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Abstract: With the rapid development of edge computing, more and more 
services are deployed on edge servers. Compared with traditional cloud 
computing, services in the edge computing environment are closer to users, 
which bring benefits of high performance and low latency to the user-service 
interactions. However, due to the limited resources of edges, services provided 
by edges alone may fail to meet increasingly complex mobile computing 
requirements; therefore, services on clouds become an effective supplement. 
With the massive increment of services in the mobile internet, selecting proper 
services to fulfil mobile users’ requests becomes a key research field. This 
paper proposes a service selection model for mobile service selection problem 
in cloud and edge computing environment. The proposed model combines the 
seagull optimisation algorithm and the simulated annealing algorithm. Through 
comparative experiments on simulation datasets with referencing to some other 
service selection models, it can be inferred that the proposed selection model 
finds a solution with better QoS performance in fewer iterations. 
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1 Introduction 

Recently, the widespread popularity of intelligent mobile devices has resulted in huge 
requirements for cloud and edge computing. Applications, such as natural language 
processing, facial recognition, and video processing, in mobile devices are  
delay-sensitive and demand-intensive computations. Mobile edge computing optimises 
cloud computing by processing data at the edge of the network near the original data 
source (Huang et al., 2018). It is envisioned to help alleviate the resource scarcity of 
mobile devices. Therefore, users can gain easy access to lightweight services within 
shorter response time. Compared with edge computing, cloud computing can provide 
more computing resources (e.g., services). Collaborative work of cloud computing and 
edge computing has gradually become a promising trend in mobile internet development 
(Muhammad et al., 2020). 

Figure 1 shows a typical scenario where a mobile user uses services in cloud and edge 
computing environment. There are three edge servers, two cloud servers, several base 
stations, and a mobile user in this example. These cloud and edge servers interconnect 
and able to transfer data with each other. The request submitted to a base station is further 
transmitted to an edge or cloud server. Assuming that the mobile user sends a request to 
the nearby base station at location A and receives a response message when the user 
moves to location B, the time interval is the sum of uploading time, the total response 
time of services and servers, and downloading time. The time of uploading/downloading, 
is decided by the size of the request and the transfer capacity (Wu et al., 2019). 

However, challenges are still waiting to be solved in a mobile service selection 
problem in cloud and edge computing environment (Shi et al., 2016). First of all, users 
may experience long latency for data exchange with cloud resources. Besides, services 
provided by edge servers are limited and may fail to meet the user’s requirement. Last but 
not least, users submit requests while moving, dynamic and ever-changing locations of 
users enhance difficulties of supplying stable services. 

This paper addresses mobile service selection problem in edge and cloud computing 
environment with an extended seagull optimisation algorithm (ESOA) (Dhiman and 
Kumar, 2019). Inspired by the nature of seagulls’ migration and attack behaviours, the 
seagull optimisation algorithm (SOA) is an evolutionary optimisation algorithm and is 
widely used in rolling bearing production and other aspects (Dhiman and Kumar, 2019). 
The SOA has high efficiency in solving unconstrained problems in unknown search 
space, has fast convergence speed, and is easy to implement. To solve service selection 
problem with the SOA, each candidate solution is represented as the location of a seagull 
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(see Section 2.6). The algorithm starts from a set of randomly generated locations and 
searches toward the location with either the minimal cost or response time. 

Figure 1 A mobile user in edge and cloud computing environment (see online version  
for colours) 

 

The specific contributions of this paper are summarised as follows: 
We consider the mobile service selection problem in a cloud and edge computing 

environment, and formulate the problem to an optimisation problem. 

• A mobile service selection model based on an ESOA is proposed. To the best of our 
knowledge, this is the first time the SOA combined with the simulated annealing 
algorithm has been applied to solve the mobile service selection problem. 

• We evaluate the performance of the proposed algorithm through extensive 
experiments. Simulation results show that the performance of the proposed algorithm 
outperforms referring studies by at least 5.3% better response time in fewer 
iterations. 

The rest of this paper is organised as follows: we introduce preliminary knowledge in 
Section 2. Section 3 discusses related work. Section 4 presents our proposed method and 
algorithms, and thereafter, a case study is given in Section 5 to explain how the proposed 
method is applied to solve a mobile service selection problem. Section 6 gives 
experimental results. Finally, the conclusion is drawn in Section 7. 

2 Preliminary knowledge 

In this section, the service selection problem, the model of mobile path, the SOA, and the 
simulated annealing algorithm are introduced. 
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2.1 Service and service combination 

Definition 2.1: A service s is defined as (srv, sin, sout, Q). srv is the server where s is 
distributed and executed; sin is the input data of the service. sout is the output data of the 
service. Q is a finite number of non-functional properties of s. 

Commonly, functional properties describe a service’s input and output parameters, and 
non-functional properties are referred to as quality of service (QoS). Services with similar 
functionalities may have different QoS criteria. In this paper, we use cost and response 
time to measure QoS. 

• Cost (C): the price paid by the user for using the service (unit: cent). 

• Response time (R): the time interval between receiving a request and sending a result 
(unit: millisecond). 

Given two services si and sj, there are three kinds of service connection structures: 
sequential, concurrent, and selective. We use si; sj to represent sequential connection, use 
si|| sj to represent concurrent connection, and use si| sj to represent selective connection. 

The cost C of connected services (si and sj) is calculated as follows: 

( ) ( ) ( );i j i jC s s C s C s= +  (1) 

( ) ( ) ( )i j i jC s s C s C s= +  (2) 

( ) ( ) ( ){ }min ,i j i jC s s C s C s=  (3) 

Response time R of connected services (si and sj) is calculated as follows: 
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where srvk and srvp are servers, si ∈ srvk indicates srvk hosts service si, and R(srvk, srvp) 
means the data transmission time between srvk and srvp. For equations (5)–(6), we 
assume that the successor service of si is located on server srvx and the successor service 
of sj is located on server srvy. 

Definition 2.2: A service request contains the following components: 

A finite set of tasks requested by the user, and each task can be fulfilled by a service: 

• a combination structure of tasks 

• the input data provided by the user. 
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To understand this paper, the notations used in the paper are presented in Table 1. 
Table 1 Notations 

Expression Description Expression Description 
srv Server s Service 
C Cost R Response time 
d Distance B Bandwidth 
T Data transmission time tp Wireless transmit power 
g Channel power gain h0 Received power 
σ2 Noise at the receiver γ Path loss factor 
v Movement speed of user e Base of the natural logarithm 
A Movement behaviour of the 

seagull 
BL Variable to balance exploration and 

development 
fc Conversion frequency rd A random variable of the SOA 
x, y, z Three planes in the space h Radius of each helix 
α Random angle u, k Correlation constants of spiral shape 

2.2 Base station, edge server and cloud server 

As modelled in Figure 1, each base station is connected to an edge server. An edge server 
may transfer data with several geographically closed base stations. Each edge server is 
connected to the Internet and is able to communicate data with other servers. Similarly, 
each cloud server is connected to the internet and is able to transfer data with other 
servers. 

The network topology of base stations and servers is described by an incidence 
matrix, where each row represents a server, and each column represents a base station. 
Each cell in the matrix represents the data transmission speed between a server and a base 
station. If an edge server i is connected to a base station j, then the value of cell with 
index ij is the data transmission speed between them. Otherwise, the value is set to 0. 

The network topology of edge and cloud servers is described by an adjacency matrix, 
in which each cell represents the data transmission speed between two servers. If two 
servers are connected, then the value of cell with index ij is the data transmission speed 
between them. Otherwise, the value is set to 0. We assume that the data transmission 
speed from a server to itself is maximised. 

2.3 The model of mobile path 

In the mobile edge and cloud computing environment, the mobile path of the user 
partially decides the time of uploading, service selection and downloading, and therefore 
influences the selection of services. Below, we model the user’s mobile path. 

We use the random waypoint mobility model to simulate the mobile path (Bettstetter 
et al., 2004). The model in this paper is suitable for the scenario that the user’s moving 
path is determined in advance. The mobile path is decomposed into a group of path 
segments, supposing the network condition, moving direction, and speed do not change 
in a path segment. 
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As shown in Figure 2, we assume that the initial distance between the user and the 
base station is D, the moving direction angle θ is unchanged, and the user moves at a 
constant speed v. After time t, the path segment can be calculated as vt, the distance d 
between the user and the base station is: 

2 22 cos ( ) .d D Dvt θ vt= − +  (7) 

If the user walks, v = 1.5 m/s; if the user rides a bike, v = 5 m/s; if the user take a campus 
bus, v = 10 m/s; if the user drives, v = 15 m/s. 

Figure 2 The mobile path (see online version for colours) 

 

2.4 Seagull optimisation algorithm 

The SOA is an evolutionary optimisation algorithm that imitates seagulls’ migration and 
attack behaviours to find a near-optimal solution iteratively (DK19 and Kumar, 2019). 
The migration behaviour means seagulls fly to places that are more suitable for survival, 
which affects the algorithm’s global exploration ability. The attack behaviour is the 
forage, which affects the algorithm’s local development ability. Seagulls fly to new 
positions in each generation, and each position represents a candidate solution. The 
fitness value of each position is calculated, and seagulls with better positions are possible 
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to be brought to the next generation. After several generations, the algorithm gradually 
approaches the optimal solution. The flowchart of the SOA is shown in Figure 3. 

Figure 3 Flowchart of SOA 

 

2.4.1 Exploration ability 
To avoid colliding with surrounding seagulls, the SOA uses a variable A to adjust the 
position Pns(t) of seagulls. A represents the movement behaviour of the seagull in a given 
search space. The new position Pns(t) of a seagull in tth generation is calculated as 
follows: 

( ) ( )ns sP t A P t= ×  (8) 

where Ps(t) is the current position of the seagull, and A is calculated as follows: 

( )( )/c c iterationA f t f Max= − ×  (9) 

where fc controls the conversion frequency of A from fc to 0. In paper (Dhiman and 
Kumar, 2019), the value of fc is analysed experimentally, and experimental results show 
that the algorithm achieves the optimal value when fc = 2. Maxiteration means the maximum 
generation. 

( )( ) ( ) ( )s bs sM t BL P t P t= × −  (10) 

Ms(t) draws seagulls close to the best position Pbs(t). BL balances exploration and 
development of the algorithm, the variation of BL follows: 
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22BL A rd= × ×  (11) 

where rd is a random number that lies in the range of [0, 1]. The distance Ls(t) between 
the seagull and the best seagull is calculated as: 

( ) ( ) ( )s ns sL t P t M t= +  (12) 

2.4.2 Exploitation ability 
In the process of exploitation, seagulls spiral descent and adjust their positions, attack 
angles, and speeds. As seagulls make spiral motion during attacking (Dhiman and 
Kumar, 2019). The location of a seagull is represented as a node in three dimensional 
coordinates: 

cos( )x h= × α  (13) 

sin( )y h= × α  (14) 

z h= ×α  (15) 
kh u e= × α  (16) 

where h is the radius of each helix, α is a random angle in the range of 0 to 2π, u and k 
are correlation constants of spiral shape, and e is the base of the natural logarithm. 

( ) ( ) ( )s s bsP t L t x y z P t= × × × +  (17) 

The SOA starts with a randomly generated population, and seagulls constantly update 
their positions to find the optimal position. These features inspire us to employ the SOA 
algorithm to solve the mobile service selection problem in a cloud and edge environment. 

2.5 Simulated annealing algorithm 

The basic idea of the simulated annealing algorithm comes from the physical annealing 
process. When an object is heated to a completely high temperature, the particles in the 
solid become disordered and the energy increases significantly when the temperature 
rises. When the particles cool slowly, the particles gradually become orderly and the 
energy minimises. The whole cooling process is called annealing. 

The simulated annealing algorithm starts from a randomly initial solution Psa and a 
control parameter Tsa. A new solution Pnew is generated as follows: 

( )max2new sa saP P f r T= + × − ×  (18) 

where f is a random number in the range of [0, rmax]. Tsa is a temperature parameter 
controlled by the cooling rate dT in the range of [0, 1]. 

According to the fitness value of the new solution Pnew, the algorithm chooses to 
accept or give up Pnew, and Tsa gradually attenuates. Finally, an approximate optimal 
solution is returned. 

This paper simplifies the simulated annealing algorithm and combines it with the 
SOA. The basic idea of the simulated annealing algorithm used in this paper is depicted 
in Figure 4. 
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Figure 4 Flowchart of simulated annealing algorithm 

 

2.6 Mapping service selection problem with the ESOA algorithm 

Given a service request, the mobile service selection problem in the edge and cloud 
computing environment is finding proper services to complete tasks while considering 
QoS requirements. The service selection problem consists of the following components: 

• a service request 

• a model of user’s mobile path represented by a sequence of path segments 

• a set of candidate services, where each task is fulfilled by a service 

• a network of base stations, edge and cloud servers. 

The goal of the mobile service selection problem is to find a combination of services to 
complete tasks with the minimal overall response time or cost, a base station receives 
user’s request as input data, sends the request to an edge or a cloud server, after service 
combination, a solution is delivered to the user. This selection problem is an optimisation 
problem. 

In order to solve a mobile service selection problem, we use the ESOA to find a near 
optimal solution, that is, to find an approximate optimal position of seagull. A seagull’s 
position is represented as a combination of candidate services, one for each task. For a 
service request with n tasks (t1, t2, ..ti .., tn), a seagull position is represented as (s1, s2, ..sj 
.., sn), which means that service s1 is selected for task t1, sj is selected for ti, and sn is 
selected for tn respectively. The service combination solution with the minimum overall 
response time or cost is selected and returned. 

Following the SOA in Section 2.4, the initial seagull population and their 
corresponding positions are randomly generated. Fitness functions are designed  
(Section 4.2) to evaluate the position of each seagull, and the seagull with the best 
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position (fitness value) is selected. Then, a new seagull generation is produced by 
updating the position of each seagull in the previous generation. For each seagull, its new 
position is compared with the one in the previous generation, and the better one is 
retained. The seagull with the best position (fitness) is chosen as the current best seagull. 
The best seagull gets close to the optimal position without collision with other seagulls. 
This process ends when a satisfying position is obtained or reaches the maximum 
generation. The seagull with the best position (fitness) is returned to the user as the 
solution of the problem. 

3 Related work 

With the continuous development of mobile Internet technology, cloud and edge 
computing is widely applied in various fields. This part introduces the mobile service 
selection in cloud and edge and the evolutionary algorithms used in service selection. 

3.1 Mobile service selection in cloud and edge computing 

Service selection has been paid more and more attention by experts and scholars. Classic 
service selection is a problem that parses functional descriptions and matches services at 
the technical level (Reiff-Marganiec and Tilly, 2008). Due to the increasing number of 
services with similar functional properties on the web and to maximise users’ 
satisfaction, researchers pay attention to non-functional (QoS) attributes. Gelenbe et al. 
proposed a method from the perspective of QoS and energy (Gelenbe and Lent, 2013). 
They regarded the choice between local services and cloud services as an optimisation 
problem and presented a mathematical model. Hentschel et al. presented a cloud 
brokering system that selects cloud services with matchmaking and ranking (Raoul et al., 
2020). The proposed virtual broker as a service framework (ViBROS) is less costly for 
small and medium enterprises when choosing cloud services. In addition, it can be easily 
used by less-skilled users. 

Orsini et al. (2016) proposed a cloud-aware adaptive middleware for mobile edge 
computing. This approach aims to link specific mobile cloud and edge computing 
requirements while employing combinatorial adaptation and sensor-based reasoning to 
provide dynamic adaptation to the configuration-free programming model. Huang et al. 
(2018) presented a simulation-based approach for QoS-aware service selection in a 
mobile edge computing environment. The optimisation goal can be softened by 
sequential optimisation to resolve the problem in an acceptable amount of time. Xu et al. 
(2019) proposed a computation offloading method (COM), to reduce the influence of 
offloading of mobile application. Specifically, they investigated a system model that 
computes mobile devices’ execution time and energy consumption. Then dynamic 
schedules of data/control constrained computing tasks are confirmed. Deng et al. (2020) 
divided edge intelligence into AI for edge (intelligence-enabled edge computing) and AI 
on edge (artificial intelligence on edge). The former focuses on providing better solutions 
to key problems in edge computing with the help of popular and effective AI 
technologies, while the latter studies how to carry out the entire process of building AI 
models. Mach and Becvar (2017) classified research on computation offloading into three 
key areas: decision on computation offloading; allocation of computing resources within 
the MEC, and mobility management to improve the efficiency of computation offloading. 
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3.2 Cloud computing and edge computing 

The combination of internet of things (IoT) and cloud computing enhance the capability 
of IoT, but it also brings corresponding disadvantages. In order to effectively solve 
internal attacks and improve the efficiency of IoT-cloud services, Wang et al. (2019) 
proposed a novel architecture that integrates a trust evaluation mechanism and service 
template with a balance dynamics based on cloud and edge computing, which improves 
the security and efficiency of IoT-cloud system. Ma et al. (2017) proposed a cloud 
assisted mobile edge computing (CAME) framework to enhance the computing capacity 
of the system, and used an optimisation problem to minimise the system delay and cost. 
This framework guarantees the lowest cost. The optimal resource provisioning (ORP) 
algorithm optimises the computation capacity of edge hosts and dynamically adjusts the 
cloud tenancy strategy (Ma et al., 2021). 

Li and Wang (2018) studied edge server placement in the cloud and edge computing, 
and designed a particle swarm optimisation based energy-aware edge server placement 
algorithm. Zhang et al. (2017) developed a joint cloud and wireless resource allocation 
algorithm based on evolutionary game (JRA-EG) to solve the cost problem of mobile 
devices in a mobile edge computing environment, and obtained evolutionary equilibrium 
(EE) by replicate dynamics method. Because users’ mobility leads to frequent switching 
of edge servers and increases the delay of task processing, Wang et al. (2021)  
studied the microservice coordination among edge clouds and proposed a dynamic 
programming-based offline microservice coordination algorithm. Hong et al. reviewed 
publications published from 2013 to 2018, detailed the architecture, infrastructure, and 
algorithms that support resource management in fog/edge computing, and described 
characteristics of the computing paradigm for handling user data (Hong and Varghese, 
2019). 

3.3 Evolutionary algorithms in service selection 

Dahan et al. (2019) proposed an enhanced artificial bee colony (ABC) algorithm to 
improve the efficiency of the algorithm. The algorithm randomly exchanges parts of two 
candidate solutions in the adaptive neighbourhood. The core idea is to generate a new 
solution through the characteristics of the optimal solution. Wu et al. (2019) solved a 
service selection problem by combining the genetic algorithm and the simulated 
annealing algorithm. The algorithm introduces the temperature parameters of simulated 
annealing into the genetic algorithm, which combines the advantages of the two 
algorithms. 

The algorithm inherits the powerful global search ability and avoids falling into local 
optimisation. Zhang et al. (2010) proposed a composite agent service selection algorithm 
based on simulated annealing. Firstly, the algorithm finds a composite agent service with 
minimal cost, and takes it as the initial candidate solution. Then, the algorithm enters a 
simulated annealing phase and searches for better solutions. Alayed et al. (2019) 
proposed an enhancement of the ant colony algorithm. The crossover operator is applied 
in this algorithm to generate new offspring. Zhu et al. (2021) combined the crossover and 
variation factors in the genetic algorithm into the cuckoo optimisation algorithm to select 
the best service from numerous candidate services to complete the task and improve user 
satisfaction. 



   

 

   

   
 

   

   

 

   

    Using seagull optimisation algorithm to select mobile service in cloud 99    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Mistry et al. (2018) used a hybrid genetic algorithm to solve infrastructure as a 
service (IaaS) problem, in this metaheuristic approach, a preferential heuristic is the 
probabilistic indicator of request’s influence on the fitness. Dynamic solutions are 
generated by updating heuristic values at regular intervals. Jia et al. (2019) proposed 
three hybrid algorithms based on the SOA and heat exchange optimisation to solve the 
problem of feature selection (Jia et al., 2019). Firstly, the roulette algorithm is employed 
to update positions; secondly, the thermal exchange optimisation (TEO) algorithm is 
applied in the SOA algorithm; in the last step, the TEO algorithm’s heat exchange 
formula is employed to improve the seagull attack mode of the SOA algorithm. Jiang  
et al. (2020) applied the opposition-based learning algorithm to the SOA to optimise the 
initial population of seagulls, so the accuracy and computational efficiency are improved. 

4 The proposed ESOA algorithm 

This section provides more details of the proposed approach: the ESOA and fitness 
functions are designed to solve the mobile service selection problem. 

Figure 5 illustrates components of the proposed approach as follows: 

• The cloud and edge environment: this component mainly describes the distribution 
of services on cloud and edge servers. In addition, information for data transmission 
between base stations and users is captured. A user’s moving path model is built. 

• ESOA: this component describes the ESOA algorithm, which combines the SOA and 
the SA. Detailed information on the ESOA is described in Section 4.1. 

• Mobile service selection: the ESOA algorithm is employed to solve the mobile 
service selection problem. Fitness functions are designed to calculate QoS values of 
seagull positions. The service combination with the best response time/cost is 
returned as the solution. 

Figure 5 The proposed service selection approach 
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A mobile user uploads his request to a nearby base station; the request is uploaded to 
servers. Then, the ESOA algorithm is applied to select services. Finally, a solution is 
returned to the mobile user. In this paper, we make the following assumptions: 

• A server is connected with one or more base stations and other servers. A base 
station is connected with an edge server and multiple cloud servers, and has 
overlapping coverage with other base stations. 

• An edge server provides a small number of services, while a cloud server provides 
more services. The data transmission time from a base station to an edge server is 
less than that from the base station to a cloud server. 

• A user submits a request to a base station that covers him/her, and a solution is sent 
back to the user. 

Algorithm 1 Extended seagull optimisation algorithm 

1 Input population: the population of seagull 
2 maxGeneration: the maximum generations 
3 Output Pbs: the optimal solution 
4 procedure 
5 Initialise A with equation (9) 
6 Initialise BL with equation (11) 
7 fc ← 2 
8 u ←1 
9 k ← 1 
10 for iteration ← 1 to maxGeneration do 
11  Choose a position with the maximum fitness value as Pbs 
12  /*Calculate and choose the best seagull according to the fitness function*/ 
13  for i ← 1 to population do 
14   /*Migration behaviour*/ 
15   rd ← Rand(0, 1) 
16   α ← Rand(0, 2π) 
17   /*Attacking behaviour*/ 
18   update h /*According to equation (16)*/ 
19   update Ls(t) /*According to equation (12)*/ 
20   compute x, y, z /*According to equations (13)–(16)*/ 
21   update Psi /*According to equation (17) */ 
22   A new solution Pns is generated by the SA algorithm 
23   choose the better one between Psi and Pns as the new Pbs. 
24  end 
25 end 
26 return Pbs as the solution 
27 end procedure 
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4.1 Extended seagull optimisation algorithm 

The SOA is an evolutionary optimisation algorithm inspired by seagulls’ migration and 
predation behaviours (Dhiman and Kumar, 2019). This algorithm has been widely used in 
various areas to solve optimisation problems (Dhiman et al., 2020). However, according 
to the research of Cao et al. (2019), the SOA has some disadvantages, such as reduced 
diversity, exploration ability and premature convergence. In order to overcome these 
disadvantages, we introduce the SA into the SOA, and name it the ESOA. In  
Algorithm 1, the ESOA algorithm is explained. The performance of the ESOA is tested in 
Section 6. 

Algorithm 1 is the ESOA algorithm, where the SA (Bangert, 2012) is employed. 
Position Ps represents a candidate solution. Specifically, in each iteration, a seagull i 
generates a position Psi by the SOA (line 21), and another position Pns is generated by the 
SA (line 22). Then, the better one between Pns and Psi is stored as the optimal solution Pbs 
(line 23). 

4.2 The fitness function 

The mobile service selection problem in terms of response time/cost is modelled as an 
optimisation problem. In the proposed ESOA, fitness functions are designed to determine 
whether a seagull should contribute to the next generation. The fitness value depends on 
the response time/cost of the candidate solution. The smaller the value, the better the 
solution. 

Supposing there are n tasks, si is selected for task i. Based on equations (1)–(3), the 
total cost of a solution is the sum of selected services’ cost. 

( )total 1

n
ii

C C s
=

=  (19) 

The overall response time Toverall is the total time spent from submitting a request to 
receiving a solution. 

( )overall up comp down1
n

iiT T R s T== + +  (20) 

where Tup is the time for uploading a request, Rcomp is the response time of services 
combination, and Tdown is time for downloading a solution. 

Rcomp is calculated based on the combination structure [equations (4)–(6)] of selected 
services for solving a request. 

For Tup, we consider the following scenarios: if service s1 for the first task is located 
on edge server ei, the nearby base station receiving a user’s request is connected with 
edge server ej. The uploading time Tup includes the time spent from the user to the base 
station Tp2b, the data transferring time from the base station to the edge server Tb2s, and 
the time of transferring data R(ej, ei) from ej to ei. If s1 is located on a cloud server, the 
uploading time Tup is the total time for uploading to the base station Tp2b, and the time of 
transferring data from the base station to the cloud server Tb2s. The uploading time Tup is 
expressed as: 

( )p2b b2s 1
up

p2b b2s 1

, , if
, if
j i i

k

T T R e e s e
T

T T s c
 + + ∈

=  + ∈
 (21) 
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Similarly, for the downloading time Tdown, we consider the following scenarios: If service 
sn for the last task is located on edge server ej, the nearby base station that sends data to 
the user is connected with edge server ei. The downloading time Tdown includes the time 
of transferring data R(ej, ei) from ej to ei, the time spent from the edge server to the base 
station Tb2s, and the time spend from the base station to the user Tb2p. If sn is located on a 
cloud server, the downloading time Tdown is the total time of transferring data from the 
cloud server to the base station Tb2s, and the downloading time Tb2p from the base station 
to the user. The downloading time Tdown is expressed as: 

( ) b2s b2p
down

b2s b2p

, , if
, if

j i n i

n k

R e e T T s e
T

T T s c
 + + ∈

=  + ∈
 (22) 

The time of uploading a request to a base station Tp2b and the time of downloading a 
result from a base station Tb2p are calculated as follows: 

p2b / ( , ),T Task r B g=  (23) 

b2p / ( , ),T Result r B g=  (24) 

where Task  means the data size of all tasks in the request, Result means the data size 
of downloading, and r(B, g) represents achievable data-transfer rate. According to the 
Shannon-Hartley formula (Lazarakis et al., 1994), the bandwidth B and signal-to-noise 
ratio (SNR) determine the achievable data-transfer rate r(B, g), and r(B, g) can be 
calculated by equation (25). 

( )2
2( , ) log 1 /r B g B tp g σ= ∗ + ∗  (25) 

where σ2 is the noise power at the receiver, tp is wireless transmit power of the mobile 
device, g represents the channel power gain, and can be calculated as h0 * d–γ, where h0 is 
the received power, d is the distance between the mobile device and the base station, and 
γ = 2 is the path loss factor (Chen et al., 2016). 

The transmission time Tb2s between a base station and a server depends on the size of 
data to be transferred and the bandwidth Bb2s, which is calculated as follows: 

b2s b2s/T DataSize B=  (26) 

The transmission time R between two servers ei and ej depends on the size of data to be 
transferred and the bandwidth Be2e, which is calculated as follows: 

( ) 2, /i j e eR e e DataSize B=  (27) 

5 Case study 

In this section, we give a simple but meaningful example to show how the ESOA is 
applied to solve a mobile service selection problem and illustrate the necessity and 
significance of our work. 

In this scenario, Sam’s job is to deliver food from a restaurant to a customer. When a 
delivery order is received, Sam needs to do facial recognition and upload a video of his 
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current environment to confirm that he is ready for the order. After that, Sam receives a 
route plan from his position to the restaurant and from the restaurant to the customer. 
Besides, the route plan provides photos of the restaurant. 

As shown in Figure 6, once a delivery order arrives, three tasks are generated and 
executed sequentially, including facial recognition task (Task1), uploading environment 
video task (Task2), and route plan task (Task3). Supposing each task has four candidate 
services, information of candidate services is available (Table 3). Sam’s delivery route 
and the network condition along the way are predetermined. The whole delivery path is 
within the wireless transmission range of the same cloud server. The cloud server and 
edge servers are connected with each other. Candidate services are randomly distributed 
on cloud and edge servers. 

Figure 6 The delivery route of Sam (see online version for colours) 

 

Table 2 Tasks and candidate services 

Task Candidate service 
Face recognition task (Task1) rec1 rec2 rec3 rec4 
Uploading environment video task (Task2) video1 video2 video5 video6 
Route plan task (Task3) route1 route3 route7 route9 

Table 3 QoS values of candidate services 

Service Response Cost Service Response Cost Service Response Cost 
rec1 156 ms 24 video1 382 ms 168 route1 548 ms 268 
rec2 180 ms 60 video2 351 ms 188 route3 506 ms 298 
rec3 102 ms 51 video5 310 ms 122 route7 518 ms 208 
rec4 153 ms 47 video6 402 ms 176 route9 580 ms 231 
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Table 2 shows tasks and their candidate services. Table 3 shows QoS values of services. 
Table 4 shows distribution of services on servers. For example, the first row means that 
services rec1, video5 and route3 are deployed on edge server e1. 

Sam needs to perform facial recognition and upload a video of his environment, Task1 
represents facial recognition, Task2 contains a video of Sam’s environment, and Task3 
represents route plan. When the tasks are completed, Sam receives a route to the 
restaurant, from the restaurant to the customer, and photos of the restaurant and the food, 
the size of` result is about 10 Mb. The speed of Sam is 15 m/s. Supposing when Sam 
receives the order, the distance between Sam and base station 1 (resp. base station 2) is 
100 m (resp. 200 m), and the angle between Sam and base station 1 (resp. base station 2) 
is 135° (resp. 30°). We assume that the angle between Sam’s moving direction and the 
base station remains unchanged; the signal range of a base station is 150 m. Values of 
parameters are listed in Table 5. 
Table 4 Services deployment on servers 

Server Services 
e1 rec1 video5 route3   
e2 rec3 rec4 video1 route7  
c rec2 video2 video6 route1 route9 

Table 5 Parameters of the example 

Parameter Value Parameter Value 
Task1 9 Mb Task3 1 Mb 
Task2 40 Mb Result 10 Mb 
B 256 MHz tp 500 MW 
h0 –30 dB σ2 –60 dBm/Hz 
Be2c 2.5 Gbps Bb2e 2 Gbps 
Be2e 3 Gbps Bb2c 1.5 Gbps 
vs 15 m/s λ 2 
d1 100 m d2 200 m 
θ1 135° θ2 30° 

5.1 Time of uploading 

The request of Sam is received by the nearest base station. According to equation (23) 
and equation (25), time of uploading the request to base station 1 is: 

( )
2

2
2

/ ( , )

/ log 1 /

5,486

p bT Task r B g

Task B tp g σ

ms

=

= ∗ + ∗

=


  

According to equation (26), the time of uploading the request to e1 is: 
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12 2/
25

b e b eT DataSize B
ms

=
=

 

The initial seagull position is randomly selected as Ps(t) = {rec1, video1, route1}, the 
optimal position of the initialisation population is Pbs is {rec1, video2, route3}, according 
to equation (4) and equation (27), the response time of Ps(t) is: 

( ) ( ) ( ) ( ) ( )1 1 2 1 2 1, ,
156 382 1/ 2.5 548 ~ 1,100.1

compR R rec R e e R video R e c R route
ms

= + + + +
= + 41/ 3+ + + ≈

 

Supposing the maximum number of iterations Maxiteration = 100, fc = 2, according to 
equation (9). 

( )( )/ 1.98c c iterationA f t f Max= − × =  

According to equation (8), we get the new position Pns(t): 

{ }2 2 2( ) ( ) , ,ns sP t A P t rec video route= × =  

Assuming rd = 0.1275, according to equation (11), BL is calculated as follows: 
22 1BL A rd= × × =  

According to equation (10) and equation (12), we get Ms(t) and Ls(t): 

( ) { }0 1 2( ) ( ) ( ) , ,s bs sM t BL P t P t rec video route= × − =  

{ }2 3 4( ) ( ) ( ) , ,s ns sL t P t M t rec video route= + =  

Supposing randomly select ,
6
π=α  u = 1, k = 1, according to equation (13) to  

equation (16), x, y, z, h are calculated as follows: 

6
π

kh u e e= × =α  

6
3cos( )

2

π

x h e= × =α  

6
1sin( )
2

π

y h e= × =α  

6
6

ππz h e= × =α  

Finally, according to equation (17), the updated position of SOA is obtained: 

{ }3 5 7( ) ( ) ( ) , ,s s bsP t L t x y z P t rec video route= × × × + =  

As rec3 is located on e2, according to equation (22), the upload time is: 

( )2 2 1 2, 5.527.66up p b b sT T T R e e ms= + + =  
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The simulated annealing algorithm is applied in the ESOA, assuming initially Tsa = 10 
and the temperature drop rate dT = 0.01, Tmin = 0.5, rmax = 1. Supposing random numbers 
which modify services for three tasks are 0.56, 0.42, 0.62, according to equation (18). 

( ) { }max 4 5 9( ) ( ) 2 , ,s s saS t P t f r T rec video route= + × − × =  

After several iterations, when the temperature cools, Tsa = 1, the solution Ss(t) = {rec4, 
video5, route9} is returned. 

5.2 Time of service combination 

According to equation (4) and equation (27), time spent on service combination of Ps(t) 
is: 

( ) ( ) ( ) ( ) ( ) ( )
3

3

2

3 2 1 5 1 2 7( ) , ,

102 41/ 3 310 0.33 518 ~ 944

Task

s task
Task

R P t R rec R e e R video R e e R route

ms

= + + + +

= + + + + ≈

  

Time spent on service combination of Ss(t) is: 

( ) ( ) ( ) ( ) ( ) ( )
3

3

2

4 2 1 5 1 9( ) , , 1,057
Task

s task
Task

R S t R rec e e R video R e c R route ms= + + + + =  

5.3 Time of downloading 

When the solution is ready, according to equation (7), the distance between Sam and base 
station 1 (resp. base station 2) is 182.46 m (resp. 125.43 m), therefore, base station 2 is 
chosen as it is nearer to Sam, the solution is sent from base station 2 to Sam. For Ps(t), the 
last service is located on edge server 2, the result is sent to base station 2. 

2 2/
5

b s b eT DataSize B
ms

=
=

 

Time for downloading from base station 2 is 

( )
2

2
2

/ ( , )

/ log 1 /
1,721

b pT Result r B g

Result B tp g σ
ms

=

= ∗ + ∗
=

 

For Ss(t), the last service is located on the cloud server, and the result is sent to base 
station 2. 

2 2/
6.67

b s b cT DataSize B
ms

=
≈

 

The time for downloading from base station 2 is 
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( )
2

2
2

/ ( , )

/ log 1 /
1,721

b pT Result r B g

Result B tp g σ
ms

=

= ∗ + ∗
=

 

The overall response time of Ps(t) is 

( )2 2 1 2 2 2,
8,197.67

p b b s comp b s b pT T T R e e R T T
ms

= + + + + +
=

 

The overall response time of Ss(t) is 

( )2 2 1 2 2 2,
8,312.33

p b b s comp b s b pT T T R e e R T T
ms

= + + + + +
=

 

In this example, the optimal position is {rec3, video5, route7}, and the overall response 
time is 8,197.67 ms. 

6 Experiment 

This section describes experimental setup and performs experiments to investigate the 
performance of the ESOA against other algorithms. 

6.1 Experiment setup 

Algorithms are implemented in Java and run on a 1.9 GHz Intel Core i7 processor with 
Windows 10 64-bit operating system. We compare the ESOA with other evolutionary 
algorithms; the referencing algorithms are presented in Table 6. 
Table 6 Algorithms used in experiments 

Algorithm Description 
Seagull optimisation algorithm (SOA) 
(Dhiman and Kumar, 2019) 

Imitates seagulls’ migration and hunting 
behaviours 

Genetic algorithm (GA) (Whitley, 1994) Genetic principles: crossover and mutation 
Simulated annealing (SA) (Bangert, 2012) Temperature parameters of metal annealing 
Ant colony optimisation (ACO) (Dorigo  
et al., 2006) 

Imitates foraging behaviours of ants 

Differential evolution(DE) (Price and 
Price, 1997) 

Mutation generated by differences of parents 

Particle swarm optimisation (PSO) (Price 
and Storn, 1997) 

Behaviours of bird flocking or fish schooling 

We obtain geographic information of base stations from the Australian Communication 
and Media Authority dataset (Lai et al., 2018). We assume that several base stations are 
equipped with an edge server. Services are distributed randomly on cloud and edge 
servers. We set the loss parameters in the process of information transmission: the 
response time between two edge servers varies from 1 ms to 10 ms, the response time 
between an edge server and cloud server varies from 10 ms to 30 ms, and the response 
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time between two cloud servers varies from 30 ms to 50 ms. Default values of parameters 
involved in the experiment are shown in Table 7. 
Table 7 Parameter setting 

Parameter Value Parameter Value 
Uploading request 50 Mb B 256 MHz 
Downloading result 10 Mb vmin 1.1 m/s 
dmin 10 m vmax 1.5 m/s 
dmax 200 m h0 –30 dB 
tp 500 mW σ2 –60 dBm/Hz 
Bb2s 1 Gbps   

Four datasets are generated with different number of tasks, each task has 100 candidate 
services (Table 8). 
Table 8 Datasets 

 Dataset1 Dataset2 Dataset3 Dataset4 
Tasks 100 110 120 130 
Candidate services for each task 100 100 100 100 

Table 9 Experiment Results with the minimal overall response time (ms) 

 Dataset1 Dataset2 Dataset3 Dataset4 
ESOA Response time 3,005.3 3,415.4 3,860.9 4,291.9 

At iteration 8 8 7 9 
SOA (Dhiman and 
Kumar, 2019) 

Response time 3,025.9 3,435.0 3,881.3 4,319.6 
At iteration 6 6 6 6 

GA (Whitley, 1994) Response time 15,176.5 16,723.6 22,546.8 24,718.1 
At iteration 96 94 99 99 

SA (Bangert, 2012) Response time 6,658.5 7,838.6 8,654.0 10,632.5 
At iteration 68 33 13 11 

ACO (Dorigo et al., 
2006) 

Response time 3,581.8 3,862.1 4,319.6 4,535.2 
At iteration 4 7 4 10 

DE (Price and Storn, 
1997) 

Response time 6,064.2 6,957.1 8,153.3 8,809.0 
At iteration 83 89 96 93 

PSO (Eberhart and Shi, 
2001) 

Response time 5,107.4 6,733.0 7,151.4 8,875.6 
At iteration 52 59 81 64 

6.2 Analysis of results 

We compare the performance of the ESOA against other evolutionary algorithms 
referenced in this paper. In the experiment, we set the maximum generations to 100; 
services are randomly distributed on edge/cloud servers. Table 9 shows the performance 
of the algorithms in terms of the overall response time. ‘At iteration’ means the best 
result is generated at which iteration. The overall response time is a negative criterion, the 



   

 

   

   
 

   

   

 

   

    Using seagull optimisation algorithm to select mobile service in cloud 109    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

smaller the value, the better the solution. As we can see from this table, the performance 
of the ESOA is better than other algorithms. The convergence rate of the SOA, the ACO 
and the ESOA is much faster than the GA, the SA, the DE and the PSO algorithms. 

Figure 7 Response time and iterations (see online version for colours) 

 

Table 10 Experiment results with the minimal cost (cents) 

 Dataset1 Dataset2 Dataset3 Dataset4 
ESOA Cost 2,047 2,249 2,451 2,646 

At iteration 6 6 6 7 
SOA (Dhiman and 
Kumar, 2019) 

Cost 2,047 2,249 2,451 2,646 
At iteration 7 7 8 9 

GA (Whitley, 1994) Cost 5,046 5,363 6,041 7,006 
At iteration 94 91 96 88 

SA (Bangert, 2012) Cost 3,638 4,003 4,469 4,752 
At iteration 58 20 81 40 

ACO (Dorigo et al., 
2006) 

Cost 4,500 4,971 5,314 6,438 
At iteration 1 1 1 1 
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Table 10 Experiment results with the minimal cost (cents) (continued) 

 Dataset1 Dataset2 Dataset3 Dataset4 
DE (Price and Storn, 
1997) 

Cost 3,237 3,583 3,983 4,337 
At iteration 92 89 82 90 

PSO (Eberhart and 
Shi, 2001) 

Cost 3,153 3,344 3,687 4,050 
At iteration 56 71 60 61 

Figure 8 Cost and iterations (see online version for colours) 

 

We also investigate the performance in terms of the cost. From Table 10, the ESOA and 
the SOA can find a solution with less cost. Besides, the ESOA can find a solution with 
the same price as the SOA, but in fewer iterations. Although the ACO algorithm can find 
a solution with only one generation, the cost is more than twice than that of the ESOA 
and the SOA algorithms. 

Figure 7 shows the relationship between the response time and iterations. It can be 
seen that the ESOA can find a solution with less response time. 

Figure 8 shows the relationship between iterations and cost. As can be seen from this 
figure, the ESOA and the SOA can find solutions with less cost than other algorithms in 
fewer iterations. Time spent on searching of the EOSA algorithm is less than that of the 
SOA. 
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Figure 9 Response time and iterations (see online version for colours) 

 

Figure 10 Cost and iterations (see online version for colours) 
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As the ESOA and the SOA converge much faster than other selected methods, we enlarge 
the scales of response time and cost so that differences between the ESOA and the SOA 
can be see clearer. When the goal is to find a solution with cheapest price, although the 
ESOA and the SOA return solutions with same price, the ESOA converges faster than the 
SOA algorithm. Figure 9 and Figure 10 show more detailed information of the ESOA and 
the SOA in terms of response time and cost respectively. 

The above-mentioned experimental results show that ESOA can efficiently and 
effectively find a solution, and outperforms other five algorithms. 

7 Conclusions and future work 

We propose to combine seagull optimisation and simulated annealing algorithm to solve 
the mobile service selection problem in the cloud and edge computing environment. 
Simulated annealing algorithm is applied to avoid falling into local maximum and 
premature convergence problem. Additionally, the random waypoint mobility model is 
applied to simulate the mobile path of the user. Finally, experimental results show that 
the proposed ESOA algorithm outperforms six other evolutionary algorithms in terms of 
QoS values and convergence rate. In our next work, we will put our proposed approach 
into real life and do experiments with real services. Taking energy consumption into 
consideration would be an interesting extension. We may consider energy consumption 
of mobile devices and base stations. The energy consumption of a base station includes 
data transmission and data processing energy (Xu et al., 2022). The former one is related 
to the amount of data to be transferred, and the latter one is related to the rate of 
accessing its processing unit and peak power. The energy consumed by processing the 
request in a base station consists of the energy consumption of its processing unit, idle 
power, and leakage power. 
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