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Abstract: Thermal effects in machine tools are responsible for a significant 
amount of produced scrap. Therefore, various approaches have been 
investigated and applied on machine tools to reduce thermal changes during 
manufacturing. Most of them target the machine tool and its operational state 
and can therefore just react to the thermal changes caused by the process. This 
paper shows how thermal changes can be reduced already in the manufacturing 
planning stage. With the use of a virtual numerical control (VNC) and loss 
models, power losses can be estimated, enabling the concatenation of processes 
to achieve minimal jumps in power loss from one process to another. 
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1 Introduction 

Over the last decades, energy efficiency of machine tools has become increasingly 
important due to environmental protection efforts and economic aspects. Out of this 
perspective, the conflict between productivity, accuracy and energy efficiency of machine 
tools grew in importance (Brecher, 2016; Großmann and Ott, 2015). In today’s machine 
tools, thermal errors are one of the main reasons for the production of scrap (Mayr et al., 
2012). 

Thermal errors occur because of energy that is converted in an undesired manner, like 
the heat caused by the friction in a bearing. This heat spreads within assemblies and over  
joints to further assemblies, locally changing temperatures in the machine tool.  
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Since most materials have a significant thermal expansion coefficient, the heat causes a 
deformation, that can lead to a displacement and rotation of the tool centre point (TCP) 
directly affecting the machined surface. 

To reduce thermal problems, various tempering approaches are investigated, which 
are described in Section 2. Most of them address the machine tool itself or its operational 
state. It is not considered that the manufacturing task (NC-program) contains essential 
information about occurring losses, which can be used to reduce thermal changes already 
at the manufacturing planning stage. This paper demonstrates how a loss forecast for 
complete manufacturing tasks can be achieved and used for a concatenation of multiple 
processes to reduce thermal changes without touching the processes itself. 

The paper will first give an insight to the state-of-the-art in Section 2, followed by the 
description of the general approach in Section 3. Section 4 introduces a demonstrator for 
the practical application and an analysis of the approach. The loss forecast for complete 
manufacturing tasks will be discussed in section 5 and applied to three exemplary 
manufacturing tasks. Section 6 characterises how a concatenation of the processes from 
Section 5 can be applied to influence the thermal change in the machine tool during 
manufacturing. Sections 7 and 8 describe the experimental execution at the machine tool 
and corresponding temperature measurement, analysis and validation of the calculated 
concatenations. Finally, in Sections 9 and 10 the advantages and disadvantages of the 
approach are discussed and potential follow up research is stated. 

2 State-of-the-art 

Ramesh et al. (2000) distinguished three research directions in the field of error 
compensation in machine tools, which also allows a classification of current research 
work. These directions are: 

• heat flow control into the machine tool 

• constructive optimisation of machine tools to reduce the sensitivity to heat flow 

• control-based compensation of thermo-elastic caused displacements. 

A common and widely used strategy in the field of heat flow control is the integration of 
fluid-based cooling systems. Due to different machine tools with different heat sources, 
machine dimensions and drive powers, their design is highly machine-specific and 
mainly driven by the machine tool manufacturers. Kirchner et al. (2014) analysed that up 
to 30% of the energy consumption of cooling systems can be reduced by turning off the 
fluid pump if it operates in idle mode. Mori et al. (2019) applied a shutdown strategy to a 
spindle cooling system, resulting in energy savings between 15% and 75%, depending on 
the spindle operating state. Especially at low rotational speeds this leads to major energy 
savings, since the heat caused by friction within the spindle is neglectable compared to 
the heat generated by the fluid pump. The shutdown of the pump therefore reduces the 
energy consumption and additionally the heat transferred to the spindle, making the 
machine tool more efficient and accurate. Brecher et al. (2012) showed that the energy 
consumption of fluid-based cooling systems can be reduced by 30% to 60% if efficient 
energy consumers are used, like a digital scroll compressor or an electronically 
communicated fan. 
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Constructive optimisations are primarily achieved by the efficient application of 
thermally resistant materials in the machine tool. Möhring et al. (2015) gave a broad 
overview of developments in relevant materials for machine tools. The thermal relevant 
properties are conductivity, heat capacity and expansion coefficients. Metals have a 
relatively high expansion coefficient, leading to thermo-elastic deformations and drifts at 
the TCP. In machine beds, for example, stone and ceramic composites are widely used 
(Möhring et al., 2015) because they achieve high damping, low conductivity and low 
expansion, providing a solid basis for machine tools. Recent research in the field of 
constructive optimisation was done by Voigt et al. (2019) where the application of phase 
changing materials was analysed to reduce the thermal change in the nut of a ball screw 
drive. They showed that the temperature change within the nut can be damped by 
coupling phase changing materials to it. The heat capacity of the attached material 
increases significantly during phase change. Therefore, with reaching the phase change 
temperature, the heat capacity of the whole assembly increases. This solution can reduce 
thermal changes in assemblies, such as the machine table, and can be a valuable assistant 
tool for fluid-based cooling systems that struggle with the dissipation of dynamic heat. 

Especially in the field of control-based compensation, intense research was done, 
reviewed in Mayr et al. (2012). Most of the strategies accept the thermo-elastic caused 
drift of the TCP and attempt to estimate the drift based on models with and without the 
integration of real time sensor signals. An accurate displacement estimation allows a 
transfer of the offset to the machine tool control for compensation. This solution is 
ecologically smart, since it can save the energy used for cooling and instead correct the 
error together with the machine tool control. With such motivation, Thiem et al. (2017) 
developed a correction strategy based on a structure model. The model represents the 
physical processes of heat generation, transition and corresponding deformation. The 
solution takes load-relevant data from the machine tool control and calculates loss 
powers, temperatures, deformations and transforms the displacements on the machine 
axes for correction with the machine tool control. Approaches like this require high effort 
in parameter tuning to make the underlying physical models of the simulation fit to 
reality (Schroeder et al., 2019). This requires multiple measures that are used for the 
adjustment of the model parameters. Mayr et al. (2012) described in detail the different 
measuring strategies for the characterisation of thermal errors in machine tools. The 
named strategies are mainly based on tactile measures or infrared cameras. A new 
approach is to use multiple video cameras to recalculate the global position of moving 
objects from the local position in the different pictures of the cameras (Riedel et al., 
2016). This allows the deformation measurement of moving assemblies in a machine 
tool. The accuracy of this solution mainly depends on the resolution and the number of 
cameras, similar to the accuracy increase of global positioning systems (GPS) by 
receiving more satellite signals. Riedel et al. state an accuracy of 1/50 pixel, which is a 
few micrometres (1 µm/m) on the measured object with the specified setup. 

In summary, there are various strategies to determine and reduce thermal errors, each 
with their own advantages and disadvantages (Ihlenfeldt et al., 2018). Despite the 
heterogeneity of the solutions, they all address the machine tool and its manufacturing 
stage. The impact of the manufacturing task is often out of the solutions scope. 
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3 The approach 

The manufacturing task (defined in the part program) has a major impact on the 
temperatures in the machine tool. It defines how the machine should move at a specific 
time. Different researchers pointed out that the machine internal losses at a specific loss 
source are predictable if the operation state is known (Jungnickel, 2010; Palmgren, 1957; 
Winkler and Werner, 2015). Typical loss sources are motors, bearings and guiding’s 
(Ramesh et al., 2000). 

With the use of a virtual numerical control (VNC), the task specific machine motions 
can be predicted, allowing a determination of the operational state at the loss source, e.g., 
the rotational speed of a bearing. With the VNC, loss models can be applied to estimate 
the time-dependant power losses in the machine tool, as illustrated in Figure 1. 

Figure 1 Loss forecast procedure for complete part programs (see online version for colours) 

 

This procedure can be applied on multiple part programs (manufacturing tasks) to obtain 
the estimated losses that should occur during manufacturing. The estimated losses can be 
used for a process concatenation to achieve minimal jumps at the transition from one task 
to another without affecting the single processes. This should reduce thermal changes 
since changes in power dissipation are reduced, which are the root cause for thermal 
changes. 

This approach is investigated and applied on a demonstrator machine to validate and 
quantify the resulting reduction of thermal changes in the machine tool. 

4 Demonstrator machine 

The approach was applied and investigated at a hexapod with six parallel linear axes, 
each mounted on the fixed base and the moved platform, as shown in Figure 2. This 
machine is used as a demonstrator for thermo-elastic problems and solutions within the 
collaborative research centre for thermo-elastic machine tools (CRC/TR96). It is 
equipped with four temperature sensors per axis, which are placed at the motor housing, 
the bearing seat, the nut seat of the ball screw drive and the screw housing. Each of the 
six axes has a movement range of 0.5 m and a maximum axis speed of 1 m/s. The 
machine is equipped with a Beckhoff control preceded by a HexaBOF. The HexaBOF 
performs the offline transformation from Cartesian movement to the six axes, work area 
monitoring, model-based corrections and generates a part program on axes level that is 
executed by the Beckhoff CNC to control the machine. This control setup is unique and 
was created to allow an easy integration and adaption of transformation and correction 
models (Kauschinger, 2006). 
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Figure 2 Demonstrator: Hexapod (see online version for colours) 

 

The major advantages of the chosen machine tool are the included temperature sensors 
and the lightweight setup. Due to the lightweight setup, there are only small heat 
capacities and therefore fast thermal responses compared to standard machine tools. This 
behaviour supports the visualisation of the correlation between occurring power losses 
and temperatures without the need for a thermal simulation. 

5 Loss forecast 

5.1 Machine motion determination 
The determination of the task dependent machine motion is a challenging task. First, the 
syntax of the part program must be considered to transform the program code into 
meaningful machine commands, like rapid linear movement. Second the commands have 
to be processed similar to the normal machine tool control to obtain the time dependant 
discrete positions the machine would move to. A reconstruction of these processes is very 
time consuming and often not accurate enough, because of complex and hidden processes 
that may vary between control developers (Suh et al., 2008). Therefore, it is advisable to 
use a VNC of the corresponding control type to obtain reliable positions with minimal 
effort. 
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A VNC mimics the behaviour of the real control and is in general provided by the 
control developer. Such VNC’s are mostly used by machine manufacturers during 
machine development e.g., for a virtual commissioning of the machine. Thus, they are 
mostly provided as a library that can be integrated in other simulations, requiring a basic 
understanding of the general workflow and the functionalities of a CNC. 

The VNC for the demonstrator performs three major tasks. At first, a self-written 
compiler is executed that takes the part program in standard G-code and transforms it into 
the syntax required by the HexaBOF. Then, the compiled file is passed to the HexaBOF 
that outputs the corresponding g-code on axis level. Finally, the developed Beckhoff-
VNC (based on a VNC library provided by Beckhoff) is executed which processes the 
axis g-code and outputs a csv-file with the single time dependent positions of each axis 
for further processing. More details to the control design are given in (Wenkler et al., 
2021). 

The solution was applied in a virtual machine on multiple part programs from 80 k to 
150 k blocks per file, representing processes from 10min up to 2h. Overall, the simulation 
time was approximately 50 times faster than the corresponding process time (at the real 
machine tool), showing that such VNC’s could be efficiently used during planning stage. 

5.2 Loss model application 

Loss models describe the occurring loss at a given loss source and are specific for each 
assembly, like bearing, motor and guiding. The most common loss models are 
summarised in Jungnickel (2010). Further loss models exist that focus on other 
assemblies or vary in the degree of detail (Jurkschat et al., 2018; Palmgren, 1957; 
Winkler and Werner, 2015). 

For the demonstrator machine three different loss models are used: bearing, ball 
screw drive and motor loss model. The models were analysed and applied within the 
CRC/TR96 for thermal simulations (Kauschinger and Schroeder, 2014, 2016; Schroeder 
et al., 2019; Thiem et al., 2017) and will now shortly be introduced. 

5.2.1 Bearing loss model 
The bearing loss model is going back to the research of Palmgren (1957). It distinguishes 
into three different reasons for losses: a hydrodynamic Mhydro, a load dependent Mload and 
a sealing loss Mseal which add up to the total bearing loss. 

 bearing hydro load sealM M M M= + +  (1) 

The hydrodynamic losses Mhydro are speed dependent because of variations within the 
lubrication film, according to the speed. The parameters are: the bearing constant f0, the 
average bearing diameter dm, the kinematic viscosity of the grease ν and the angular 
speed ω. 

( )23 3
04501  hydro mM f d ν ω= ⋅ ⋅ ⋅ ⋅  (2) 

The load dependant loss Mload is defined by the bearing load which is the sum of process 
and preload force. The bearing is designed out of two angular contact ball bearings 
oriented in opposite direction. Therefore, a process force would load one ring and unload 
the other ring for the same amount, allowing to neglect the process forces without 
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increasing the model uncertainty (Kauschinger and Schroeder, 2016). The parameters are: 
the bearing constant f1, the axial force Fa, the radial force Fr and the average bearing 
diameter dm. 

( )1 1.4 0.1load a r mM f F F d= ⋅ ⋅ − ⋅ ⋅  (3) 

The sealing loss Mseal is caused by the build in sealing rings which keep the grease in the 
bearing and was mainly analysed by (SKF). Because the sealing ring is in contact with 
the inner and outer ring of the bearing, there is a relative movement causing frictional 
losses between inner ring and sealing or outer ring and sealing, depending on the bearing 
construction. The parameters are: the sealing ring coefficients KS1 and KS2, the sealing 
ring diameter at which the relative movement occurs ds and the sealing ring exponent β. 

( )1 2seal S s SM K d Kβ= ⋅ +  (4) 

5.2.2 Ball screw drive loss model 
The ball screw drive creates frictional losses similar to the bearing loss model and is the 
sum of a frictional loss of the rolling balls Mroll and a sealing loss Mseal. 

bsd roll sealM M M= +  (5) 

The frictional loss caused by the rolling balls Mroll is used from Jungnickel and based on 
empirical research (Jungnickel, 2010). The parameters are: the spindle diameter dspindle, 
the nut diameter dnut, the number of groves i where the rolling elements are in contact, the 
preload force Fv and the dynamic load capacity C. 

5 1.44 1.334.52 10 * v
roll spindle nut

F
M d d i

C
= ⋅ ⋅ ⋅ ⋅  (6) 

Equation (4) can be used for the sealing loss Mseal, since the effect is the same for the ball 
screw drive and the bearing loss model. 

5.2.3 Motor loss model 
The used motor loss model is based on the idea that the motors effective moment hast to 
be the sum of the frictional moments Mfriction, acceleration moments Macceleration and 
moments caused by process forces. Because of the missing main spindle at the 
demonstrator machine, process forces do not occur, reducing the problem to: 

( )1
motor friction accelerationM M Mη

η
−= ⋅ +  (7) 

The transfer from the effective to the loss moment is taken into account by the factor  
(1 – η)/η, where η is the motor efficiency. The frictional losses Mfriction are the sum of the 
loss moments caused by the bearing and the ball screw drive according to equations (1) 
and (5). 

friction bearing bsdM M M= +  (8) 
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The acceleration moment depends on the speed change of the axis and is independent 
from the movement direction. The parameters are: the moment of inertia J, the angular 
speed ω and the time change dt. 

accelerationM J
dt
ω

= ⋅  (9) 

5.3 Application of the loss forecast on complete part programs 

Within Section 5.1 is explained how to forecast axis movements of a machine during the 
manufacturing of a specific part program by using a VNC. This information allows the 
recalculation of the operational state (e.g., rotational speed ω) at different loss sources, 
which is required for the loss model application. The corresponding power losses can be 
calculated by *loss lossP M ω= . This procedure was applied on three different 
manufacturing tasks, shown in Figure 3 and briefly described in Table 1. 

Figure 3 Demonstration manufacturing tasks (see online version for colours) 

1
  

2
 

3

 

Table 1 Characterisation of the manufacturing tasks 

Part Process time in h:m:s G-code blocks Part description 
1 01:35:20 38813 Seat for a ball joint 
2 00:58:22 26011 Guide element as used in the hand 

baggage compartment of airplanes 
3 00:28:44 16058 Steal case for a Raspberry Pi 3b and 

controller plates 

A loss prediction for one of the three tasks leads to 18 power loss series representing the 
three losses at each of the six axes. To obtain understandable graphs the focus in this 
paper was put on the bearing loss of the first axis. Figure 4 shows the calculated power 
losses at the bearing of the first axis for the three different manufacturing tasks smoothed 
over 3 min with a moving average. 
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Figure 4 Forecasted power losses (see online version for colours) 

 

6 Process concatenation 

The predicted losses represent the origin for thermal changes in the machine tool. 
Assuming a constant power loss, the machine heats up until the emission to the 
environment is equal to the introduced heat by the power loss, and then remain its 
temperature. The major reason for thermal change is therefore the change in power loss. 
With a reduction of the changes in power loss, thermal changes are expected to reduce 
also. 

The process internal changes in power loss cannot be affected, since they depend on 
the process steps that are necessary to manufacture the part. An editing would require 
knowledge about the manufacturing task and alternative production approaches, which is 
a complex multi criteria problem. A simpler approach is the concatenation of multiple 
independent processes to reduce the change in loss power in between. 

Hence, the goal is to concatenate the processes in a sequence with minimal changes in 
power loss at the transition from one process to the succeeding one. Therefore, a heuristic 
approach was developed, which is summarised by Algorithm 1. 

Algorithm 1 Heuristic for process concatenation 

for each process in available processes: 
   Initialize chain that only contains this process. 
   while required chain length is not reached: 
      for each process not in chain: 
         calculate and save jump in loss power if process would trail the chain 
         calculate and save jump in loss power if process would lead the chain 
      if (min. leading jump) < (min. trailing jump): 
         push process with min. leading jump at start of chain 
      else: 
         push process with min. trailing jump at end of chain 
   store generated chain 
return chain with minimal sum of jumps  
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The heuristic describes how a concatenation with minimum jumps can be achieved and 
with minor adjustments it can also be used to find a concatenation with maximum jumps. 
Since a heuristic does not necessarily provide an optimal solution, an exact optimisation 
approach based on a linear assignment model was developed to evaluate the quality of the 
heuristic. 

Tests with synthetically generated data proved that the heuristic finds a concatenation 
comparable to the optimum. The test targets the concatenation of 8 processes to be 
formed from a pool of 8 to 64 randomly generated processes. The heuristic and optimal 
solutions (determined by solving a corresponding integer linear program) are compared 
based on the sum of the jumps in the concatenation. Focussing on this criterion, the 
heuristic proved to deliver in average 8.4% (max. 10%) higher values than the optimal 
solution. Having in mind the exponentially growing computing effort for the optimal 
solution, this result justifies the usage of the heuristic. 

Therefore, the heuristic was applied on the forecasted power losses of the three tasks 
to find concatenations with min./max. jumps, which are used for comparison and further 
investigations. The determined concatenation with minimum jumps is shown in Figure 5 
and statistics are summarised in Table 2, for the concatenation with maximum jumps it is 
Figure 6 and Table 3. 

Figure 5 Concatenation with minimum jumps (see online version for colours) 

 

Figure 6 Concatenation with maximum jumps (see online version for colours) 

 

Table 2 Statistics for concatenation with minimum jumps 

Position in chain Process index Jump to next process in W 
0 0 0.443 
1 2 0.148 
2 1 0.919 

mean jump: 0.504 
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Table 3 Statistics for concatenation with maximum jumps 

Position in chain Process index Jump to next process in W 
0 2 0.679 
1 0 3.817 
2 1 2.810 

mean jump: 2.436 

7 Experimental results 

To analyse the impact of the process concatenation on the bearing temperature, both 
determined process sequences were executed and the corresponding temperatures in the 
machine tool were recorded. Due to the small changes in power loss (about 0 W to 5 W), 
side effects must be avoided. Preliminary measures showed two major problems: 

One problem are changes in environmental temperature. To avoid these, the tests 
were performed at the weekend, when the hall heating is turned off to save energy. 

The second major side effect is excessive heating and cooling, which mainly occurs at 
the start, break and end of the manufacturing. For example, a cold machine is heating up 
strongly, dominating the effect caused by the process dynamics. Therefore, the tasks were 
repeated continuously over the whole weekend. This allows to skip the first process 
executions, where the machine is heating up and additionally provides a broad data basis 
to compare both determined process sequences. 

In summary, two series of measurement were performed, which led to 20 measures 
per concatenation ( ≈  60 h) in steady state with very slow changes in the environmental 
temperature ( 0.03 /  env K hϑ∆ ≈ − ). One characteristic measure for each concatenation is 
shown in Figures 7 and 8. 

Figure 7 Measured temperature course while executing the minimum jump concatenation  
(see online version for colours) 

 

Figure 8 Measured temperature course while executing the maximum jump concatenation  
(see online version for colours) 
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8 Time series analysis 

The measured temperature courses show a clear difference in the thermal behaviour. The 
temperature course from the minimum jump concatenation in Figure 7 is in general flat, 
except in the area from 1.5 h to 2.5 h, where a big temperature peak occurred. Compared 
to this, the temperature course from the maximum jump concatenation has a continuous 
drop with two smaller temperature peaks at approximately 0.3 h and 2 h. Now the 
question arises how the different concatenations influenced the dynamics of the whole 
course. 

Preliminary investigations have focussed on gradient values, histograms of occurred 
temperatures and temperature variances. To suppress small temperature fluctuations at 
neighbouring measurement points, the temperature course was smoothed by a moving 
average over 3 min. However, information from the temperature gradients gave no 
evidence of thermal stability in specific areas within the course. Histograms turned out to 
be equally unsuitable since the time reference of the appearance is lost during assignment 
to the discrete containers. A consideration of variances cannot be rested on the whole 
series because a single peak can be evaluated similarly to a continuous drift. Therefore, a 
segment-wise analysis based on temperature variances is required. Immediately questions 
arise as to the location and the length of these segments has to be determined. One 
possible answer will be given by the concept of segmenting the series, which will be 
presented in the following. 

The key idea is to construct segments in which the temperature fluctuations remain in 
a given domain. As long as the temperature points remain in the given domain, the point 
is assigned to the current segment. If a point leaves the domain, the actual segment is 
closed, and the next segment is initiated, centred at the corresponding temperature value 
that did not fit into the last segment. This will be repeated until all points in the course are 
assigned to segments. Since the processes are in continuous repetition, sections can flow 
over the course edges, so that a segment may run from the end to the start of the course.  
It is important to mention that the start point of the segmentation strongly influences the 
whole segmentation process. Therefore, each point was considered as potential starting 
point of a segment and the corresponding segment lengths were calculated. The start 
point for the segmentation was then chosen according to the global longest segment, 
repeating the segmentation procedure starting from the determined point. This procedure 
is summarised in Algorithm 2. 

Algorithm 2 Segmentation procedure 

define segment tolerance 
 
# find biggest possible global segment 
set biggest segment index to 0 
set biggest segment length to 1 
for each point in course: 
   initiate segment 
   set segment max. to point temperature + tolerance 
   set segment min. to point temperature – tolerance 
   set segment length to 1 
   while next point is within segment borders: 
      increase segment length by 1 
   if segment length > biggest segment length: 
      set biggest segment index to current point index 
 

 
 
# segmentation starting with global biggest segment 
for each point in course starting at biggest segment index: 
   if point is within current segments domain: 
      add point to segment 
   else: 
      close previews segment and open new one 
      set segment centre to point temperature 
      set segment max. to point temperature + tolerance 
      set segment min. to point temperature – tolerance 
      set biggest segment length to segment length 
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Figures 9 and 10 show the result of the segmentation process for both courses with a 
segmentation width of 0.22°C. A green segment indicates a flow over the course edges, 
as occurring in Figure 9. The segmentation for the minimum jump course holds the 
longest segment and fewer segments compared to the maximum jump course 
segmentation. 

Figure 9 Segmentation of the minimum jump course with a segment width of 0.22°C (see online 
version for colours) 

 

Figure 10 Segmentation of the maximum jump course with a segmentation width of 0.22°C  
(see online version for colours) 

 

The rougher segmentation in Figures 11 and 12 with a segmentation width of 0.38°C 
behaves similar. Again, the minimum jump course holds the biggest segment, but now 
they have the same number of segments. 

Figure 11 Segmentation of the minimum jump course with a segmentation width of 0.38°C  
(see online version for colours) 

 

Since the segment width is influencing the segmentation result and a subjective chosen 
width could hide effects that would become visible with another width, multiple 
segmentation widths have been tested. The segmentations were performed for both 
courses, starting with a segmentation width of 0.1°C, increased in steps of 0.04 K until 
both courses fit into one segment. Figure 13 summarises the segmentations with respect 
to the lengths of the largest segment found. 
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Figure 12 Segmentation of the maximum jump course with a segmentation width of 0.38°C  
(see online version for colours) 

 

Figure 13 Relative length of the largest segment with varying segment width (see online version 
for colours) 

 

For all considered segment widths, the concatenation with minimum jumps delivered the 
better results. The length of the largest segment is up to 20% higher compared to the 
concatenation with maximum jumps and 10% higher in average. 

9 Summary 

In this paper, the manufacturing task is assumed to have a great impact on the thermal 
behaviour of the machine tool. To extract the relevant thermal information out of the 
manufacturing task, a loss forecast strategy is presented. 

This strategy divides the loss forecast in a motion determination with the use of a 
VNC and a loss model application based on the determined motion. Since the task-
dependent power loss cannot be manipulated without affecting the manufacturing task 
itself, multiple tasks were used for considerations at the process planning level. The aim 
was to reduce thermal changes by rearranging the individual tasks in a sequence such that 
changes in power loss are minimised. 

The loss forecast was therefore applied on these three tasks and the processes were 
concatenated by a constructed heuristic, which minimises the jumps of power losses at 
the transitions between different successive tasks. Additionally, a corresponding 
concatenation with maximum jumps was determined for comparison purposes. 

To show that the specific concatenations cause characteristic temperature courses, 
each concatenation was performed 20 times at the machine tool whereby the 
corresponding temperatures were measured and recorded. Obvious correlations between 
forecasted loss and occurring temperatures have been shown. 

To avoid subjective evaluations of temperature courses and achieve a quantification 
of the thermal changes, a segmentation algorithm was developed. The algorithm scans the  
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course and divides it into segments where a specific temperature could be maintained. 
Overall, has been shown that the largest segment in the minimum jump concatenation is 
approximately 10% larger compared to the segment of the maximum jump, which reveals 
the influence of the concatenation on the thermal behaviour. 

10 Outlook 

The paper presents a strategy to reduce thermal changes in the machine tool by ordering 
processes depending on their caused power losses. Experimental results reveal a potential 
reduction of about 10% in thermal changes concerning the segmentation approach. The 
presented strategy is currently partwise automated but able to be fully automated for an 
industrial application. 

Next research should focus on the application to a classical machine tool, to analyse 
the approach under real cutting conditions and big machine assemblies with major heat 
capacities. 

An application of a similar approach during process planning could allow a 
consideration of thermal impacts beside technological criteria. This could reduce the 
thermal changes caused by a single manufacturing task and achieve much more 
significant results then only to consider the concatenation. Challenging is here that 
technological and thermal criteria must be considered holistically, which could be an 
interesting subject for further research. Resent research in the field of digital twins for 
machining applications shows that the digital twin could provide a suitable platform for 
such holistic approaches, since it collects, structures and standardises manufacturing 
relevant information (Hänel et al., 2021). 

Additionally, the presented approach can support the energy efficient control of 
cooling systems. Since cooling systems account for a large part of the machine tool’s 
energy consumption, efforts are made to achieve demand-oriented cooling (Weber et al., 
2021). Because of rather inefficient activation procedures of cooling systems, the 
temporal concentration of cooling relevant areas can lead to a decrease in the activation 
number and therefore increase the overall efficiency of the cooling system while 
maintaining thermal stability. 
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