
 
International Journal of Applied Nonlinear Science
 
ISSN online: 1752-2870 - ISSN print: 1752-2862
https://www.inderscience.com/ijans

 
Rational solutions to the Painlevé II equation from particular
polynomials
 
Pierre Gaillard
 
DOI: 10.1504/IJANS.2022.10047559
 
Article History:
Received: 25 August 2021
Last revised: 13 May 2022
Accepted: 07 April 2022
Published online: 06 September 2022

Powered by TCPDF (www.tcpdf.org)

Copyright ©  Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijans
https://dx.doi.org/10.1504/IJANS.2022.10047559
http://www.tcpdf.org


Int. J. Applied Nonlinear Science, Vol. 3, No. 3, 2022 189

Rational solutions to the Painlevé II equation from
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Email: Pierre.Gaillard@u-bourgogne.fr

Abstract: The Painlevé equations were derived by Painlevé and Gambier in
1895–1910. Given a rational function R in w, w′ and analytic in z, they
searched what were the second order ordinary differential equations of the
form w′′ = R(z, w,w′) with the properties that the singularities other than
poles of any solution or this equation depend on the equation only and not
of the constants of integration. They proved that there are 50 equations of
this type, and the Painlevé II is one of these. Here, we construct solutions to
the Painlevé II equation (PII) from particular polynomials. We obtain rational
solutions written as a derivative with respect to the variable x of a logarithm
of a quotient of a determinant of order n+ 1 by a determinant of order n.
We obtain an infinite hierarchy of rational solutions to the PII equation. We
give explicitly the expressions of these solutions solution for the first orders.
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1 Introduction

We consider the Painlevé II equation (PII) which can be written in the form

uxx − 2u3 + 4xu− 4(n+ 1) = 0, (1)

Copyright © 2022 Inderscience Enterprises Ltd.
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where the subscript x denote derivative and n is an arbitrary integer.
This equation is one of the six famous equations discovered by Painlevé (1900) at

the beginning of 20th century.
The first solutions of this equation expressed in a slightly different form

uxx − 2u3 − xu− α = 0, (2)

were given by Yablonskii in 1959 and Vorob’ev in 1965, for every α integer. For this
purpose, they constructed polynomials defined by the following recurrence relation

Qn+1Qn = xQ2
n − 4[Qn(Qn)xx − ((Qn)x)

2], (3)

which we call today Yablonski-Vorob’ev polynomials.
Other types of rational solutions of the PII equation (2) were constructed by Airault

in 1979 and Murata in 1985. A proof of the irreducibility of the PII equation (2) was
done by Umemura and Watanabe in 1997. It has been proven that the solutions of the
PII equation (2) can be represented by a logarithmic derivative of certain polynomials
in Airault (1979) and Clarkson and Mansfield (2003). It has been shown in Lukashevich
(1971) that any rational solution of equation (2) can be constructed via Bäcklund
transformations. PII equation (2) has solutions which can be expressed in terms of
classical special functions, more precisely in terms of Airy functions as these given by
Clarkson in Clarkson (2016).

In the following, we consider particular polynomials and we construct rational
solutions to the PII equation (1) by using the Hirota bilinear method. Then we obtain
rational solutions to the PII equation as a derivative of a logarithm of a quotient of a
determinant of order N + 1 by a determinant of order N . That provides an effective
method to construct an infinite hierarchy of rational solutions of order N . We present
rational solutions for the first simplest orders.

2 Rational solutions to the PII equation

We consider the polynomials pn defined by
pn(x) =

∑n
k=0 x

k

1

3

n− k

3


(
n− k

3

)
!

×
(
1−

[
1

2

(
n− k + 1− 3

[
n− k

3

])])
,

for n ≥ 0,

pn(x) = 0, for n < 0.

(4)

In the previous definition of pn, [x] means the largest integer less than or equal to x.
We denote An the determinant defined by

An = det(pn+1−2i+j(x)){1≤i≤n, 1≤j≤n} (5)

With these notations we have the following result:
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Theorem 2.1: The function vn defined by

vn(x) = ∂x

(
ln

An+1

An

)
(6)

is a rational to the PII equation (1)

uxx − 2u3 + 4xu− 4(n+ 1) = 0.

Proof: We know that vn(x) = ∂x

(
ln

f

g

)
is a solution to the PII equation if f and g

verify the following equations:

(D2
x)f · g = 0, (7)

(D3
x + 4xDx − 4(n+ 1))f · g = 0, (8)

where D is the bilinear differential operator.
We have to check the relation (7) for f = det(pn+2−2i+j){1≤i≤n+1, 1≤j≤n+1} and

g = det(pn+1−2i+j){1≤i≤n, 1≤j≤n}. We choose the following notations: Cj denotes the
column j of An+1, 1 ≤ j ≤ n+ 1 and C̃j denotes the column j of An, 1 ≤ j ≤ n:

Cj =


pn+j

pn−2+j

...
p−n+j

 , C̃j =


pn−1+j

pn−3+j

...
p−n+1+j

 . (9)

Using these notations, An+1(x, t) and An(x, t) can be written as:

An+1(x, t) = |C1, . . . , Cn+1|, An(x, t) = |C̃1, . . . , C̃n|.

1 We have to prove the relation (7) D2
xf · g = 0.

Let G be the expression G = D2
xf · g. We evaluate G.

G = G1 +G2 can be written as a sum of 6 terms where

G1 = |C0, C1, C3, . . . , Cn+1| × |C̃1, C̃2, . . . , C̃n|
+ |C1, C2, C3, . . . , Cn+1| × |C̃−1, C̃2, C̃3, . . . , C̃n|
− |C0, C2, . . . , Cn+1|]× |C̃0, C̃2, C̃3, . . . , C̃n|

and

G2 = |C−1, C2, C3, . . . , Cn+1| × |C̃1, C̃2, . . . , C̃n|
+ |C1, C2, C3, . . . , Cn+1| × |C̃0, C̃1, C̃3, . . . , C̃n|
− |C0, C2, . . . , Cn+1|]× |C̃0, C̃2, C̃3, . . . , C̃n|
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We write G1 and G2 as the determinants of order 2n+ 1

G1 =

∣∣∣∣C1 C2 C3 C4 . . . . . . Cn+1 C0 0 . . . . . . . . . . . . 0

C̃0 C̃1 0 0 . . . . . . 0 C̃−1 C̃2 C̃3 C̃4 C̃5 . . . C̃n

∣∣∣∣ (10)

and

G2 =

∣∣∣∣C−1 C2 C3 C4 . . . . . . Cn+1 C0 C1 . . . . . . . . . . . . 0

C̃0 0 0 0 . . . . . . 0 C̃1 C̃2 C̃3 C̃4 C̃5 . . . C̃n

∣∣∣∣ (11)

G1 can be rewritten as

G1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn+1 pn+2 pn+3 pn+4 . . . p2n+1 pn 0 0 . . . 0
pn−1 pn pn+1 pn+2 . . . p2n−1 pn−2 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

p−n+1 p−n+2 p−n+3 p−n+1 . . . p1 p−n 0 0 . . . 0
pn−1 pn 0 0 . . . 0 pn−2 pn+1 pn+2 . . . p2n−1

pn−3 pn−2 0 0 . . . 0 pn−4 pn−1 pn . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
p−n+1 p−n+2 0 0 . . . 0 p−n p−n+3 p−n+4 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

Denoting L the rows and C the columns of this determinant of order 2n+ 1, we
combine the rows of the previous determinant in the following way:

We replace Ln+1+j by Ln+1+j − Lj+1 for 1 ≤ j ≤ n, then we obtain the
following determinant

G1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn+1 pn+2 pn+3 pn+4 . . . p2n+1 pn 0 0 . . . 0
pn−1 pn pn+1 pn+3 . . . p2n−1 pn−2 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

p−n+1 p−n+2 p−n+3 p−n+1 . . . p1 p−n 0 0 . . . 0

0 0 −pn+1 −pn+3 . . .−p2n−1 0 pn+1 pn+2 . . . p2n−1

0 0 −pn−1 −pn+1 . . .−p2n−3 0 pn−1 pn . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
0 0 −p−n+3 −p−n+1 . . . −p1 0 p−n+3 p−n+4 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13)

Then replacing Cj by Cj + Cn+j for 3 ≤ j ≤ n, we obtain the following
determinant

G1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn+1 pn+2 pn+3 pn+4 . . . p2n+1 pn 0 0 . . . 0
pn−1 pn pn+1 pn+3 . . . p2n−1 pn−1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

p−n+1 p−n+2 p−n+3 p−n+1 . . . p1 p−n 0 0 . . . 0
0 0 0 0 . . . 0 0 pn+1 0 . . . p2n−1

0 0 0 0 . . . 0 0 pn−1 0 . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0 p−n+3 . . . . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)
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It is clear that this last determinant is equal to 0.

For the expression G2, we prove by combining rows and columns that it is equal
to 0.

G2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn−1 pn+2 pn+3 pn+4 . . . p2n+1 pn pn+1 0 . . . 0
pn−3 pn pn+1 pn+2 . . . p2n−1 pn−2 pn−1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

p−n−1 p−n+2 p−n+3 p−n+4 . . . p1 p−n p−n+1 0 . . . 0
pn−1 0 0 0 . . . 0 pn pn+1 pn+2 . . . p2n−1

pn−3 0 0 0 . . . 0 pn−2 pn−1 pn . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
p−n+1 0 0 0 . . . 0 p−n+2 p−n+3 p−n+4 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)

We combine the rows L̃ and the columns C̃ in the following way; we replace L̃j

by L̃j − L̃n+1+j for 1 ≤ j ≤ n and we obtain

G2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 pn+2 pn+3 pn+4 . . . p2n+1 0 0 −pn+2 . . .−p2n+1

0 pn pn+1 pn+3 . . . p2n−1 0 0 −pn . . .−p2n−1

...
...

...
...

...
...

...
...

...
...

...
0 p−n+4 p−n+5 p−n+6 . . . p3 0 0 −p−n+4 . . . −p3

p−n−1 p−n+2 p−n+3 p−n+4 . . . p1 p−n p−n+1 0 . . . 0
0 0 0 0 . . . 0 pn pn+1 pn+2 . . . p2n−1

0 0 0 0 . . . 0 pn−2 pn−1 pn . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
p−n+1 0 0 0 . . . 0 p−n+2 p−n+3 p−n+4 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(16)

Then we replace C̃n+1+j by C̃n+j+1 + C̃j−1 for 3 ≤ j ≤ n and we obtain, using
that p−n−2 = 0, p−n = 0 and p−n+1 = 0 for n ≥ 0

G2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 pn+2 pn+3 pn+4 . . . p2n+1 0 0 0 . . . 0
0 pn pn+1 pn+3 . . . p2n−1 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

0 p−n+4 p−n+5 p−n+6 . . . p3 0 0 −0 . . . 0
0 p−n+2 p−n+3 p−n+4 . . . p1 0 0 p−n+2 . . . p1
0 0 0 0 . . . 0 pn pn+1 pn+2 . . . p2n−1

0 0 0 0 . . . 0 pn−2 pn−1 pn . . . p2n−3

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 p−n+2 p−n+3 p−n+4 . . . p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(17)

It is also clear that this last determinant is equal to 0.
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2 We denote H the expression H = (D3
x + 4xDx − 4(n+ 1))An+1 ·An. We have

to evaluate H .

We can use the same strategy that this used previously. We chose to present
another method. For this we consider the following polynomials p̃n defined by

p̃n(x1, x2) =
∑n

k=0 x
k
1

x

n− k

3


2(
n− k

3

)
!

×
(
1−

[
1

2

(
n− k + 1− 3

[
n− k

3

])])
, for n ≥ 0,

pn(x1, x2) = 0, for n < 0.

(18)

We have proved in a previous paper Gaillard (2021a) concerning the mKdV
equation (19)

4ut + 6u2ux − uxxx = 0 (19)

that Ãn = det(p̃n+1−2i+j(x)){1≤i≤n, 1≤j≤n} verify (D3
x1

− 4Dx2)Ãn+1 · Ãn = 0.

The polynomial p̃k is an homogeneous polynomial of weight k in x1 and x2, thus

Ãn is an homogeneous polynomial of weight
n(n+ 1)

2
in x1 and x2.

Using the Euler relation for Ãn, we obtain

∂x2Ãn =
1

3x2

(
n(n+ 1)

2
Ãn − x1∂x1Ãn

)
.

The expression (D3
x1

− 4Dx2)Ãn+1 · Ãn = 0 can be rewritten as(
D3

x1
+

4

3x2
x1Dx1 −

4

3x2
(n+ 1)

)
Ãn+1 · Ãn = 0.

Then it is sufficient to take x1 = x and x2 = 1
3 to get the relation

H = (D3
x + 4xDx − 4(n+ 1))An+1 ·An = 0.

This proves that

H = (D3
x + 4xDx − 4(n+ 1))An+1 ·An = 0.

So we get the result, vn(x) = ∂x

(
ln

f(x, t)

g(x, t)

)
is a solution to the PII equation. 2
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3 Explicit rational solutions to the PII equation for the first orders

Many studies on this equation have been realised but only a few gives explicit solutions,
and just for little orders. The efficiency of this method gives a hierarchy of rational
solutions and very easily the explicit expressions of the first orders of these solutions. To
the best of my knowledge, these explicit rational solutions have never been constructed.
We denote vk in the following, a rational solution to the PII equation

uxx − 2u3 + 4xu− 4(k + 1) = 0

defined by

vk(x, t) = ∂x

(
ln

Ak+1(x, t)

Ak(x, t)

)
These solutions vk can be rewritten as

vk(x, t) =
nk(x, t)

dk(x, t)

We present here some explicit examples of rational solutions to the PII equation for the
first orders as corollaries of the theorem of the previous section.

For this purpose, we define nk and dk for 1 ≤ k ≤ 3 as:

n1(x, t) = 2x3 + 1, d1(x, t) = x(x3 − 1)

n2(x, t) = 3x2(x6 − 2x3 + 10), d2(x, t) = (x6 − 5x3 − 5)(x3 − 1)

n3(x, t) = 4x15 − 50x12 + 250x9 + 1400x6 − 1750x3 + 875,

d3(x, t) = (x9 − 15x6 − 175)(x6 − 5x3 − 5)x

With the previous notations, we have constructed the explicit solutions to the PII
equation for k = 1 to 3 given by

Corollary 3.1: The functions vk defined by

vk(x) =
nk(x)

dk(x)
(20)

are rational solutions to the PII equation (1)

uxx − 2u3 + 4xu− 4(n+ 1) = 0.

We could go on and present more explicit rational solutions, but they become very
complicated. For example, in the case of order 10 the numerator includes 59 terms and
the degree of the polynomial in x is equal to 175; the denominator contains 59 terms
and its degree in x is equal to 176. It will be relevant to study in detail the structure of
these polynomials.



196 P. Gaillard

4 Conclusions

This study is a part of a program of research of rational solutions to differential
equations. Using particular explicit polynomials as in the case of the mKdV equation
(Gaillard, 2021a) or in the KPI equation (Gaillard, 2021b), rational solutions to Painlevé
II equation have been constructed. We obtain rational solutions written as a derivative
with respect to the variable x of a logarithm of a quotient of a determinant of order
N + 1 by a determinant of order N , which we call solution of order N . A complete
proof of this result has been given. It will be relevant to study the structure of the
polynomials given in these solutions.

Recently, other works has been presented concerning this equation. In Gromak
(2020), analytic properties of solutions to equations in the generalised hierarchy
of the second Painlevé equation has been studied, in particular, the local
properties of solutions, the rational solutions and their representations via generalised
Yablonskii-Vorob’ev polynomials.

In Mahmood and Waseem (2021), with the Darboux transformation method,
solutions of the PII equation (2) are constructed in terms of wronskians, using the
corresponding Lax pair.
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