2 ξ
) 7

3



. (49)

ζ3 (ξ), ζ4 (ξ) are too long to mention,so they are represented graphical. The analytical
approximate solution of equation (42) with initial condition (43) is

ζ (ξ, t) =
1(

1 + e
3
2 ξ
) 1

3

+

e
3
2 ξ
(
e

3
2 ξ − 3

)
4
(
1 + e

3
2 ξ
) 7

3

+
1(

1 + e
3
2 ξ
) 1

3

− 1(
1 + e

3
2 ξ
) 7

3

 t
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+
1

2



227e3ξ + 13e
3
2 ξ + 25e6ξ − 25e

9
2 ξ

−656 e3ξ
(
1 + e

3
2 ξ
)2

− 344 e
3
2 ξ
(
1 + e

3
2 ξ
)2

−352e6ξ
(
1 + e

3
2 ξ
)2

+ 672e3ξ
(
1 + e

3
2 ξ
)4

+448e
3
2 ξ
(
1 + e

3
2 ξ
)4

− 792e
9
2 ξ
(
1 + e

3
2 ξ
)2

+112e6ξ
(
1 + e

3
2 ξ
)4

+ 448e
9
2 ξ
(
1 + e

3
2 ξ
)4

−128
(
1 + e

3
2 ξ
)2

+ 112
(
1 + e

3
2 ξ
)4

+ 16(
1 + e

3
2 ξ
) 7

3



t2 + ... (50)

Case 4

Consider the parameter values α = 1, γ = 1, 0 ≤ ρ ≤ 1, equation (3) reduces to

∂ζ

∂t
=

∂2ζ

∂ξ2
+ ζ (1− ζ) (ζ − ρ) . (51)

with initial condition

ζ (ξ, 0) =
1(

1 + e
− 1√

2
ξ
) . (52)

or the exact solution of Case 4 see Loyinmi and Akinfe (2020). Applying RDTM to
equations (51) and (52), the transformed recursive formula and initial condition is

(κ+ 1) ζ(κ+1) (ξ) =
d2ζκ (ξ)

dξ2
+ (ρ+ 1)

κ∑
i=0

ζi (ξ)ζκ−i (ξ)− ρ ζκ (ξ)

−
κ∑

i=0

i∑
j=0

ζj (ξ)ζi−j (ξ)ζκ−i (ξ) , (53)

ζ0 (ξ) =
1(

1 + e
− 1√

2
ξ
) . (54)

Using transformed initial condition equation (54) in recursive formula (53) the
coefficient of the series solution can be calculated.
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For κ = 0, equation (53) reduces to

ζ1 (ξ) =
d2ζ0 (ξ)

dξ2
+ (ρ+ 1) (ζ0 (ξ))

2 − ρ ζ0 (ξ)− (ζ0 (ξ))
3
. (55)

Substituting equation (54) in equation (55), we get

ζ1 (ξ) = −e
1√
2
ξ
(2ρ− 1)

2
(
1 + e

1√
2
ξ
) . (56)

For κ = 1, equation (53) reduces to

2ζ2 (ξ) =
d2ζ1 (ξ)

dx2
+ (ρ+ 1)

1∑
i=0

ζi (ξ)ζκ−i (ξ)− ρ ζ1 (ξ)

−
1∑

i=0

i∑
j=0

ζj (ξ)ζi−j (ξ)ζκ−i (ξ) , (57)

2ζ2 (ξ) =
d2ζ1 (ξ)

dξ2
+ (2ρ− 1) ζ0 (ξ) ζ1 (ξ)− ρ ζ1 (ξ) . (58)

Substituting value from equations (54) and (56) in equation (58), we get

ζ2 (ξ) =
e

1√
2
ξ
(2ρ− 1)

(
2ρ+ e

√
2ξ + 6e

1√
2
ξ − 2ρe

√
2ξ − 1

)
8
(
1 + e

1√
2
ξ
)4 . (59)

For κ = 2, equation (53) reduces to

3ζ3 (ξ) =
d2ζ3 (ξ)

dξ2
+ (ρ+ 1)

2∑
i=0

ζi (ξ)ζκ−i (ξ)− ρ ζ2 (ξ)

−
2∑

i=0

i∑
j=0

ζj (ξ)ζi−j (ξ)ζκ−i (ξ) . (60)

Substituting values from equations (54), (56), and (59) in equation (60), we get

ζ3 (ξ) =

e
1√
2
ξ
(2ρ− 1)


4ρ− e

√
2ξ
(
20 + 2ρ− 12ρ2

)
+e2

√
2ξ (17− 10ρ)

+e
1√
2
ξ
(40− 20ρ)

+e
3√
2
ξ (

76 + 12ρ+ 8ρ2
)

−4ρ2 − 1


24
(
1 + e

1√
2
ξ
)6 . (61)

For κ = 3, equation (53) reduces to
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4ζ4 (ξ) =
d2ζ3 (ξ)

dξ2
+ (ρ+ 1)

3∑
i=0

ζi (ξ)ζκ−i (ξ)− ρ ζ3 (ξ)

−
3∑

i=0

i∑
j=0

ζj (ξ)ζi−j (ξ)ζκ−i (ξ) . (62)

Substituting values from equations (54), (56) and (59) in equation (60), we get

ζ4 (ξ) = −

(2ρ− 1) e
1√
2
ξ



897e
√
2ξ − 6ρ+ 1137e2

√
2ξ − 168e

1√
2
ξ

+17e3
√
2ξ − 2, 160e

3√
2
ξ
+ 60e

5√
2
ξ

−432ρe
√
2ξ + 402ρe2

√
2ξ + 196ρe

1√
2
ξ

−44ρe3
√
2x + 56ρe

3√
2
ξ − 332ρe

5√
2
ξ

−20ρ2e
√
2ξ + 64ρ3e

√
2ξ + 148ρ2e2

√
2ξ

−88ρ2e
1√
2
ξ
+ 20ρ2e3

√
2ξ − 56ρ3e2

√
2ξ

+16ρ3e
1√
2
ξ
+ 240ρ2e

3√
2
ξ
+ 16ρ3e

3√
2
ξ

+8ρ2e
5√
2
ξ − 32ρ3e

5√
2
ξ
+ 12ρ2 − 8ρ3 + 1


64
(
1 + e

1√
2
ξ
)8 . (63)

In the same way, the remaining coefficient can be evaluate using the MATLAB package.
The analytical approximate solution of equation (51) with initial condition (52) is

ζ (ξ, t) =
1(

1 + e
− 1√

2
ξ
) −

e
1√
2
ξ
(2ρ− 1)

2
(
1 + e

1√
2
ξ
)
 t

+

e
1√
2
ξ
(2ρ− 1)

(
2ρ+ e

√
2ξ + 6e

1√
2
ξ − 2ρe

√
2ξ − 1

)
8
(
1 + e

1√
2
ξ
)4

 t2

+

e
1√
2
ξ
(2ρ− 1)

4a− e
√
2ξ
(
20 + 2ρ− 12ρ2

)
+ e2

√
2ξ (17− 10ρ)

+e
1√
2
ξ
(40− 20ρ) + e

3√
2
ξ (

76 + 12ρ+ 8a2
)

−4ρ2 − 1


24
(
1 + e

1√
2
ξ
)6 t3

−

(2ρ− 1) e
1√
2
ξ



897e
√
2ξ − 6ρ+ 1, 137e2

√
2x − 168e

1√
2
ξ

+17e3
√
2ξ − 2, 160e

3√
2
ξ
+ 60e

5√
2
ξ

−432ρe
√
2ξ + 402ρe2

√
2ξ + 196ρe

1√
2
ξ

−44ae3
√
2ξ + 56ae

3√
2
ξ − 332ae

5√
2
ξ

−20ρ2e
√
2ξ + 64a3e

√
2ξ + 148a2e2

√
2ξ

−88a2e
1√
2
ξ
20ρ2e3

√
2ξ − 56ρ3e2

√
2ξ

+16ρ3e
1√
2
ξ
+ 240ρ2e

3√
2
ξ
+ 16ρ3e

3√
2
ξ

+8ρ2e
5√
2
ξ − 32ρ3e

5√
2
ξ
+ 12ρ2 − 8ρ3 + 1


64
(
1 + e

1√
2
ξ
)8 t4 + ... (64)
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4 Algorithm for RDTM

Algorithm 1 Algorithm to calculate the series solution of BFRDE

begin
Input: Parameters values, initial condition
Output: Series solution of the (BFRDE)
Step 1 Insert Input parameters.
Step 2 Compute the coefficient of series solution using the recursive formula associated with

the given partial differential equation
Create loop for k from 1 to n
Initialise A = 0, B = 0, C = 0
Note: Create the number of loop required depending on power of ζ .
Create loop for i from 1 to k
Create loop for j from 1 to i
A = A+ ζ(1 : κ) ∗ ζ(1 : κ− i) + ζ(1 : i) ∗ ζ(1 : i− j) ∗ ζ(1 : κ− i)

end
end
ζ(κ+ 1) = (diff(ζ(i), ξ, 2) +A)/(κ ∗ (κ+ 1))

end
Step 3 Compute the series solution unto to n using the coefficient values.
Create loop for i from 1 to n
Series(t) = ζ(1 : n) ∗ power(t, κ− 1)

end
Step 4 Display the series solution.
end

5 Result and discussion

In this section, we present the result for BFRDE for Cases 1, 2, 3 and 4 obtained by
RDTM and compare these result via table, convergence plot with the exact solution as
well as the with other well known analytical solution available in the literature (Loyinmi
and Akinfe, 2020).

The absolute errors at various times (t) for different values of ξ are obtained and
compared with the exact solutions in Tables 1, 2, 3 and 4 for the Cases 1, 2, 3 and 4.
Figures 1, 2, 3 and 4 shows 3D plot for Cases 1, 2, 3 and 4 respectively for different
values of parameters. To study the accuracy of RDTM solution for Case 1, the absolute
error up to four term approximation is listed in Table 2. The comparison of results with
other analytical method for Case 1 from Table 2 shows that RDTM is more accurate
as compare to EHTPM and HPM. From Figure 5 and Table 1, it is clear that the
approximate solution converges rapidly to exact solution. From Figure 5, it clear that
series solution with less number of approximation shows an excellent agreement with
exact solution. The computational analysis of Case 2 is done in the domain ξ = 1, 2, 3,
..., 0.1 ≤ t ≤ 0.5. Table 3 shows the comparison of the present result with the result
obtained by Loyinmi and Akinfe (2020). It is found that the present solution is more
accurate than Loyinmi and Akinfe (2020) and shows an excellent agreement with the
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exact solution. From Figure 5, it is clear that the series solution with ten approximation
terms shows an excellent agreement with an exact solution in compared to solution
with four and seven approximations, respectively. Table 3 shows comparison of present
solution with EHTPM and HPM at different value of ξ and t for Case 3 for α = 1, γ
= 6 and ρ = 0. We found that the present solution shows an excellent agreement with
the exact solution and is more accurate than EHTPM and HPM, which is clear from
Figure 6. Table 4 shows the comparison of present solution with EHTPM and HPM at
different value of ξ and t for Case 4 for α = 0, β = 6 and 0 ≤ a ≤ 1. We found that
the present solution shows an excellent agreement with the exact solution and is more
accurate than EHTPM and HPM, which is clear from Figure 6. The effect of initial
conditions for Cases 1, 2, 3 and 5 can be seen in Tables 2, 3, 4 and 5 respectively.

Figure 1 Analytical approximate solution of Case 1 for parameter values α = 1, γ = 1
(see online version for colours)

Figure 2 Analytical approximate solution of Case 2 for parameter values α = 6, γ = 1
(see online version for colours)
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Figure 3 Analytical approximate solution of Case 3 α = 1, γ = 6 (see online version
for colours)

Figure 4 Analytical approximate solution of Case 4 with parameter α = 1, γ = 6, ρ = 0.3
(see online version for colours)

Figure 5 Convergence plot of Cases 1 and 2 respectively (see online version for colours)
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Table 2 Comparison of analytic approximate solution of Case 1 with parameters α = 1, γ = 1

t
EX
AC
T

EH
TP
M

H
PM

RD
TM

Ab
so
lu
te
er
ro
r
fo
r
EH
TP
M

Ab
so
lu
te
er
ro
r
fo
r
H
PM

Ab
so
lu
te
er
ro
r
fo
r
RD
TM

0
0.
5

0.
5

0.
5

0.
5

0
0

0
0.
1

0.
52
49
79
18
8

0.
52
49
79
18
7

0.
54
99
79
18
8

0.
52
49
79
18
74
78
94
0

1.
0
×

10
−
10

0.
02
5

2.
10
6
×

10
−
11

0.
2

0.
54
98
33
99
7

0.
54
98
33
99
7

0.
59
98
34

0.
54
98
33
99
73
12
52
2

1.
0
×

10
−
10

0.
05
00
00
00
3

1.
25
52
2
×

10
−
11

0.
3

0.
57
44
42
51
7

0.
57
44
42
51
7

0.
64
94
42
56
3

0.
57
44
42
51
68
15
45
8

1.
0
×

10
−
10

0.
07
50
00
04
6

8.
85
42

×
10

−
11

0.
4

0.
59
86
87
66

0.
59
86
87
66
7

0.
69
86
88

0.
59
86
87
66
02
01
76
4

7.
1
×

10
−
9

0.
10
00
00
34

1.
76
40
3
×

10
−
12

0.
5

0.
62
24
59
33
1

0.
62
24
59
60
5

0.
79
56
62

0.
62
24
59
33
22
32
33
2

2.
74
1
×

10
−
7

0.
17
32
02
66
9

1.
23
23
3
×

10
−
09
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Table 3 Comparison of analytic approximate solution of Case 2 with parameters α = 6, γ = 1

x
t

Ex
ac
t

EH
TP
M

H
PM

RD
TM

Ab
so
lu
te
er
ro
r

Ab
so
lu
te
er
ro
r

Ab
so
lu
te
er
ro
r

fo
r
EH
TP
M

fo
r
H
PM

fo
r
RD
TM

1
0

0.
79
37
00
52
59
84
1

0.
79
37
00
52
59
84
1

0.
79
37
00
52
59
84
1

0.
79
37
00
52
59
84
1

0
0

0
0.
1

0.
14
25
36
95
66

0.
14
25
36
95
77
00

0.
14
25
36
95
77
00

0.
14
25
36
95
65
96
66
4

1.
1
×

10
−
9

1.
1
×

10
−
9

3.
33
6
×

10
−
12

0.
2

0.
25
00

0.
25
00
00
00
88
0

0.
25
00
00
00
88
0

0.
25
00
00
00
00
00
00
0

8.
8
×

10
−
9

8.
8
×

10
−
9

0
0.
3

0.
38
74
55
61
89
00

0.
38
74
55
61
09
00

0.
38
74
55
61
09
00

0.
38
74
55
61
90
00
26
0

8.
0
×

10
−
9

8.
0
×

10
−
9

1.
00
26

×
10

−
10

0.
4

0.
53
44
46
64
55
0

0.
53
37
32
62
85
0

0.
53
37
32
62
85
0

0.
53
44
46
64
53
89
47
4

7.
14
01
7
×

10
−
9

7.
14
17

×
10

−
9

1.
10
52
6
×

10
−
10

0.
5

0.
66
84
28
02
43
00

0.
66
84
28
15
70
00

0.
66
84
28
15
70
00

0.
66
84
28
56
85
41
68
8

1.
32
7
×

10
−
8

1.
32
7
×

10
−
8

5.
44
24
2
×

10
−
7

2
0

0.
14
20
93
36
61
86
1

0.
14
20
93
36
61
86
1

0.
14
20
93
36
61
86
1

0.
14
20
93
36
61
86
1

0
0

0
0.
1

0.
03
32
79
07
17
4

0.
03
32
79
07
17
49

0.
03
32
79
07
17
49

0.
03
32
79
07
17
36
02
4

9.
0
×

10
−
12

9.
0
×

10
−
12

3.
97
65

×
10

−
12

0.
2

0.
07
23
29
48
81
50
0

0.
07
23
29
48
84
30
0

0.
07
23
29
48
84
30
0

0.
07
23
29
48
81
28
51
3

2.
8
×

10
−
10

2.
8
×

10
−
10

2.
14
86
7
×

10
−
11

0.
3

0.
14
25
36
95
66
0

0.
14
25
36
95
80
0

0.
14
25
36
95
80
0

0.
14
25
36
95
65
96
55
1

1.
4
×

10
−
9

1.
4
×

10
−
9

3.
44
89
9
×

10
−
12

0.
4

0.
25
00
00
00
00
0

0.
25
00
00
00
26
0

0.
25
00
00
00
26
0

0.
25
00
00
00
00
00
00
0

2.
6
×

10
−
9

2.
6
×

10
−
9

0
0.
5

0.
38
74
55
61
89
00
0

0.
38
74
55
61
63
00
0

0.
38
74
55
61
63
00
0

0.
38
74
55
61
85
98
43
7

2.
6
×

10
−
9

2.
6
×

10
−
9

3.
01
56
3
×

10
−
10

3
0

0.
00
22
49
21
34
46
65
46
5

0.
00
22
49
21
34
46
65
46
5

0.
00
22
49
21
34
46
65
46
5

0.
00
22
49
21
34
46
65
46
5

0
0

0
0.
1

0.
00
57
54
46
34
8

0.
00
57
54
46
34
9

0.
00
57
54
46
34
9

0.
00
57
54
46
34
76
13
5

1.
0
×

10
−
11

1.
0
×

10
−
11

3.
86
46
1
×

10
−
12

0.
2

0.
01
42
09
33
66
2

0.
01
42
09
33
63
8

0.
01
42
09
33
63
8

0.
01
42
09
33
66
18
61
0

2.
4
×

10
−
10

2.
4
×

10
−
10

1.
39

×
10

−
12

0.
3

0.
03
32
79
07
17
4

0.
03
32
79
07
19
4

0.
03
32
79
07
19
4

0.
03
32
79
07
17
36
02
4

2.
0
×

10
−
10

2.
0
×

10
−
10

3.
97
65

×
10

−
10

0.
4

0.
07
23
29
48
81
5

0.
07
23
29
48
81
9

0.
07
23
29
48
81
9

0.
07
23
29
48
81
28
51
3

4.
0
×

10
−
11

4.
0
×

10
−
11

2.
14
86
7
×

10
−
11

0.
5

0.
14
25
36
95
66
0

0.
14
25
36
95
72
0

0.
14
25
36
95
72
0

0.
14
25
36
95
65
96
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Table 4 Comparison of analytic approximate solution of Case 3 with parameters α = 1, γ = 6
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Table 5 Comparison of analytic approximate solution of Case 4 with parameters α = 1,
γ = 1, ρ = 0.3
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Figure 6 Convergence plot of Cases 3 and 4 respectively (see online version for colours)

6 Conclusions

In this research, we represent an application of the RDTM by handling the class of
reaction-diffusion equations, namely the family of fisher’s differential equation. Several
conclusions can be drawn from this research:

• It easily handles the nonlinear terms and complex initial conditions and overcomes
the disadvantage of computing the unwanted terms and complex calculations.

• Highly nonlinear PDEs can easily handle by the RDTM, and its straightforward
applicability makes it easier for users to code in any software language.

• It does not require discretisation, perturbation parameter, or linearisation; instead,
it converts the complex differential equation into an algebraic formula that is easy
to handle.

• The capability of the method to convert the complex differential equation and
initial condition to a simple recursive formula is a massive advantage to
researchers as it helps in programming the approach.

• Using MATLAB code, the computation time is reduced if anyone requires a
solution by considering more than 30 terms.

We strongly recommend using the proposed RDTM to solve models in various fields,
including fluid flow and fluid mechanics, engineering, nonlinear dynamics, acoustics,
convection-diffusion, and advection-diffusion models. Furthermore, this approach is
versatile enough to be used in the classroom to provide theoretical solutions to equations
like the Fisher, Burgers-Huxley, and other nonlinear partial differential equations.
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