

International Journal of Web Engineering and Technology

ISSN online: 1741-9212 - ISSN print: 1476-1289
https://www.inderscience.com/ijwet

Using seagull optimisation algorithm to select mobile service in
cloud and edge computing environment

Feilong Yu, Jing Li, Ming Zhu, Xiukun Yan

DOI: 10.1504/IJWET.2022.10049995

Article History:
Received: 13 October 2021
Last revised: 03 May 2022
Accepted: 09 May 2022
Published online: 25 August 2022

Powered by TCPDF (www.tcpdf.org)

Copyright © Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwet
https://dx.doi.org/10.1504/IJWET.2022.10049995
http://www.tcpdf.org

 88 Int. J. Web Engineering and Technology, Vol. 17, No. 1, 2022

 Copyright © 2022 Inderscience Enterprises Ltd.

Using seagull optimisation algorithm to select mobile
service in cloud and edge computing environment

Feilong Yu, Jing Li, Ming Zhu* and
Xiukun Yan
College of Computer Science and Technology,
Shandong University of Technology,
Zibo, China
Email: yfl_sdut@126.com
Email: li_jing@sdut.edu.cn
Email: zhu_ming@sdut.edu.cn
Email: yxksunshine@163.com
*Corresponding author

Abstract: With the rapid development of edge computing, more and more
services are deployed on edge servers. Compared with traditional cloud
computing, services in the edge computing environment are closer to users,
which bring benefits of high performance and low latency to the user-service
interactions. However, due to the limited resources of edges, services provided
by edges alone may fail to meet increasingly complex mobile computing
requirements; therefore, services on clouds become an effective supplement.
With the massive increment of services in the mobile internet, selecting proper
services to fulfil mobile users’ requests becomes a key research field. This
paper proposes a service selection model for mobile service selection problem
in cloud and edge computing environment. The proposed model combines the
seagull optimisation algorithm and the simulated annealing algorithm. Through
comparative experiments on simulation datasets with referencing to some other
service selection models, it can be inferred that the proposed selection model
finds a solution with better QoS performance in fewer iterations.

Keywords: mobile edge computing; cloud computing; seagull optimisation
algorithm; SOA; service selection.

Reference to this paper should be made as follows: Yu, F., Li, J., Zhu, M. and
Yan, X. (2022) ‘Using seagull optimisation algorithm to select mobile service
in cloud and edge computing environment’, Int. J. Web Engineering and
Technology, Vol. 17, No. 1, pp.88–114.

Biographical notes: Feilong Yu is a graduate student at the Department of
Computer Science and Technology at Shandong University of Technology,
Shandong, China. His main research interests are edge computing and service
computing.

Jing Li is an Associate Professor at the Department of Computer Science and
Technology at Shandong University of Technology, Shandong, China. She
received her doctoral degree in Computer Science at the Concordia University,
Montreal. Her main research interests are service computing and
database-based service composition.

 Using seagull optimisation algorithm to select mobile service in cloud 89

Ming Zhu is an Assistant Professor at the Department of Computer Science and
Technology at Shandong University of Technology, Shandong, China. He did
his PhD in Computer Science at the Concordia University. His research
interests are related to Service computing, process-oriented programming,
event modelling, and concurrent systems.

Xiukun Yan is a graduate student at the Department of Computer Science and
Technology at Shandong University of Technology, Shandong, China. Her
main research interests are edge computing and service computing.

1 Introduction

Recently, the widespread popularity of intelligent mobile devices has resulted in huge
requirements for cloud and edge computing. Applications, such as natural language
processing, facial recognition, and video processing, in mobile devices are
delay-sensitive and demand-intensive computations. Mobile edge computing optimises
cloud computing by processing data at the edge of the network near the original data
source (Huang et al., 2018). It is envisioned to help alleviate the resource scarcity of
mobile devices. Therefore, users can gain easy access to lightweight services within
shorter response time. Compared with edge computing, cloud computing can provide
more computing resources (e.g., services). Collaborative work of cloud computing and
edge computing has gradually become a promising trend in mobile internet development
(Muhammad et al., 2020).

Figure 1 shows a typical scenario where a mobile user uses services in cloud and edge
computing environment. There are three edge servers, two cloud servers, several base
stations, and a mobile user in this example. These cloud and edge servers interconnect
and able to transfer data with each other. The request submitted to a base station is further
transmitted to an edge or cloud server. Assuming that the mobile user sends a request to
the nearby base station at location A and receives a response message when the user
moves to location B, the time interval is the sum of uploading time, the total response
time of services and servers, and downloading time. The time of uploading/downloading,
is decided by the size of the request and the transfer capacity (Wu et al., 2019).

However, challenges are still waiting to be solved in a mobile service selection
problem in cloud and edge computing environment (Shi et al., 2016). First of all, users
may experience long latency for data exchange with cloud resources. Besides, services
provided by edge servers are limited and may fail to meet the user’s requirement. Last but
not least, users submit requests while moving, dynamic and ever-changing locations of
users enhance difficulties of supplying stable services.

This paper addresses mobile service selection problem in edge and cloud computing
environment with an extended seagull optimisation algorithm (ESOA) (Dhiman and
Kumar, 2019). Inspired by the nature of seagulls’ migration and attack behaviours, the
seagull optimisation algorithm (SOA) is an evolutionary optimisation algorithm and is
widely used in rolling bearing production and other aspects (Dhiman and Kumar, 2019).
The SOA has high efficiency in solving unconstrained problems in unknown search
space, has fast convergence speed, and is easy to implement. To solve service selection
problem with the SOA, each candidate solution is represented as the location of a seagull

 90 F. Yu et al.

(see Section 2.6). The algorithm starts from a set of randomly generated locations and
searches toward the location with either the minimal cost or response time.

Figure 1 A mobile user in edge and cloud computing environment (see online version
for colours)

The specific contributions of this paper are summarised as follows:
We consider the mobile service selection problem in a cloud and edge computing

environment, and formulate the problem to an optimisation problem.

• A mobile service selection model based on an ESOA is proposed. To the best of our
knowledge, this is the first time the SOA combined with the simulated annealing
algorithm has been applied to solve the mobile service selection problem.

• We evaluate the performance of the proposed algorithm through extensive
experiments. Simulation results show that the performance of the proposed algorithm
outperforms referring studies by at least 5.3% better response time in fewer
iterations.

The rest of this paper is organised as follows: we introduce preliminary knowledge in
Section 2. Section 3 discusses related work. Section 4 presents our proposed method and
algorithms, and thereafter, a case study is given in Section 5 to explain how the proposed
method is applied to solve a mobile service selection problem. Section 6 gives
experimental results. Finally, the conclusion is drawn in Section 7.

2 Preliminary knowledge

In this section, the service selection problem, the model of mobile path, the SOA, and the
simulated annealing algorithm are introduced.

 Using seagull optimisation algorithm to select mobile service in cloud 91

2.1 Service and service combination

Definition 2.1: A service s is defined as (srv, sin, sout, Q). srv is the server where s is
distributed and executed; sin is the input data of the service. sout is the output data of the
service. Q is a finite number of non-functional properties of s.

Commonly, functional properties describe a service’s input and output parameters, and
non-functional properties are referred to as quality of service (QoS). Services with similar
functionalities may have different QoS criteria. In this paper, we use cost and response
time to measure QoS.

• Cost (C): the price paid by the user for using the service (unit: cent).

• Response time (R): the time interval between receiving a request and sending a result
(unit: millisecond).

Given two services si and sj, there are three kinds of service connection structures:
sequential, concurrent, and selective. We use si; sj to represent sequential connection, use
si|| sj to represent concurrent connection, and use si| sj to represent selective connection.

The cost C of connected services (si and sj) is calculated as follows:

() () ();i j i jC s s C s C s= + (1)

() () ()i j i jC s s C s C s= + (2)

() () (){ }min ,i j i jC s s C s C s= (3)

Response time R of connected services (si and sj) is calculated as follows:

() () ()
() () ()

, if ,
;

, , if ,
i j i k j k

i j
i j k p i k j p

R s R s s srv s srv
R s s

R s R s R srv srv s srv s srv
 + ∈ ∈=  + + ∈ ∈

 (4)

()
() (){ }

() () () (){ }
max , , if ,

max , , , , if ,
i j i k j k

i j
i k x j p y i k j p

R s R s s srv s srv
R s s

R s R srv srv R s R srv srv s srv s srv

 ∈ ∈= 
+ + ∈ ∈

 (5)

()
() (){ }

() () () (){ }
min , , if ,

min , , , , if ,
i j i k j k

i j
i k x j p y i k j p

R s R s s srv s srv
R s s

R s R srv srv R s R srv srv s srv s srv

 ∈ ∈= 
+ + ∈ ∈

 (6)

where srvk and srvp are servers, si ∈ srvk indicates srvk hosts service si, and R(srvk, srvp)
means the data transmission time between srvk and srvp. For equations (5)–(6), we
assume that the successor service of si is located on server srvx and the successor service
of sj is located on server srvy.

Definition 2.2: A service request contains the following components:

A finite set of tasks requested by the user, and each task can be fulfilled by a service:

• a combination structure of tasks

• the input data provided by the user.

 92 F. Yu et al.

To understand this paper, the notations used in the paper are presented in Table 1.
Table 1 Notations

Expression Description Expression Description
srv Server s Service
C Cost R Response time
d Distance B Bandwidth
T Data transmission time tp Wireless transmit power
g Channel power gain h0 Received power
σ2 Noise at the receiver γ Path loss factor
v Movement speed of user e Base of the natural logarithm
A Movement behaviour of the

seagull
BL Variable to balance exploration and

development
fc Conversion frequency rd A random variable of the SOA
x, y, z Three planes in the space h Radius of each helix
α Random angle u, k Correlation constants of spiral shape

2.2 Base station, edge server and cloud server

As modelled in Figure 1, each base station is connected to an edge server. An edge server
may transfer data with several geographically closed base stations. Each edge server is
connected to the Internet and is able to communicate data with other servers. Similarly,
each cloud server is connected to the internet and is able to transfer data with other
servers.

The network topology of base stations and servers is described by an incidence
matrix, where each row represents a server, and each column represents a base station.
Each cell in the matrix represents the data transmission speed between a server and a base
station. If an edge server i is connected to a base station j, then the value of cell with
index ij is the data transmission speed between them. Otherwise, the value is set to 0.

The network topology of edge and cloud servers is described by an adjacency matrix,
in which each cell represents the data transmission speed between two servers. If two
servers are connected, then the value of cell with index ij is the data transmission speed
between them. Otherwise, the value is set to 0. We assume that the data transmission
speed from a server to itself is maximised.

2.3 The model of mobile path

In the mobile edge and cloud computing environment, the mobile path of the user
partially decides the time of uploading, service selection and downloading, and therefore
influences the selection of services. Below, we model the user’s mobile path.

We use the random waypoint mobility model to simulate the mobile path (Bettstetter
et al., 2004). The model in this paper is suitable for the scenario that the user’s moving
path is determined in advance. The mobile path is decomposed into a group of path
segments, supposing the network condition, moving direction, and speed do not change
in a path segment.

 Using seagull optimisation algorithm to select mobile service in cloud 93

As shown in Figure 2, we assume that the initial distance between the user and the
base station is D, the moving direction angle θ is unchanged, and the user moves at a
constant speed v. After time t, the path segment can be calculated as vt, the distance d
between the user and the base station is:

2 22 cos () .d D Dvt θ vt= − + (7)

If the user walks, v = 1.5 m/s; if the user rides a bike, v = 5 m/s; if the user take a campus
bus, v = 10 m/s; if the user drives, v = 15 m/s.

Figure 2 The mobile path (see online version for colours)

2.4 Seagull optimisation algorithm

The SOA is an evolutionary optimisation algorithm that imitates seagulls’ migration and
attack behaviours to find a near-optimal solution iteratively (DK19 and Kumar, 2019).
The migration behaviour means seagulls fly to places that are more suitable for survival,
which affects the algorithm’s global exploration ability. The attack behaviour is the
forage, which affects the algorithm’s local development ability. Seagulls fly to new
positions in each generation, and each position represents a candidate solution. The
fitness value of each position is calculated, and seagulls with better positions are possible

 94 F. Yu et al.

to be brought to the next generation. After several generations, the algorithm gradually
approaches the optimal solution. The flowchart of the SOA is shown in Figure 3.

Figure 3 Flowchart of SOA

2.4.1 Exploration ability
To avoid colliding with surrounding seagulls, the SOA uses a variable A to adjust the
position Pns(t) of seagulls. A represents the movement behaviour of the seagull in a given
search space. The new position Pns(t) of a seagull in tth generation is calculated as
follows:

() ()ns sP t A P t= × (8)

where Ps(t) is the current position of the seagull, and A is calculated as follows:

()()/c c iterationA f t f Max= − × (9)

where fc controls the conversion frequency of A from fc to 0. In paper (Dhiman and
Kumar, 2019), the value of fc is analysed experimentally, and experimental results show
that the algorithm achieves the optimal value when fc = 2. Maxiteration means the maximum
generation.

()() () ()s bs sM t BL P t P t= × − (10)

Ms(t) draws seagulls close to the best position Pbs(t). BL balances exploration and
development of the algorithm, the variation of BL follows:

 Using seagull optimisation algorithm to select mobile service in cloud 95

22BL A rd= × × (11)

where rd is a random number that lies in the range of [0, 1]. The distance Ls(t) between
the seagull and the best seagull is calculated as:

() () ()s ns sL t P t M t= + (12)

2.4.2 Exploitation ability
In the process of exploitation, seagulls spiral descent and adjust their positions, attack
angles, and speeds. As seagulls make spiral motion during attacking (Dhiman and
Kumar, 2019). The location of a seagull is represented as a node in three dimensional
coordinates:

cos()x h= × α (13)

sin()y h= × α (14)

z h= ×α (15)
kh u e= × α (16)

where h is the radius of each helix, α is a random angle in the range of 0 to 2π, u and k
are correlation constants of spiral shape, and e is the base of the natural logarithm.

() () ()s s bsP t L t x y z P t= × × × + (17)

The SOA starts with a randomly generated population, and seagulls constantly update
their positions to find the optimal position. These features inspire us to employ the SOA
algorithm to solve the mobile service selection problem in a cloud and edge environment.

2.5 Simulated annealing algorithm

The basic idea of the simulated annealing algorithm comes from the physical annealing
process. When an object is heated to a completely high temperature, the particles in the
solid become disordered and the energy increases significantly when the temperature
rises. When the particles cool slowly, the particles gradually become orderly and the
energy minimises. The whole cooling process is called annealing.

The simulated annealing algorithm starts from a randomly initial solution Psa and a
control parameter Tsa. A new solution Pnew is generated as follows:

()max2new sa saP P f r T= + × − × (18)

where f is a random number in the range of [0, rmax]. Tsa is a temperature parameter
controlled by the cooling rate dT in the range of [0, 1].

According to the fitness value of the new solution Pnew, the algorithm chooses to
accept or give up Pnew, and Tsa gradually attenuates. Finally, an approximate optimal
solution is returned.

This paper simplifies the simulated annealing algorithm and combines it with the
SOA. The basic idea of the simulated annealing algorithm used in this paper is depicted
in Figure 4.

 96 F. Yu et al.

Figure 4 Flowchart of simulated annealing algorithm

2.6 Mapping service selection problem with the ESOA algorithm

Given a service request, the mobile service selection problem in the edge and cloud
computing environment is finding proper services to complete tasks while considering
QoS requirements. The service selection problem consists of the following components:

• a service request

• a model of user’s mobile path represented by a sequence of path segments

• a set of candidate services, where each task is fulfilled by a service

• a network of base stations, edge and cloud servers.

The goal of the mobile service selection problem is to find a combination of services to
complete tasks with the minimal overall response time or cost, a base station receives
user’s request as input data, sends the request to an edge or a cloud server, after service
combination, a solution is delivered to the user. This selection problem is an optimisation
problem.

In order to solve a mobile service selection problem, we use the ESOA to find a near
optimal solution, that is, to find an approximate optimal position of seagull. A seagull’s
position is represented as a combination of candidate services, one for each task. For a
service request with n tasks (t1, t2, ..ti .., tn), a seagull position is represented as (s1, s2, ..sj
.., sn), which means that service s1 is selected for task t1, sj is selected for ti, and sn is
selected for tn respectively. The service combination solution with the minimum overall
response time or cost is selected and returned.

Following the SOA in Section 2.4, the initial seagull population and their
corresponding positions are randomly generated. Fitness functions are designed
(Section 4.2) to evaluate the position of each seagull, and the seagull with the best

 Using seagull optimisation algorithm to select mobile service in cloud 97

position (fitness value) is selected. Then, a new seagull generation is produced by
updating the position of each seagull in the previous generation. For each seagull, its new
position is compared with the one in the previous generation, and the better one is
retained. The seagull with the best position (fitness) is chosen as the current best seagull.
The best seagull gets close to the optimal position without collision with other seagulls.
This process ends when a satisfying position is obtained or reaches the maximum
generation. The seagull with the best position (fitness) is returned to the user as the
solution of the problem.

3 Related work

With the continuous development of mobile Internet technology, cloud and edge
computing is widely applied in various fields. This part introduces the mobile service
selection in cloud and edge and the evolutionary algorithms used in service selection.

3.1 Mobile service selection in cloud and edge computing

Service selection has been paid more and more attention by experts and scholars. Classic
service selection is a problem that parses functional descriptions and matches services at
the technical level (Reiff-Marganiec and Tilly, 2008). Due to the increasing number of
services with similar functional properties on the web and to maximise users’
satisfaction, researchers pay attention to non-functional (QoS) attributes. Gelenbe et al.
proposed a method from the perspective of QoS and energy (Gelenbe and Lent, 2013).
They regarded the choice between local services and cloud services as an optimisation
problem and presented a mathematical model. Hentschel et al. presented a cloud
brokering system that selects cloud services with matchmaking and ranking (Raoul et al.,
2020). The proposed virtual broker as a service framework (ViBROS) is less costly for
small and medium enterprises when choosing cloud services. In addition, it can be easily
used by less-skilled users.

Orsini et al. (2016) proposed a cloud-aware adaptive middleware for mobile edge
computing. This approach aims to link specific mobile cloud and edge computing
requirements while employing combinatorial adaptation and sensor-based reasoning to
provide dynamic adaptation to the configuration-free programming model. Huang et al.
(2018) presented a simulation-based approach for QoS-aware service selection in a
mobile edge computing environment. The optimisation goal can be softened by
sequential optimisation to resolve the problem in an acceptable amount of time. Xu et al.
(2019) proposed a computation offloading method (COM), to reduce the influence of
offloading of mobile application. Specifically, they investigated a system model that
computes mobile devices’ execution time and energy consumption. Then dynamic
schedules of data/control constrained computing tasks are confirmed. Deng et al. (2020)
divided edge intelligence into AI for edge (intelligence-enabled edge computing) and AI
on edge (artificial intelligence on edge). The former focuses on providing better solutions
to key problems in edge computing with the help of popular and effective AI
technologies, while the latter studies how to carry out the entire process of building AI
models. Mach and Becvar (2017) classified research on computation offloading into three
key areas: decision on computation offloading; allocation of computing resources within
the MEC, and mobility management to improve the efficiency of computation offloading.

 98 F. Yu et al.

3.2 Cloud computing and edge computing

The combination of internet of things (IoT) and cloud computing enhance the capability
of IoT, but it also brings corresponding disadvantages. In order to effectively solve
internal attacks and improve the efficiency of IoT-cloud services, Wang et al. (2019)
proposed a novel architecture that integrates a trust evaluation mechanism and service
template with a balance dynamics based on cloud and edge computing, which improves
the security and efficiency of IoT-cloud system. Ma et al. (2017) proposed a cloud
assisted mobile edge computing (CAME) framework to enhance the computing capacity
of the system, and used an optimisation problem to minimise the system delay and cost.
This framework guarantees the lowest cost. The optimal resource provisioning (ORP)
algorithm optimises the computation capacity of edge hosts and dynamically adjusts the
cloud tenancy strategy (Ma et al., 2021).

Li and Wang (2018) studied edge server placement in the cloud and edge computing,
and designed a particle swarm optimisation based energy-aware edge server placement
algorithm. Zhang et al. (2017) developed a joint cloud and wireless resource allocation
algorithm based on evolutionary game (JRA-EG) to solve the cost problem of mobile
devices in a mobile edge computing environment, and obtained evolutionary equilibrium
(EE) by replicate dynamics method. Because users’ mobility leads to frequent switching
of edge servers and increases the delay of task processing, Wang et al. (2021)
studied the microservice coordination among edge clouds and proposed a dynamic
programming-based offline microservice coordination algorithm. Hong et al. reviewed
publications published from 2013 to 2018, detailed the architecture, infrastructure, and
algorithms that support resource management in fog/edge computing, and described
characteristics of the computing paradigm for handling user data (Hong and Varghese,
2019).

3.3 Evolutionary algorithms in service selection

Dahan et al. (2019) proposed an enhanced artificial bee colony (ABC) algorithm to
improve the efficiency of the algorithm. The algorithm randomly exchanges parts of two
candidate solutions in the adaptive neighbourhood. The core idea is to generate a new
solution through the characteristics of the optimal solution. Wu et al. (2019) solved a
service selection problem by combining the genetic algorithm and the simulated
annealing algorithm. The algorithm introduces the temperature parameters of simulated
annealing into the genetic algorithm, which combines the advantages of the two
algorithms.

The algorithm inherits the powerful global search ability and avoids falling into local
optimisation. Zhang et al. (2010) proposed a composite agent service selection algorithm
based on simulated annealing. Firstly, the algorithm finds a composite agent service with
minimal cost, and takes it as the initial candidate solution. Then, the algorithm enters a
simulated annealing phase and searches for better solutions. Alayed et al. (2019)
proposed an enhancement of the ant colony algorithm. The crossover operator is applied
in this algorithm to generate new offspring. Zhu et al. (2021) combined the crossover and
variation factors in the genetic algorithm into the cuckoo optimisation algorithm to select
the best service from numerous candidate services to complete the task and improve user
satisfaction.

 Using seagull optimisation algorithm to select mobile service in cloud 99

Mistry et al. (2018) used a hybrid genetic algorithm to solve infrastructure as a
service (IaaS) problem, in this metaheuristic approach, a preferential heuristic is the
probabilistic indicator of request’s influence on the fitness. Dynamic solutions are
generated by updating heuristic values at regular intervals. Jia et al. (2019) proposed
three hybrid algorithms based on the SOA and heat exchange optimisation to solve the
problem of feature selection (Jia et al., 2019). Firstly, the roulette algorithm is employed
to update positions; secondly, the thermal exchange optimisation (TEO) algorithm is
applied in the SOA algorithm; in the last step, the TEO algorithm’s heat exchange
formula is employed to improve the seagull attack mode of the SOA algorithm. Jiang
et al. (2020) applied the opposition-based learning algorithm to the SOA to optimise the
initial population of seagulls, so the accuracy and computational efficiency are improved.

4 The proposed ESOA algorithm

This section provides more details of the proposed approach: the ESOA and fitness
functions are designed to solve the mobile service selection problem.

Figure 5 illustrates components of the proposed approach as follows:

• The cloud and edge environment: this component mainly describes the distribution
of services on cloud and edge servers. In addition, information for data transmission
between base stations and users is captured. A user’s moving path model is built.

• ESOA: this component describes the ESOA algorithm, which combines the SOA and
the SA. Detailed information on the ESOA is described in Section 4.1.

• Mobile service selection: the ESOA algorithm is employed to solve the mobile
service selection problem. Fitness functions are designed to calculate QoS values of
seagull positions. The service combination with the best response time/cost is
returned as the solution.

Figure 5 The proposed service selection approach

 100 F. Yu et al.

A mobile user uploads his request to a nearby base station; the request is uploaded to
servers. Then, the ESOA algorithm is applied to select services. Finally, a solution is
returned to the mobile user. In this paper, we make the following assumptions:

• A server is connected with one or more base stations and other servers. A base
station is connected with an edge server and multiple cloud servers, and has
overlapping coverage with other base stations.

• An edge server provides a small number of services, while a cloud server provides
more services. The data transmission time from a base station to an edge server is
less than that from the base station to a cloud server.

• A user submits a request to a base station that covers him/her, and a solution is sent
back to the user.

Algorithm 1 Extended seagull optimisation algorithm

1 Input population: the population of seagull
2 maxGeneration: the maximum generations
3 Output Pbs: the optimal solution
4 procedure
5 Initialise A with equation (9)
6 Initialise BL with equation (11)
7 fc ← 2
8 u ←1
9 k ← 1
10 for iteration ← 1 to maxGeneration do
11 Choose a position with the maximum fitness value as Pbs
12 /*Calculate and choose the best seagull according to the fitness function*/
13 for i ← 1 to population do
14 /*Migration behaviour*/
15 rd ← Rand(0, 1)
16 α ← Rand(0, 2π)
17 /*Attacking behaviour*/
18 update h /*According to equation (16)*/
19 update Ls(t) /*According to equation (12)*/
20 compute x, y, z /*According to equations (13)–(16)*/
21 update Psi /*According to equation (17) */
22 A new solution Pns is generated by the SA algorithm
23 choose the better one between Psi and Pns as the new Pbs.
24 end
25 end
26 return Pbs as the solution
27 end procedure

 Using seagull optimisation algorithm to select mobile service in cloud 101

4.1 Extended seagull optimisation algorithm

The SOA is an evolutionary optimisation algorithm inspired by seagulls’ migration and
predation behaviours (Dhiman and Kumar, 2019). This algorithm has been widely used in
various areas to solve optimisation problems (Dhiman et al., 2020). However, according
to the research of Cao et al. (2019), the SOA has some disadvantages, such as reduced
diversity, exploration ability and premature convergence. In order to overcome these
disadvantages, we introduce the SA into the SOA, and name it the ESOA. In
Algorithm 1, the ESOA algorithm is explained. The performance of the ESOA is tested in
Section 6.

Algorithm 1 is the ESOA algorithm, where the SA (Bangert, 2012) is employed.
Position Ps represents a candidate solution. Specifically, in each iteration, a seagull i
generates a position Psi by the SOA (line 21), and another position Pns is generated by the
SA (line 22). Then, the better one between Pns and Psi is stored as the optimal solution Pbs
(line 23).

4.2 The fitness function

The mobile service selection problem in terms of response time/cost is modelled as an
optimisation problem. In the proposed ESOA, fitness functions are designed to determine
whether a seagull should contribute to the next generation. The fitness value depends on
the response time/cost of the candidate solution. The smaller the value, the better the
solution.

Supposing there are n tasks, si is selected for task i. Based on equations (1)–(3), the
total cost of a solution is the sum of selected services’ cost.

()total 1

n
ii

C C s
=

= (19)

The overall response time Toverall is the total time spent from submitting a request to
receiving a solution.

()overall up comp down1
n

iiT T R s T== + + (20)

where Tup is the time for uploading a request, Rcomp is the response time of services
combination, and Tdown is time for downloading a solution.

Rcomp is calculated based on the combination structure [equations (4)–(6)] of selected
services for solving a request.

For Tup, we consider the following scenarios: if service s1 for the first task is located
on edge server ei, the nearby base station receiving a user’s request is connected with
edge server ej. The uploading time Tup includes the time spent from the user to the base
station Tp2b, the data transferring time from the base station to the edge server Tb2s, and
the time of transferring data R(ej, ei) from ej to ei. If s1 is located on a cloud server, the
uploading time Tup is the total time for uploading to the base station Tp2b, and the time of
transferring data from the base station to the cloud server Tb2s. The uploading time Tup is
expressed as:

()p2b b2s 1
up

p2b b2s 1

, , if
, if
j i i

k

T T R e e s e
T

T T s c
 + + ∈

=  + ∈
 (21)

 102 F. Yu et al.

Similarly, for the downloading time Tdown, we consider the following scenarios: If service
sn for the last task is located on edge server ej, the nearby base station that sends data to
the user is connected with edge server ei. The downloading time Tdown includes the time
of transferring data R(ej, ei) from ej to ei, the time spent from the edge server to the base
station Tb2s, and the time spend from the base station to the user Tb2p. If sn is located on a
cloud server, the downloading time Tdown is the total time of transferring data from the
cloud server to the base station Tb2s, and the downloading time Tb2p from the base station
to the user. The downloading time Tdown is expressed as:

() b2s b2p
down

b2s b2p

, , if
, if

j i n i

n k

R e e T T s e
T

T T s c
 + + ∈

=  + ∈
 (22)

The time of uploading a request to a base station Tp2b and the time of downloading a
result from a base station Tb2p are calculated as follows:

p2b / (,),T Task r B g= (23)

b2p / (,),T Result r B g= (24)

where Task means the data size of all tasks in the request, Result means the data size
of downloading, and r(B, g) represents achievable data-transfer rate. According to the
Shannon-Hartley formula (Lazarakis et al., 1994), the bandwidth B and signal-to-noise
ratio (SNR) determine the achievable data-transfer rate r(B, g), and r(B, g) can be
calculated by equation (25).

()2
2(,) log 1 /r B g B tp g σ= ∗ + ∗ (25)

where σ2 is the noise power at the receiver, tp is wireless transmit power of the mobile
device, g represents the channel power gain, and can be calculated as h0 * d–γ, where h0 is
the received power, d is the distance between the mobile device and the base station, and
γ = 2 is the path loss factor (Chen et al., 2016).

The transmission time Tb2s between a base station and a server depends on the size of
data to be transferred and the bandwidth Bb2s, which is calculated as follows:

b2s b2s/T DataSize B= (26)

The transmission time R between two servers ei and ej depends on the size of data to be
transferred and the bandwidth Be2e, which is calculated as follows:

() 2, /i j e eR e e DataSize B= (27)

5 Case study

In this section, we give a simple but meaningful example to show how the ESOA is
applied to solve a mobile service selection problem and illustrate the necessity and
significance of our work.

In this scenario, Sam’s job is to deliver food from a restaurant to a customer. When a
delivery order is received, Sam needs to do facial recognition and upload a video of his

 Using seagull optimisation algorithm to select mobile service in cloud 103

current environment to confirm that he is ready for the order. After that, Sam receives a
route plan from his position to the restaurant and from the restaurant to the customer.
Besides, the route plan provides photos of the restaurant.

As shown in Figure 6, once a delivery order arrives, three tasks are generated and
executed sequentially, including facial recognition task (Task1), uploading environment
video task (Task2), and route plan task (Task3). Supposing each task has four candidate
services, information of candidate services is available (Table 3). Sam’s delivery route
and the network condition along the way are predetermined. The whole delivery path is
within the wireless transmission range of the same cloud server. The cloud server and
edge servers are connected with each other. Candidate services are randomly distributed
on cloud and edge servers.

Figure 6 The delivery route of Sam (see online version for colours)

Table 2 Tasks and candidate services

Task Candidate service
Face recognition task (Task1) rec1 rec2 rec3 rec4
Uploading environment video task (Task2) video1 video2 video5 video6
Route plan task (Task3) route1 route3 route7 route9

Table 3 QoS values of candidate services

Service Response Cost Service Response Cost Service Response Cost
rec1 156 ms 24 video1 382 ms 168 route1 548 ms 268
rec2 180 ms 60 video2 351 ms 188 route3 506 ms 298
rec3 102 ms 51 video5 310 ms 122 route7 518 ms 208
rec4 153 ms 47 video6 402 ms 176 route9 580 ms 231

 104 F. Yu et al.

Table 2 shows tasks and their candidate services. Table 3 shows QoS values of services.
Table 4 shows distribution of services on servers. For example, the first row means that
services rec1, video5 and route3 are deployed on edge server e1.

Sam needs to perform facial recognition and upload a video of his environment, Task1
represents facial recognition, Task2 contains a video of Sam’s environment, and Task3
represents route plan. When the tasks are completed, Sam receives a route to the
restaurant, from the restaurant to the customer, and photos of the restaurant and the food,
the size of` result is about 10 Mb. The speed of Sam is 15 m/s. Supposing when Sam
receives the order, the distance between Sam and base station 1 (resp. base station 2) is
100 m (resp. 200 m), and the angle between Sam and base station 1 (resp. base station 2)
is 135° (resp. 30°). We assume that the angle between Sam’s moving direction and the
base station remains unchanged; the signal range of a base station is 150 m. Values of
parameters are listed in Table 5.
Table 4 Services deployment on servers

Server Services
e1 rec1 video5 route3
e2 rec3 rec4 video1 route7
c rec2 video2 video6 route1 route9

Table 5 Parameters of the example

Parameter Value Parameter Value
Task1 9 Mb Task3 1 Mb
Task2 40 Mb Result 10 Mb
B 256 MHz tp 500 MW
h0 –30 dB σ2 –60 dBm/Hz
Be2c 2.5 Gbps Bb2e 2 Gbps
Be2e 3 Gbps Bb2c 1.5 Gbps
vs 15 m/s λ 2
d1 100 m d2 200 m
θ1 135° θ2 30°

5.1 Time of uploading

The request of Sam is received by the nearest base station. According to equation (23)
and equation (25), time of uploading the request to base station 1 is:

()
2

2
2

/ (,)

/ log 1 /

5,486

p bT Task r B g

Task B tp g σ

ms

=

= ∗ + ∗

=




According to equation (26), the time of uploading the request to e1 is:

 Using seagull optimisation algorithm to select mobile service in cloud 105

12 2/
25

b e b eT DataSize B
ms

=
=

The initial seagull position is randomly selected as Ps(t) = {rec1, video1, route1}, the
optimal position of the initialisation population is Pbs is {rec1, video2, route3}, according
to equation (4) and equation (27), the response time of Ps(t) is:

() () () () ()1 1 2 1 2 1, ,
156 382 1/ 2.5 548 ~ 1,100.1

compR R rec R e e R video R e c R route
ms

= + + + +
= + 41/ 3+ + + ≈

Supposing the maximum number of iterations Maxiteration = 100, fc = 2, according to
equation (9).

()()/ 1.98c c iterationA f t f Max= − × =

According to equation (8), we get the new position Pns(t):

{ }2 2 2() () , ,ns sP t A P t rec video route= × =

Assuming rd = 0.1275, according to equation (11), BL is calculated as follows:
22 1BL A rd= × × =

According to equation (10) and equation (12), we get Ms(t) and Ls(t):

() { }0 1 2() () () , ,s bs sM t BL P t P t rec video route= × − =

{ }2 3 4() () () , ,s ns sL t P t M t rec video route= + =

Supposing randomly select ,
6
π=α u = 1, k = 1, according to equation (13) to

equation (16), x, y, z, h are calculated as follows:

6
π

kh u e e= × =α

6
3cos()

2

π

x h e= × =α

6
1sin()
2

π

y h e= × =α

6
6

ππz h e= × =α

Finally, according to equation (17), the updated position of SOA is obtained:

{ }3 5 7() () () , ,s s bsP t L t x y z P t rec video route= × × × + =

As rec3 is located on e2, according to equation (22), the upload time is:

()2 2 1 2, 5.527.66up p b b sT T T R e e ms= + + =

 106 F. Yu et al.

The simulated annealing algorithm is applied in the ESOA, assuming initially Tsa = 10
and the temperature drop rate dT = 0.01, Tmin = 0.5, rmax = 1. Supposing random numbers
which modify services for three tasks are 0.56, 0.42, 0.62, according to equation (18).

() { }max 4 5 9() () 2 , ,s s saS t P t f r T rec video route= + × − × =

After several iterations, when the temperature cools, Tsa = 1, the solution Ss(t) = {rec4,
video5, route9} is returned.

5.2 Time of service combination

According to equation (4) and equation (27), time spent on service combination of Ps(t)
is:

() () () () () ()
3

3

2

3 2 1 5 1 2 7() , ,

102 41/ 3 310 0.33 518 ~ 944

Task

s task
Task

R P t R rec R e e R video R e e R route

ms

= + + + +

= + + + + ≈



Time spent on service combination of Ss(t) is:

() () () () () ()
3

3

2

4 2 1 5 1 9() , , 1,057
Task

s task
Task

R S t R rec e e R video R e c R route ms= + + + + =

5.3 Time of downloading

When the solution is ready, according to equation (7), the distance between Sam and base
station 1 (resp. base station 2) is 182.46 m (resp. 125.43 m), therefore, base station 2 is
chosen as it is nearer to Sam, the solution is sent from base station 2 to Sam. For Ps(t), the
last service is located on edge server 2, the result is sent to base station 2.

2 2/
5

b s b eT DataSize B
ms

=
=

Time for downloading from base station 2 is

()
2

2
2

/ (,)

/ log 1 /
1,721

b pT Result r B g

Result B tp g σ
ms

=

= ∗ + ∗
=

For Ss(t), the last service is located on the cloud server, and the result is sent to base
station 2.

2 2/
6.67

b s b cT DataSize B
ms

=
≈

The time for downloading from base station 2 is

 Using seagull optimisation algorithm to select mobile service in cloud 107

()
2

2
2

/ (,)

/ log 1 /
1,721

b pT Result r B g

Result B tp g σ
ms

=

= ∗ + ∗
=

The overall response time of Ps(t) is

()2 2 1 2 2 2,
8,197.67

p b b s comp b s b pT T T R e e R T T
ms

= + + + + +
=

The overall response time of Ss(t) is

()2 2 1 2 2 2,
8,312.33

p b b s comp b s b pT T T R e e R T T
ms

= + + + + +
=

In this example, the optimal position is {rec3, video5, route7}, and the overall response
time is 8,197.67 ms.

6 Experiment

This section describes experimental setup and performs experiments to investigate the
performance of the ESOA against other algorithms.

6.1 Experiment setup

Algorithms are implemented in Java and run on a 1.9 GHz Intel Core i7 processor with
Windows 10 64-bit operating system. We compare the ESOA with other evolutionary
algorithms; the referencing algorithms are presented in Table 6.
Table 6 Algorithms used in experiments

Algorithm Description
Seagull optimisation algorithm (SOA)
(Dhiman and Kumar, 2019)

Imitates seagulls’ migration and hunting
behaviours

Genetic algorithm (GA) (Whitley, 1994) Genetic principles: crossover and mutation
Simulated annealing (SA) (Bangert, 2012) Temperature parameters of metal annealing
Ant colony optimisation (ACO) (Dorigo
et al., 2006)

Imitates foraging behaviours of ants

Differential evolution(DE) (Price and
Price, 1997)

Mutation generated by differences of parents

Particle swarm optimisation (PSO) (Price
and Storn, 1997)

Behaviours of bird flocking or fish schooling

We obtain geographic information of base stations from the Australian Communication
and Media Authority dataset (Lai et al., 2018). We assume that several base stations are
equipped with an edge server. Services are distributed randomly on cloud and edge
servers. We set the loss parameters in the process of information transmission: the
response time between two edge servers varies from 1 ms to 10 ms, the response time
between an edge server and cloud server varies from 10 ms to 30 ms, and the response

 108 F. Yu et al.

time between two cloud servers varies from 30 ms to 50 ms. Default values of parameters
involved in the experiment are shown in Table 7.
Table 7 Parameter setting

Parameter Value Parameter Value
Uploading request 50 Mb B 256 MHz
Downloading result 10 Mb vmin 1.1 m/s
dmin 10 m vmax 1.5 m/s
dmax 200 m h0 –30 dB
tp 500 mW σ2 –60 dBm/Hz
Bb2s 1 Gbps

Four datasets are generated with different number of tasks, each task has 100 candidate
services (Table 8).
Table 8 Datasets

 Dataset1 Dataset2 Dataset3 Dataset4
Tasks 100 110 120 130
Candidate services for each task 100 100 100 100

Table 9 Experiment Results with the minimal overall response time (ms)

 Dataset1 Dataset2 Dataset3 Dataset4
ESOA Response time 3,005.3 3,415.4 3,860.9 4,291.9

At iteration 8 8 7 9
SOA (Dhiman and
Kumar, 2019)

Response time 3,025.9 3,435.0 3,881.3 4,319.6
At iteration 6 6 6 6

GA (Whitley, 1994) Response time 15,176.5 16,723.6 22,546.8 24,718.1
At iteration 96 94 99 99

SA (Bangert, 2012) Response time 6,658.5 7,838.6 8,654.0 10,632.5
At iteration 68 33 13 11

ACO (Dorigo et al.,
2006)

Response time 3,581.8 3,862.1 4,319.6 4,535.2
At iteration 4 7 4 10

DE (Price and Storn,
1997)

Response time 6,064.2 6,957.1 8,153.3 8,809.0
At iteration 83 89 96 93

PSO (Eberhart and Shi,
2001)

Response time 5,107.4 6,733.0 7,151.4 8,875.6
At iteration 52 59 81 64

6.2 Analysis of results

We compare the performance of the ESOA against other evolutionary algorithms
referenced in this paper. In the experiment, we set the maximum generations to 100;
services are randomly distributed on edge/cloud servers. Table 9 shows the performance
of the algorithms in terms of the overall response time. ‘At iteration’ means the best
result is generated at which iteration. The overall response time is a negative criterion, the

 Using seagull optimisation algorithm to select mobile service in cloud 109

smaller the value, the better the solution. As we can see from this table, the performance
of the ESOA is better than other algorithms. The convergence rate of the SOA, the ACO
and the ESOA is much faster than the GA, the SA, the DE and the PSO algorithms.

Figure 7 Response time and iterations (see online version for colours)

Table 10 Experiment results with the minimal cost (cents)

 Dataset1 Dataset2 Dataset3 Dataset4
ESOA Cost 2,047 2,249 2,451 2,646

At iteration 6 6 6 7
SOA (Dhiman and
Kumar, 2019)

Cost 2,047 2,249 2,451 2,646
At iteration 7 7 8 9

GA (Whitley, 1994) Cost 5,046 5,363 6,041 7,006
At iteration 94 91 96 88

SA (Bangert, 2012) Cost 3,638 4,003 4,469 4,752
At iteration 58 20 81 40

ACO (Dorigo et al.,
2006)

Cost 4,500 4,971 5,314 6,438
At iteration 1 1 1 1

 110 F. Yu et al.

Table 10 Experiment results with the minimal cost (cents) (continued)

 Dataset1 Dataset2 Dataset3 Dataset4
DE (Price and Storn,
1997)

Cost 3,237 3,583 3,983 4,337
At iteration 92 89 82 90

PSO (Eberhart and
Shi, 2001)

Cost 3,153 3,344 3,687 4,050
At iteration 56 71 60 61

Figure 8 Cost and iterations (see online version for colours)

We also investigate the performance in terms of the cost. From Table 10, the ESOA and
the SOA can find a solution with less cost. Besides, the ESOA can find a solution with
the same price as the SOA, but in fewer iterations. Although the ACO algorithm can find
a solution with only one generation, the cost is more than twice than that of the ESOA
and the SOA algorithms.

Figure 7 shows the relationship between the response time and iterations. It can be
seen that the ESOA can find a solution with less response time.

Figure 8 shows the relationship between iterations and cost. As can be seen from this
figure, the ESOA and the SOA can find solutions with less cost than other algorithms in
fewer iterations. Time spent on searching of the EOSA algorithm is less than that of the
SOA.

 Using seagull optimisation algorithm to select mobile service in cloud 111

Figure 9 Response time and iterations (see online version for colours)

Figure 10 Cost and iterations (see online version for colours)

 112 F. Yu et al.

As the ESOA and the SOA converge much faster than other selected methods, we enlarge
the scales of response time and cost so that differences between the ESOA and the SOA
can be see clearer. When the goal is to find a solution with cheapest price, although the
ESOA and the SOA return solutions with same price, the ESOA converges faster than the
SOA algorithm. Figure 9 and Figure 10 show more detailed information of the ESOA and
the SOA in terms of response time and cost respectively.

The above-mentioned experimental results show that ESOA can efficiently and
effectively find a solution, and outperforms other five algorithms.

7 Conclusions and future work

We propose to combine seagull optimisation and simulated annealing algorithm to solve
the mobile service selection problem in the cloud and edge computing environment.
Simulated annealing algorithm is applied to avoid falling into local maximum and
premature convergence problem. Additionally, the random waypoint mobility model is
applied to simulate the mobile path of the user. Finally, experimental results show that
the proposed ESOA algorithm outperforms six other evolutionary algorithms in terms of
QoS values and convergence rate. In our next work, we will put our proposed approach
into real life and do experiments with real services. Taking energy consumption into
consideration would be an interesting extension. We may consider energy consumption
of mobile devices and base stations. The energy consumption of a base station includes
data transmission and data processing energy (Xu et al., 2022). The former one is related
to the amount of data to be transferred, and the latter one is related to the rate of
accessing its processing unit and peak power. The energy consumed by processing the
request in a base station consists of the energy consumption of its processing unit, idle
power, and leakage power.

References
Bangert, P. (2012) ‘Optimization: simulated annealing’, Optimization for Industrial Problems,

Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-24974-7_7.
Bettstetter, C., Hartenstein, H. and Perez-Costa, X. (2004) ‘Stochastic properties of the random

waypoint mobility model’, Wireless Networks, Vol. 10, No. 5, pp.555–567.
Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K. and Razmjooy, N. (2019) ‘Experimental modeling

of PEM fuel cells using a new improved seagull optimization algorithm’, Energy Reports,
Vol. 5, pp.1616–1625, https://doi.org/10.1016/j.egyr.2019.11.013.

Chen, X., Jiao, L., Li, W. and Fu, X. (2016) ‘Efficient multi-user computation offloading for
mobile-edge cloud computing’, IEEE/ACM Transactions on Networking: A Joint Publication
of the IEEE Communications Society, the IEEE Computer Society, and the ACM with Its
Special Interest Group on Data Communication, Vol. 24, No. 5, pp.2795–2808.

Dahan, D., Hassan, M. and Mohammed, A. (2019) ‘Two-step artificial bee colony algorithm
enhancement for QoS-aware web service selection problem’, IEEE Access, Vol. 7,
pp.21787–21794 [online] https://ieeexplore.ieee.org/document/8625404.

Deng, S., Zhao, H., Fang, W., Yin, J., Schahram, D. and Albert, Y.Z. (2020) ‘Edge intelligence: the
confluence of edge computing and artificial intelligence’, IEEE Internet of Things Journal,
Vol. 7, No. 8, pp.7457–7469.

 Using seagull optimisation algorithm to select mobile service in cloud 113

Dhiman, G. and Kumar, V. (2019) ‘Seagull optimization algorithm: theory and its applications for
large-scale industrial engineering problems’, Knowledge-Based Systems, February 1, Vol. 165,
pp.169–196, https://doi.org/10.1016/j.knosys.2018.11.024.

Dhiman, G., Singh, K.K., Slowik, A., Chang, V. and Garg, M. (2020) ‘Emosoa: a new evolutionary
multi-objective seagull optimization algorithm for global optimization’, International Journal
of Machine Learning and Cybernetics, Vol. 12, pp.571–596, https://doi.org/10.1007/s13042-
020-01189-1.

Dorigo, M., Birattari, M. and Stutzle, T. (2006) ‘Ant colony optimization’, IEEE Computational
Intelligence Magazine, Vol. 1, No. 4, pp.28–39.

Eberhart, R. and Shi, Y. (2001) ‘Particle swarm optimization: developments, applications and
resources’, in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), Vol. 1, pp.81–86.

Gelenbe, E. and Lent, R. (2013) ‘Energy-qos trade-offs in mobile service selection’, Future
Internet, Vol. 5, No. 2, pp.128–139.

Hashem, A., Fadl, D., Taha, A., Hassan, M. and Mohammed, A. (2019) Enhancement of ant colony
optimization for qos-aware web service selection’, IEEE Access, Vol. 7, pp.97041–97051
[online] https://ieeexplore.ieee.org/document/8758409.

Hong, C.H. and Varghese, B. (2019) ‘Resource management in fog/edge computing: a survey on
architectures, infrastructure, and algorithms’, September, ACM Comput. Surv., Vol. 52, No. 5,
Article No. 97, pp.1–37, https://doi.org/10.1145/3326066.

Huang, J., Lan, Y. and Xu, M. (2018) ‘A simulation-based approach of QoS-aware service
selection in mobile edge computing’, Wireless Communications and Mobile Computing,
Vol. 2018, Article ID 5485461, 10pp, https://doi.org/10.1155/2018/5485461.

Jia, H., Xing, Z. and Song, W. (2019) ‘A new hybrid seagull optimization algorithm for feature
selection’, IEEE Access, Vol. 7, pp.2169–3536 [online] https://ieeexplore.ieee.org/document/
8684847.

Jiang, H., Yang, Y., Ping, W. and Dong, Y. (2020) ‘A novel hybrid classification method
based on the opposition-based seagull optimization algorithm’, IEEE Access, Vol. 8,
pp.100778–100790 [online] https://ieeexplore.ieee.org/document/9099867.

Lai, P., He, Q., Abdelrazek, M., Chen, F., John, H., John, G. and Yang, Y. (2018) ‘Optimal edge
user allocation in edge computing with variable sized vector bin packing’, in International
Conference on Service-Oriented Computing, pp.230–245.

Lazarakis, F., Tombras, G.S. and Dangakis, K. (1994) ‘Average channel capacity in a mobile radio
environment with Rician statistics’, IEICE Transactions on Communications, Vol. E77-B,
No. 7, pp.971–977.

Li, Y. and Wang, S. (2018) ‘An energy-aware edge server placement algorithm in mobile edge
computing’, in 2018 IEEE International Conference on Edge Computing (EDGE), pp.66–73.

Ma, X., Wang, S., Zhang, S., Yang, P., Lin, C. and Shen, X. (2021) ‘Cost-efficient resource
provisioning for dynamic requests in cloud assisted mobile edge computing’, IEEE
Transactions on Cloud Computing, Vol. 9, No. 3, pp.968–980.

Ma, X., Zhang, S., Li, W., Zhang, P., Lin, C. and Shen, X. (2017) ‘Cost-efficient workload
scheduling in cloud assisted mobile edge computing’, in 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS), pp.1–10.

Mach, P. and Becvar, Z. (2017) ‘Mobile edge computing: a survey on architecture and computation
offloading’, IEEE Communications Surveys Tutorials, Vol. 19, No. 3, pp.1628–1656.

Mistry, S., Bouguettaya, A., Dong, H. and Qin, A.K. (2018) ‘Metaheuristic optimization for
long-term IaaS service composition’, IEEE Transactions on Services Computing, January,
Vol. 11, No. 1, pp.131–143.

Muhammad, A., Wang, Y., Wang, K. and Pei-Qiu, H. (2020) ‘A review on computational
intelligence techniques in cloud and edge computing’, IEEE Transactions on Emerging Topics
in Computational Intelligence, Vol. 4, No. 6, pp.742–763.

 114 F. Yu et al.

Orsini, G., Bade, D. and Lamersdorf, W. (2016) ‘Cloudaware: a context-adaptive middleware for
mobile edge and cloud computing applications’, in IEEE International Workshops on
Foundations & Applications of Self Systems.

Price, K.V. and Storn, R. (1997) ‘Differential evolution-a simple evolution strategy for fast
optimization’, Journal of Global Optimization, Vol. 11, pp.341–359, https://doi.org/10.1023/
A:1008202821328.

Raoul, H., Marco, G. and Sebastian, L. (2020) ‘Making cloud service selection easy for SMEs: a
tool for selecting saas services’, in Hofmann, S., Müller, O. and Rossi, M. (Eds.): Designing
for Digital Transformation Co-Creating Services with Citizens and Industry, pp.333–338,
Springer International Publishing, Cham.

Reiff-Marganiec, S. and Tilly, M. (2008) ‘Non-functional property based service selection: a
survey and classification of approaches’, in Proceedings of the 2008 Non Functional
Properties and Service Level Agreements in Service Oriented Computing Workshop.

Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016) ‘Edge computing: vision and challenges’,
IEEE Internet of Things Journal, Vol. 3, No. 5, pp.637–646.

Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A. and Shen, X. (2021) ‘Delay aware microservice
coordination in mobile edge computing: a reinforcement learning approach’, IEEE
Transactions on Mobile Computing, Vol. 20, No. 3, pp.939–951.

Wang, T., Zhang, G., Liu, A., Bhuiyan, M.Z.A. and Jin, Q. (2019) ‘A secure IoT service
architecture with an efficient balance dynamics based on cloud and edge computing, IEEE
Internet of Things Journal, Vol. 6, No. 3, pp.4831–4843.

Whitley, D. (1994) ‘A genetic algorithm tutorial’, Statistics & Computing, Vol. 4, No. 2, pp.65–85.
Wu, H., Deng, S., Li, W., Yin, J. and Zomaya, A.Y. (2019) ‘Mobility-aware service selection in

mobile edge computing systems’, in 2019 IEEE International Conference on Web Services
(ICWS).

Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S. and Qi, L. (2019) ‘A computation
offloading method over big data for IoT-enabled cloud-edge computing’, Future Generation
Computer Systems, Vol. 95, pp.522–533, https://doi.org/10.1016/j.future.2018.12.055.

Xu, Z., Zhou, L., Dai, H., Liang, W., Zhou, W., Zhou, P., Xu, W. and Wu, G. (2022)
‘Energy-aware collaborative service caching in a 5g-enabled MEC with uncertain payoffs’,
IEEE Transactions on Communications, Vol. 70, No. 2, pp.1058–1071.

Zhang, J., Xia, W., Cheng, Z., Zou, Q., Huang, B., Shen, F., Yan, F. and Shen, L. (2017) ‘An
evolutionary game for joint wireless and cloud resource allocation in mobile edge computing’,
in 2017 9th International Conference on Wireless Communications and Signal Processing
(WCSP), pp.1–6.

Zhang, K., Zhang, H., Jiang, L. and Xu, J. (2010) ‘Composite agent service selection algorithm for
non-functional attributes based on simulated annealing’, in 2010 Second World Congress on
Software Engineering, Vol. 2, pp.101–106.

Zhu, M., Yu, F., Yan, X., Li, J. and Wang, Y. (2021) ‘Scaling up mobile service selection in edge
computing environment with cuckoo optimization algorithm’, in 2021 IEEE International
Conference on Services Computing (SCC), pp.394–400.

