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Abstract: Tool condition monitoring (TCM) is essential for the milling process 
to ensure machining quality, and several deep learning (DL)-based methods 
have been proposed to obtain good regression accuracy for TCM, such as RNN 
and LSTM. Unfortunately, the performances of these DL-based methods are 
not good enough under different working conditions. A novel method 
combining attention mechanism and long short-term memory (LSTM) is 
proposed. Firstly, sound time series signal obtained from a machining process 
is converted into several feature sequences, and these feature sequences are 
input to the attention mechanism-combined LSTM (AMLSTM) to train the 
weight of the feature sequences. Finally, the trained AMLSTM model with the 
optimal weight of the feature can be used to estimate the tool wear value. The 
application of the proposed method in milling TCM experiments shows that the  
AM-LSTM-based method is significantly better than SVR-based, RNN-based, 
and LSTM-based methods under different working conditions. Moreover, 
skewness and kurtosis are two important features for TCM. 

Keywords: tool condition monitoring; TCM; long short-term memory network; 
attention mechanism. 
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1 Introduction 

Milling processing is one of main processing method in mechanical manufacturing and it 
is a highly efficient processing method. Due to the complexity and efficiency of CNC 
milling, it has attracted much attention in the machining industry. Milling tools are 
regarded to be the main part in the milling process (Javed et al., 2018), and tool breakage 
is the main cause of unexpected downtime during milling. In milling process, tool failure 
take up 7–20% of the total downtime of the machine (Zhou et al., 2022a; Bhattacharyya  
et al., 2007), and the costs of tools and tool changes account for 3–12% of the total 
processing cost (Liu et al., 2015). It is a way to apply an effective tool condition 
monitoring (TCM) system to reduce downtime and maximise the life of the milling tools 
and it can reduce costs by 10–40% (Zhou and Xue, 2018). 

There are usually direct and indirect means to monitor tool wear condition. The direct 
method can more accurately reveal the dimensional changes of tool. However, it is rarely 
feasible, cost-effective or reliable to directly detect physical damage for online 
monitoring (Bhattacharyya et al., 2007; He et al., 2012). It is necessary to stop processing 
and detect tool wear through machine vision technology (Szydlowski et al., 2016; Zhang 
and Zhang, 2013). With the progress of sensor technology, indirect TCM method has 
been paid more and more attention, which apply one or more sensors to acquire physical 
signals, e.g., cutting force (Zhu and Liu, 2018), acoustic emission (AE) (Bhuiyan et al., 
2016), motor current (Xue et al., 2021), and vibration (Lei et al., 2020) signals, to extract 
features related to tool condition (Vashishtha et al., 2021; Chauhan et al., 2021). 
Subsequently, certain artificial intelligence (AI) method is employed to detect tool wear 
condition, e.g., support vector machine (SVM) (Gao et al., 2017), extreme learning 
machine (ELM) (Vashishtha and Kumar, 2022a; Zhou et al., 2022b), and artificial neural 
network (ANN) (Pal et al., 2011). Especially, with the development of big data and 
graphics processing unit (GPU) technology, deep learning (DL)-based TCM methods 
have been widely researched, such as CNNs (Cao et al., 2022) and RNNs (Zhao et al., 
2018). DL algorithms can promote data-driven methods, which are more intelligent and 
autonomous in extracting features from a large number of monitoring datasets. Recently, 
researchers have begun to prefer long short-term memory (LSTM) methods to develop 
predictive models. The superior of LSTM is that it can forget about redundant 
information when analysing long-term sequences, so it does not take up too much 
memory and can capture features in long sequences. Cai et al. (2020) apply LSTM 
network to extract temporal features from datasets. Karim et al. (2018) apply the attention 
LSTM fully convolutional network to explore the effective of attention mechanism (AM) 
to increase the time series classification. Zhao et al. (2017) proposed convolutional 
bidirectional LSTM network to process original sensory data. 

The above methods obtain good performance for TCM in certain situations, however, 
there are two problems still need to be improved: 

1 the regression performances of these LSTM-based methods were poor when the 
working conditions of the testing samples differed from those of the training samples 
in several research studies (Kumar and Kumar, 2020; Cao et al., 2020; Kumar et al., 
2021) 
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2 the influences of features selected in model are not clear. 

Those features with little impact too TCM can be discarded to reduce the computation 
and improve the efficiency of online monitoring. Therefore, a new model combining 
LSTM and AM is proposed to improve the performance of TCM under different working 
conditions and obtain the importance of the features.  

The study is organised in the following sections. Section 2 introduces related theory 
of the proposed method. Section 3 describes the framework of the proposed TCM 
method. Section 4 presents the experimental setup, the analysis of methods and 
experimental results. Finally, Section 5 summarises the article. 

2 Related theory 

2.1 LSTM 

LSTM is a RNN with a special structure that can learn signal connections in short-term 
and long-term sequences. The LSTM network uses time back propagation for training, 
which overcomes the problem of vanishing gradients. The memory block constitutes the 
LSTM network and it is composed of successive layers (Zeng et al., 2019). In LSTM 
cells, the forget gate, input gate form a LSTM unit. The goal of each gate can be 
expressed in Table 1. 
Table 1 Element control 

Element Purpose 
Input gate (i) Level of control for cell state change 
Forget gate (f) Level of control for cell state forget 
Cell candidate (g) Increase information 
Output gate (o) Level of control added to the cell state of the hidden state 

A gate contain a cell state ct–1 in the unit block. The general architecture of LSTM 
method is shown in Figure 1 (Zheng et al., 2021). 

The calculation of a LSTM unit can be expressed by formulas (1)–(3): 

( )1t xi t hi t ixi sigmoid W hW b−= + +  (1) 

( )1t xf t hf t fxf sigmoid W hW b−= + +  (2) 

( )1t xo t ho t oW xo sigmoid hW b−= + +  (3) 

where W and B denote weight matrix and bias matrix respectively. In a LSTM unit, i 
denote input gate, f represent forget gate, o is output gate. The source of the information 
flow is the current input xt, the hidden state ht–1 at the previous moment, and the cell state 
ct–1 at the previous moment. The real source of memory cell information which is the 
current input xt and the hidden state ht–1 at the previous moment express as cell candidate 
in equation (4). Memory cell history information accumulation is given by equation (5): 

( )1tanht xg t hg t gg W x W h b−= + +  (4) 
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1t t t t tc f c i g−= +  (5) 

where  means the original vector will be multiplied by the corresponding element 
(element-wise). 

Figure 1 LSTM unit (see online version for colours) 

 

The accumulation of historical information does not rely on the hidden state ht itself, but 
on the memory cell ct. When the information is accumulated, the forget gate is used to 
limit the information of the memory cell at the previous moment, and the input gate is 
used to limit the new information. After updating the cell state, it is necessary to judge 
the state characteristics of the output cell according to the sum of the input, and pass the 
cell state through the tanh layer to obtain a vector with a value between –1 and 1. The 
vector is multiplied by the judgment condition obtained by the output gate to get the final 
output of this LSTM unit. The current hidden state is given by in equation (6): 

( )tanht t th o c=  (6) 

2.2 Attention mechanism 

The AM can extract effective information, filter out inefficient information in the signal, 
and eliminate redundant and irrelevant information. The attention part allocate different 
weights to different features to emphasise the significance of different features for 
prediction. LSTM can be more adapted to longer time sequence after adding the AM 
(Chu et al., 2017). 

All time steps can be integrated into a sequence (x1, x2, …, xn, …). An AM model is 
proposed to give prominence to the characteristics of sensitive feature analysis. In the 
feature sequence, an attention score βi is distributed to every vector αi according to the 
predicted significance in equations (7) and (8) (Lee et al., 2021): 
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=


αβ

α
 (7) 

where 

( )( ) ( )s
i i

sφ W h b= +α  (8) 

β is a non-standardised score that measures the quality of a vector xn express the degree 
of feature. 

Learnable parameters are parameters whose values are learned during the training 
process. With learnable parameters, we typically start out with a set of arbitrary values, 
and these values then get updated in an iterative fashion as the network learns. The 
weight matrix W(s) and bias term b(s) are learnable parameters in the network. Gloria 
initialisation is employed to initialise the learnable parameters. ht is a feature sequence in 
the whole sequence. 

The participating feature coefficients and the sequence are weighted and averaged to 
form a new feature sequence in equation (9): 

1 i k
i iγ x

≤ ≤

= ⋅ β  (9) 

Then, this representation is used as input to build the TCM model. In detail, the fully 
connected (FC) layer, the LSTM layer, and the regression function layer are combined to 
build a tool wear predictive model. The network of the attention module is shown in 
Figure 2, in which the AM assigns different weights for features to reconstruct a new 
feature sequence. 

Figure 2 Attention module (see online version for colours) 
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Figure 3 LSTM and attention (see online version for colours) 

 

3 Proposed method 

3.1 Framework 

The proposed TCM method framework based on AM combined LSTM model is 
illustrated in Figure 3. Firstly, sound time series signal collected from milling process are 
transformed to feature space through feature extraction. New feature sequence are input 
iteratively into AM and LSTM network to estimate tool wear value more accurately. In 
the above process, feature weights are calculated and update in each iteration for 
improving the prediction accuracy of tool wear value. 

The idea of the proposed method is utilise the most relevant parts of the input 
sequence in a flexible manner, by a weighted combination of all of the input vectors, with 
the most relevant vectors being attributed the highest weights. In this way, the importance 
of feature is defined as the weighted arithmetic mean of the output of LSTM, where 
larger weights should be set to the more relevant feature to the TCM, otherwise smaller 
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weights should be assigned to feature not conveying useful information. Therefore, the 
proposed method reconstructs a new network to calculate parameters for improving the 
performance of TCM and obtaining the weights of selected feature parameters. 
Table 2 Feature parameters 

Domain Features Formula representation 
Time domain Root mean square (Rms) 2 1/ 2

1 { ( )}ix E x=  

Peak value (Peak) x2 = max(|xi|) 

Crest factor 2
3

1
x x

x
=  

Kurtosis (Kur) x4 = E{[(|xi| – μ) / σ]4} 
Skewness (Ske) x5 = E{[(|xi| – μ) / σ]3} 

Square root amplitude 
2

6
1

1 N

i
i

x x
N =

 
=   
 
  

Margin factor (L) 2
7

6

xx
x

=  

Average rectified value 8
1

1 N

i
i

x x
N =

=   

Impulse factor 2
9

8

xx
x

=  

Form factor 1
10

8

xx
x

=  

Frequency domain 

Centre of gravity frequency 0
11

0

( )

( )S

f S f df
x

f df

∞

∞= 


 

Mean square frequency 
2

0
12

0

( )

( )S

f S f df
x

f df

∞

∞= 


 

Root mean square frequency 13 12x x=  

Frequency variance 
2

11
0

14

0

( ) ( )

( )

f x S f df
x

S f df

∞

∞

−
= 


 

Frequency standard deviation 15 14x x=  

Notes: Where x represent the input sequence signal and µ represent the mean and σ 
represent the standard deviation, f is the frequency and S(f) is the frequency 
amplitude. 
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3.2 Feature sequence extraction 

In order to improve the efficiency of feature extraction, 15 dimensional and 
dimensionless feature parameters in the time and frequency domains (Chauhan et al., 
2021; Vashishtha and Kumar, 2022b; Zhu et al., 2021) are extracted to reduce the impact 
of different working conditions, shown in Table 2. 

Figure 4 Features sequence reconstructed (see online version for colours) 

 

Features are extracted from every 200 points in the original signal to construct a feature 
sequence matrix, shown in Figure 4. The feature sequence matrix could retain the feature 
trend but also reduce noise and dimension of the original signal. 

4 Experimental observation 

4.1 Experimental setup 

The TCM experiments uses a vertical machining centre (Dalian machine tool DMTG 
VDL850A) to finish milling process. The material of the workpiece is 45 steels (shown in 
Table 3), and the experimental tools are uncoated tungsten steel end mill cutters (10 mm 
diameter, three-edged), which both are commonly used in industrial manufacturing. The 
experimental device of the monitoring system is shown in Figure 5(a). 
Table 3 Chemical properties of workpiece material 

Carbon (C)% Silicon (Si)% Manganese 
(Mn)% 

Nickel 
(Ni)% 

Chromium 
(Cr)% 

Copper 
(Cu)% 

0.42-0.50 0.17-0.37 0.50-0.80 < 0.30 < 0.25 < 0.25 

The sound sensor is located on the machine table and acquired by a signal acquisition 
device [ECON Dynamic Signal Analyzer 16 channels, shown in Figure 5(b)]. The signal 
obtained from the data acquisition were amplified, and then transmitted to the PC. The 
sampling frequency is 12 kHz. A high-definition electron microscope (GP-300C) is 
adopted to measure the tool wear value after finishing each milling processing  
[Figure 5(c)]. 

The max tool wear value of the three inserts is used as the tool wear value to evaluate 
the tool wear condition. Figure 6 shows the tool wear progress after 1, 5, and 10 milling 
on a single workpiece surface. Figure 7 shows the change of the tool wear value of one 
tool. 
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Figure 5 The experimental setup, (a) experimental platform (b) data acquisition system (c) tool 
microscope (see online version for colours) 

   
(a) (b) (c) 

Figure 6 Tool wear images in different phase, (a) first milling phase (b) fifth milling phase  
(c) tenth milling phase (see online version for colours) 

   
(a) (b) (c) 

Figure 7 Tool wear length value of the first milling tool (see online version for colours) 

 

According to the variable level of cutting parameters, we use the orthogonal table L9(34) 
to select the parameter combinations for experiments. In addition, considering the cost of 
the experiment, five parameter combinations were randomly selected from the remaining 
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parameter combinations to join the experiment. Therefore, a total of 14 parameter 
combinations (shown in Table 4) were employed in our experiments, and each parameter 
combination correspond to a new tool for milling experiment. 
Table 4 Experimental milling parameter setting 

Test no. Spindle speed (rpm) Cutting depth (mm) Feed speed (mm/min) Type 
1 2,300 0.4 400 Train 
2 2,300 0.5 450 Train 
3 2,300 0.6 500 Test 
4 2,400 0.4 450 Train 
5 2,400 0.5 500 Test 
6 2,400 0.6 400 Train 
7 2,500 0.4 500 Train 
8 2,500 0.5 400 Test 
9 2,500 0.6 450 Train 
10 2,300 0.4 500 Test 
11 2,300 0.6 400 Train 
12 2,500 0.6 500 Train 
13 2,500 0.6 400 Train 
14 2,500 0.4 400 Train 

In a tool wear experiment, the surface of the workpiece was cut ten times. Limited by the 
conditions of the experimental equipment and the cost of the experiment, 14 sets of 
experiments are carried out for the tool, ten sets of samples under different working 
conditions are selected for training, and four sets of samples for testing. 

4.2 Sample division 

Sound sensor signals are used in the network. Sound signals can be obtained by placing 
the sensor in the vicinity of the processed workpiece and the tool. It has the advantages of 
convenient installation, wide application range and does not damage the workpiece and 
the tool. There are 392 training sets and 160 test sets used in the network. There is no 
identical tool wear data in the training and test sets. All results of the training set are 
recorded in a way that records the root mean square error (RMSE). 

For all architectures, the complete error gradient is calculated, and the weights are 
trained by using gradient descent with momentum. In all experiments, keep the same 
training parameters: randomly assign initial weights, and keep the training algorithm and 
parameters unchanged, allowing us to focus on the impact of changing the architecture. 
The experimental research was conducted on a computer equipped with a 2.90 GHz Intel 
Xeon E3 1240 v3 processor. 

4.3 Model evaluation metrics 

The three commonly used indicators of machine learning network regression prediction 
are mean absolute error (MAE), RMSE and correlation coefficient R2. RMSE and R2 are 
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suitable for tool wear prediction. These metrics are calculated in equations (10), (11) and 
(12): 

1

1 ˆi

k

i
i

MAE y y
k =

−=   (10) 

( )2

1

1 ˆ
k

i i
i

y yRMSE
k =

−=   (11) 

( )

( )

2

12

2

1

ˆ1

1
1

k

i i
i
k

i i
i

y y
k

y
R

y
k

=

=

=
−

−
−



 (12) 

where yi is the measured value of tool wear experiment and ˆiy  is the output value in the 
network, m refers to the number of samples. MAE and RMSE are related to the actual 
measured value, and R2 is scale irrelevant as a dimensionless metric. When the calculated 
values of the MAE and RMSE metrics are smaller, the performance of the prediction 
model is better. For the R2 metric, when the calculated value approaches 1, the predicted 
result is closer to the actual measured value. 

4.4 Results and analysis 

This section compares the effects of traditional machine learning models and DL models 
in tool wear prediction. The AM combined LSTM model established by ten cutters 
training sampling data is applied to predict the wear amount of another four cutter. When 
network train stop, 4 mean value of tool wear are calculated. To determine the run time of 
our program, we use a workstation with the following characteristics: 128 GB, 64-bit 
architecture. It executes instructions sequentially. The program runs about five minutes. 

Figure 8 The prediction of tool wear, (a) no. 3 tool (b) no. 10 tool (see online version for colours) 

  
(a)     (b) 

From Figure 8, the relationship between the predicted tool value and the actual wear 
under the new test data and different working conditions. It can be easily got information 
that the trend of the overall predicted value is the same as the actual wear value in no. 3 
tool and no. 10 tool, the intermediate error is smaller than the initial error and the error at 
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some stages is less than 0.1 or even close to the wear value. To further show the 
advantages of AM combined LSTM model method, the traditional methods such as RNN 
and SVR and LSTM are also used to predict tool wear. The same training dataset and test 
dataset are used for training and testing to evaluate the predictive performance of all 
models in tool wear condition. The predictive performance of these models is evaluated 
using MSE and RMSE and R2 in Tables 5–7. 
Table 5 MAE result of prediction for test set 

Testing tool 
MAE 

SVR RNN LSTM Proposed method 
3 0.3746 0.4993 0.2792 0.1194 
5 0.4157 0.2993 0.1648 0.1219 
8 0.3733 0.2488 0.273 0.1095 
10 0.4343 0.3255 0.4033 0.0838 

Table 6 RMSE result of prediction for test set 

Testing tool 
RMSE 

SVR RNN LSTM Proposed method 
3 0.4527 0.604 0.3771 0.1472 
5 0.474 0.4194 0.2089 0.1377 
8 0.4877 0.3182 0.3062 0.1303 
10 0.5211 0.4124 0.473 0.1348 

Table 7 R2 result of prediction for test set 

Testing tool 
R2 

SVR RNN LSTM Proposed method 
3 0.3792 –0.1053 0.5692 0.9344 
5 0.3259 0.4722 0.869 0.9431 
8 –0.1129 0.5262 0.5612 0.9205 
10 –0.2511 0.2163 –0.031 0.9163 

As shown in Tables 5–7, the AM-combined LSTM (AMLSTM) model performed well 
on the three evaluation metrics, for the four testing tools with different working 
conditions, the value of MAE and RMSE are less than 0.15, and the R2 value are above 
0.9, significantly better than that of the other three methods. Therefore, the performances 
of the proposed AMLSTM method are wonderful and reliable under different working 
conditions. 

Additionally, feature weights can be calculated with the AM using the training set in 
the network. Figure 9 shows the final normalised weights of features (in Table 2) after 
training. It can be found that skewness (Ske) and kurtosis (Kur) are the two most 
important characteristics in the extracted features for this tool wear experiment. Skewness 
and kurtosis can be applied to assess the asymmetry and steepness of the probability 
distribution of the sound time series signal respectively. In addition, the weight of square 
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root amplitude (SRA) is the smallest, which reflects the poor performance of the tool 
wear. 

Figure 9 Feature weights (see online version for colours) 

 

Hence, the AMLSTM model can be used in many similar problems and the feature 
weights can be calculated automatically in the network. From the above analysis, it can 
easily be determined that the AMLSTM model results are better than those of the LSTM, 
SVR, and RNN in the test samples. Furthermore, it can be seen that skewness and 
kurtosis are two important features in the extracted features. 

4.5 NASA data test 

The NASA milling dataset employed for validation testing of the proposed TCM method 
was obtained from the Matsuura Machining Center (MC-510V) during dry rough milling 
processes of cast iron or stainless steel J45 workpieces using a six-tooth face milling 
cutter with KC710 carbide inserts under different cutting parameters (García et al., 2016). 

The experimental data is collected at multiple locations by three types of sensors (AE 
sensors, vibration sensors, and current sensors), but no sound sensor. To verify the 
method proposed, the vibration signals of the spindle direction are selected. The depth of 
cut and feed rate of tools 4 and 12 are different from that of other tools, these two tools 
are selected as testing samples, and the remaining 14 tools are used as training samples. 

The prediction results of three methods are shown in Table 8. By comparing the RNN 
and SVM, the RMSE and R2 of the proposed method are better than that of RNN and 
SVM. For example, the correlation coefficient R2 of the proposed method are above 0.85, 
which is at least 6% and 39% higher than that of RNN and SVM respectively. 
Table 8 Prediction results of NASA dataset 

Tool 
MAE  RMSE  R2 

SVR RNN Proposed  SVR RNN Proposed  SVR RNN Proposed 
4 0.2268 0.0562 0.0920  0.2678 0.0691 0.0595  0.4976 0.8308 0.8920 
12 0.3693 0.0877 0.1042  0.4304 0.0931 0.0613  0.3887 0.7490 0.8727 
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5 Conclusions 

In this paper, an AMLSTM model is proposed to improve the prediction performance of 
LSTM-based TCM method. Firstly, sound time series signal obtained from a machining 
process is converted into several feature sequences, and these feature sequences are input 
to the proposed AMLSTM model to train the weight of the feature sequences. Finally, the 
trained AMLSTM model with the optimal weight of the feature can be used to estimate 
the tool wear value. The application of the proposed method in milling TCM experiments 
shows that the AMLSTM-based method is significantly better than SVR-based,  
RNN-based, and LSTM-based methods under different working conditions. Moreover, 
skewness and kurtosis are two important features for TCM. The proposed method is 
suitable for time series sequence, but in the field of image, it is necessary to redesign or 
change the structure of the network to be suitable for image analysis. 
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