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Abstract: Deep reinforcement learning develops rapidly by using neural
network to approximate the learning data of reinforcement learning, which
makes the sequential decision in continuous space making achieve preliminary
results. However, deep reinforcement learning is over-dependent on huge
amount of training and requires accurate reward. For many problems in the
real world, such as robot learning, there is generally no good reward and no
unlimited training, which requires the ability to learn quickly. In this paper,
we propose a deep reinforcement learning model with meta-learning, which
we call meta Q-network (MQN). The model uses a LSTM-based meta-learner
to update the Q-network. This optimises a series of problems such as the
difficulty in stability of Q-network in deep reinforcement learning model,
and we have proved this improved performance through experiments. It is
not optimal, though, still the combination of meta-learning and reinforcement
learning is very desirable.
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1 Introduction

The concepts and terms of ‘reinforcement’ and ’reinforcement learning’ were first
proposed by Minsky in 1954. In 1989, Q learning proposed by Watkins further
expanded the application of reinforcement learning and perfected reinforcement learning.
Q learning makes it possible to find the optimal action strategy in the absence of
knowledge of the immediate reward function and the state transition function. The
best example of the value of reinforcement learning is that DeepMind trained AI to
play Atari 2600 games using the deep-Q-network method in 2013 (Mnih et al., 2013),
which achieved a good transfer learning value. In other words, the AI trained on a
certain game can quickly learn to play other games without special training. Then,
in 2015, DeepMind came up with an improved version of the DQN algorithm (Mnih
et al., 2015), which uses delayed updates to reduce dependencies between network
parameters. In 2016, DeepMind proposed a reinforcement learning algorithm called deep
deterministic policy gradient (DDPG) for solving the continuous motion space, and in
2017, OpenAI proposed proximal policy optimisation (PPO) algorithm, which is better
than the previous deep reinforcement learning algorithm in terms of convergence and
stability, and is also the most versatile algorithm at present. Structurally, both DDPG
and PPO belong to actor-critic algorithm.

Deep learning has achieved remarkable development in recent years, and has
achieved a great deal of achievements in many fields, such as computer vision (He
et al., 2016; Wei et al., 2019b), speech recognition (Oord et al., 2016), translation
(Wu et al., 2016), and go (Silver et al., 2016). Deep learning, however, still only
solves one-to-one problems and relies on a lot of training. Meta-learning, on the other
hand, has recently shown outstanding performance in small sample learning tasks (Naik
and Mammone, 1992; Thrun and Pratt, 1998; Schmidhuber, 1987). Different from
deep learning, meta-learning is used to solve one-to-many tasks. At present, the main
meta-learning algorithms include metric-based methods (Koch et al., 2015; Vinyals
et al., 2016; Sung et al., 2018), model-based methods (Santoro et al., 2016; Munkhdalai
and Yu, 2017), and optimisation-based methods (Ravi and Larochelle, 2016; Nichol
et al., 2018; Finn et al., 2017). Although the methods are different, they share the same
purpose, that is, they want a meta-learner to be able to learn quickly from a very limited
samples and to be able to adapt to different tasks.
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Here, we believe that deep reinforcement learning and meta-learning have certain
similarities in the tasks they face. An important part of deep reinforcement learning is
the value approximation function. In the actual training process, complex environment
and a large number of samples make it difficult for the network to converge.
Therefore, we hope to use the meta-learning method to improve the adaptability of
deep reinforcement learning. So, we propose a model combining the optimisation-based
meta-learning and DQN to improve the stability and performance of DQN. We try learn
a set of parameter updating methods by training a LSTM and used them to replace
gradient descent methods, although gradient descent method shows its advantages on
many occasions (Wei et al., 2017). However, there are still limitations when the training
sample is unstable, and for multiple separated tasks, the network usually performs
random parameter initialisation, which seriously affects the ability of the network to
complete the optimisation with fewer parameter updates. In addition, this method can
also be applied to more complex deep reinforcement learning algorithms, such as DDPG
(Lillicrap et al., 2015) and PPO (Schulman et al., 2017), as a method to replace gradient
descent for parameter updating.

2 Model description

In this section, we will describe our model and how it trains and updates parameters in
each network in detail. MQN consists of two parts, the first part is the base learner. In
the concept of meta-learning, we usually refer to the principal network used to achieve
the target function as the base learner, that is, the Q-network in a general DQN. The
second part is the embedded model. Embedded models tend to play an auxiliary role,
helping base learners perform better, where we use the meta-LSTM, which is a special
LSTM proposed by Ravi and Larochelle (2016). We denote Q-network in DQN as Q,
and meta-LSTM as M . Now, let’s start with the first part.

For the base learner, we use DQN with experience replay and target Q-network.
DQN is a typical value-based algorithm which only applies to discrete motion spaces,
and different from actor-critic algorithm represented by DDPG and trust region policy
optimisation (TRPO) there is only one action-value function network and no policy
network. Which makes a relatively simple model to train, and this is one of the reasons
we chose DQN. A simple model does not always mean a draw-back. On some simple
tasks, it can get a better result with less cost, which makes it easier for us to carry out
some experiments. On the other hand, the embedded model is also applicable to DDPG,
PPO and other algorithms.

The core of DQN is action-value function network which is called Q-network, and a
neural network is commonly used as nonlinear function approximator and trained to let
Q(s, a; θ) ≈ Q∗(s, a) and its parameters is updated by gradient decent. The loss function
of Q-network at each epoch t can be written as (Mnih et al., 2015):

Lt(θt) = E[(yt −Q(s, a; θt))
2]

with yt = E[r + γmaxa′ Q(s′, a′; θt−1)|s, a] we can have the gradient by differentiating
the loss function with respect to the parameters:

∇θtLt(θt) = E
[(

r + γmax
a′

Q(s′, a′; θt−1)−Q(s, a; θt)

)
∇θtQ(s, a; θt)

]
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It is worth noting here that, unlike typical deep learning networks, Q-networks are
usually difficult to converge in the process of training, especially in some complex tasks.
In other words, an arbitrarily finite neural network does not have infinite representation
capacity, we are just looking for a parameter among possible network space parameters
that can minimise the loss. In the continuous state space, where there is an infinite
number of states, the cumulative return can suddenly get better and then suddenly get
worse at two states that are very close. In the process of training, Q-network is likely
to show sensitivity to the input state space parameters, resulting in chaos. This leads
to the very unstable nature of DQN. Therefore, we proposed an algorithm combining
reinforcement learning and meta-learning. We used the idea of meta-learning to let a
meta-learner learn a parameter update method to optimise the performance of DQN.

Referring to Ravi and Larochelle (2016), we hope to use a LSTM (meta-learner) to
update its cell state form instead of the original gradient descent. The updating of cell
state of LSTM can be written as following (Hochreiter and Schmidhuber, 1997):

ct = ft ⊙ ct−1 + it ⊙ c̃t

and with it = αt, ct = θt, c̃t = −▽θt Lt we can apply this to the gradient of
Q-network:

c̃t = −E
[(

r + γmax
a′

Q(s′, a′; θt−1)−Q(s, a; θt)

)
∇θtQ(s, a; θt)

]
θt = ftθt−1 + itc̃t

also the it and ft is defined in parametric forms so that meta-learner can determine
optimal values through the course of the updates:

it = σ[WI(∇θtLt(θt),Lt(θt), θt−1, it−1) + bI]

ft = σ[WF (∇θtLt(θt),Lt(θt), θt−1, ft−1) + bF ]

Therefore, we hope that through the meta-learner, learners can consider both short-term
knowledge and long-term knowledge of a task, and converge to a good solution.
We call this combined model ‘meta Q-network’ (MQN), that is, DQN under the
optimisation-based meta-learning method.

3 Proposed algorithm

The training process is shown as Figure 1. It should be noted that meta-learner does
not update parameters of Q-network synchronously with meta-learner’s own parameters.
In order to make Q-network more stable, meta-learner should update its parameters
independently only after Q-network is updated for several times. Similarly, in DQN,
when the neural network is used to approach the Q value function, the update of Q
value is prone to shock and presents unstable learning behaviour. Therefore, the target
Q-network is introduced (Mnih et al., 2015). The parameters of target Q-network are
updated at every T epochs independently of the Q-network. Here, an epoch means
that the Q-network completes a parameter update. This allows the Q value to be fixed
temporarily during the training process, making the learning process more stable. It can
be seen that the update strategy of target Q-network is consistent with the purpose of
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update of meta-learner. Thus, we think it makes perfect sense to keep the frequency
of them in line, which means, every T epochs meta-learner will update its parameters
ΘT = ΘT+1 and at the same time, the parameters of Q-network θT will copied to target
Q-network. We believe that this will increase the stability of the algorithm.

Figure 1 Graph of MQN’s training process (see online version for colours)

Algorithm 1 Meta Q-network

Initialise replay memory D to capacity N

Initialise action-value function Q with random weights θ
Initialise target action-value function Q̂ with weights θ− = θ

Initialise meta-LSTM M with random weights Θ
for episode = 1, M do
Initialise sequence s1 = x1 and pre-processed sequence ϕ1 = ϕ(s1)

for d = 1, C do
for t = 1, T do
select a random at with probability ε otherwise at = argmaxa Q(ϕ(st), a; θ)

excute action at and observer reward rt and state xt

set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)

store transition (ϕt, at, rt, ϕt+1) in D

sample random minibatch of transition (ϕt, at, rt, ϕj+1) from D

set yi = rj (if episode terminates) otherwise yi = rj + γ maxa′ Q̂(ϕj+1, a
′; θ−)

update parameters θ with meta-LSTM θt = M(∇θt−1Lt, Lt; Θd−1)

End for
update parameters Θ with ∇ΘT LT and reset Q̂ = Q

End for
End for

4 Experiments and results

We chose two different tasks to test and evaluate our model, Cartpole and Lunarlander.
They belong to OpenAI’s Gym, an open source interface to reinforcement learning tasks.
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And as a contrast, we have trained a DQN as baseline, DQN with policy gradient and
actor-critic are also iconic benchmarks.

Figure 2 (a) CartPole (b) LunarLander in OpenAI’s gym (see online version for colours)

(a) (b)

Figure 3 The plots show the rewards on CartPole, the red dash-line means that the memorise
capacity is full and the model start training (see online version for colours)

For Q-network in our MQN, we use a simple neural network containing two hidden
layers with ReLU nonlinearity, each of which has 64 and 32 nodes. The loss function is
MSEloss. For meta-learner, we use a two-layer LSTM, where the first layer is a normal
LSTM and the second layer is meta-LSTM. The gradient and loss are preprocessed and
input into the first layer LSTM to get the regular gradient coordinates and the second
layer of LSTM is used to implement the state update.

For vanilla DQN (Mnih et al., 2015), DQN with policy gradient and actor-critic, we
use the same Q-network (actor and critic network) as in MQN, and Adam optimiser
(Kingma and Ba, 2014) is chosen to update the parameters.

All of them share the same learning rate of 0.01, batch size of 256, reward decay of
0.9, memorise capacity of 1,024. In the first task (CartPole), we let exploration rate ε =
0.3 at the very first, and gradually decline to 0, also, we modified the reward for a quick
start. For the second task (LunarLander), we keep the ε = 0.15. Each task is repeated
by five times, and the best one is given as the result in Figures 3–5. In addition, since
we are training the model from scratch, we need to ensure that we start training only
when the experience pool is full, so as to reduce the correlation of samples over time.
When the experience pool is not full, the model will act randomly. We distinguish the
two stages by the red dash-line in the figure. A step means the completion of a game,
and then we record a total reward.
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Figure 4 The plots show the rewards on LunarLander, the red dash-line means that the
memorise capacity is full and the model start training (see online version
for colours)

Note: Each point is the average score of every five steps.

Figure 5 The histogram show the distribution of the rewards corresponding to each case in
Figure 4 (see online version for colours)

5 Discussion

Let’s focus on the CartPole task first (Figure 4 and Table 1), and we can see from
the results that vanilla DQN performs pretty well on CartPole, which is not surprising
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since CartPole is a relatively simple task. However, we can still find that the overall
performance of MQN is better than that of vanilla DQN. It is worth noting that what
we are discussing here is the convergence of rewards, rather than the convergence of Q
value or loss in Q-network, because Q value or loss here do not reflect the performance
of the model. Although we hope to have a small loss in the training process, we are
more concerned about the maximisation and stability of rewards. At the same time, for
nonlinear neural networks, it is also difficult to prove whether Q-network can converge
in the end. So we want the total return to converge to a larger value, which means,
a consistent, excellent performance. MQN achieved better average rewards and better
stability, although the advantage in average reward was not very obvious, as can be
seen from Figure 4, the convergence of MQN was better than that of vanilla DQN.
In the meantime, we can confidently guess that when we reduce the memory capacity
N , the advantage of MQN will become evident, because this is consistent with the
characteristics of meta-learning.

DQN, on the other hand, performed poorly on Lunarlander, which can be seen in
Figure 4 and Table 2. Compared with CartPole, Lunarlander is a more difficult and
complex task. It is not hard to notice that it is difficult to achieve an ideal result in
1,000 steps with four different algorithms. This can be attributed to many reasons, such
as the improper selection of architecture or hyperparameters, and also we know that
deep reinforcement learning is difficult to converge on complex tasks. However, we can
ensure that our experiments are fair to any of the algorithms, so this does not affect our
evaluation. Let’s take a close look at Figure 4, DQN with policy gradient is the first one
to reach the an average positive rewards at about 360 steps. Then, around 600 steps,
however, performance suddenly deteriorates. Actor-critic reaches an average positive
rewards late at about 675 steps, but after that, it seems to converge to a better solution.
MQN is kind of a combination of the policy gradient and actor-critic. It reaches an
average positive rewards at about 520 steps, and then it tends to converge to a not so
good reward. It is worth mentioning that MQN got off to a bad start and we think that
had an impact on its performance for a while To facilitate qualitative evaluation, we
defined rewards above 200 as ‘excellent’, which is very close to the optimal strategy.
Rewards in the 150–200 range were considered ‘good’, while those below 0 were
considered to be ‘poor’. Rewards in the 0–150 range are difficult to evaluate, because
sometimes the intelligence will deliberately perform ‘suicidal actions’ to obtain a less
low reward, which we consider, is a poor local optimal solution. As can be seen from
Figure 5(a), vanilla DQN never get more than 100 rewards at a time, and its overall
performance is poor. Figures 5(b)–5(d) shows that the remaining three algorithms can
all obtain the result of more than 200 awards, that is, an ‘excellent’. However, as
shown in Table 2, we can clearly see the obvious fluctuation, and the direct cause of
this problem, we think, should be the unstable Q value. This may imply the chaotic
behaviour of Q-network. However, due to the high dimensional input, in-depth analysis
of this phenomenon is difficult. but we can see that this phenomenon is evident in DQN
with policy gradient and actor-critic, though it has reached the highest rewards. While
the solution to this problem is still unclear, although MQN shows better stability. At
the same time, we think that applying a clustering algorithm might be a good approach
(Wei et al., 2019a).

As can be seen from the experimental results, MQN has a more stable performance
than DQN in simple tasks, and is superior to DQN in responsible tasks. At the same
time, MQN shows some competitiveness with policy gradient and actor-critic. This is in
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line with our expectations, as we are still using the vanilla DQN in MQN. MQN is an
optimisation-based combination of meta-learning and reinforcement learning. This is not
in conflict with other model-based reinforcement learning methods. In other words, it
means that we can apply the same optimisation methods to more mature reinforcement
learning algorithms such as DDPG or PPO and expect them to have better performance.

Table 1 The average reward and standard deviation of each model on CartPole corresponding
to Figure 3

Model Average reward Standard deviation

DQN 119.9789 32.9168
MQN 114.1650 21.6688

Note: Only part of the data to the right of the green dash-line was counted.

Table 2 The average reward and standard deviation of each model on LunarLander
corresponding to Figure 4

Model Average reward Standard deviation

DQN –136.2507 51.0999
MQN –105.3460 118.1283
DQN with policy gradient –142.5020 122.4410
Actor-critic –80.7989 175.1368

Note: Only part of the data to the right of the red dash-line was counted.

6 Conclusions

In this paper, we propose a reinforcement learning model combined with meta-learning,
and illustrate its advantages over deep reinforcement learning. Although the structure of
this model is relatively simple, and there are still many deficiencies, more importantly,
we believe that the method of introducing meta-learning into reinforcement learning
is likely to become a branch of reinforcement learning and artificial intelligence
development in the future, although there are few similar studies in this direction.
Applying different meta-learning methods to more mature reinforcement learning
methods will be our task in the future.
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