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Abstract: System openness refers to the extent to which system components 
(e.g., hardware and software) can be independently integrated, removed, or 
replaced without adversely impacting the existing system. Openness is an 
intuitively understood concept used to describe the architecture and 
implementation of safety-, mission- and infrastructure-critical systems. While 
openness is widely associated with life-cycle cost avoidance, system openness 
can also lead to increased costs in some cases. Previous efforts to establish 
value have relied on qualitative system analyses, with the results often 
articulated as an intangible ‘openness score’ that fails to provide the 
information necessary to understand the conditions under which there is a  
life-cycle cost avoidance. This paper develops a model that quantifies the 
relationship between system openness, life-cycle cost and system capability 
risks. A case study that evaluates the acoustic rapid COTS insertion (A-RCI) 
Sonar System is provided. 
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1 Introduction 

Manufacturers and sustainers of critical systems face many long-term budgetary 
challenges. Critical systems, such as aircraft, rail, industrial controls, power generation, 
defence and communications infrastructure, are expensive to procure and sustain over 
their long-life cycles (measured in decades). Because of their prohibitively high cost of 
replacement (which is in many cases borne by taxpayers), these safety-, mission-, and 
infrastructure-critical systems cannot be replaced as often as they should be. 
Concurrently, technology is evolving, which limits the useful life of many systems, thus 
requiring frequent upgrades to maintain the capability that is required to remain 
competitive or effective in accomplishing their intended purpose. 

Critical systems have traditionally been developed using acquired proprietary systems 
and interfaces, which make it challenging to modernise and reduces opportunities for 
competition. Implementing an open-systems architecture permits the development and 
acquisition of modular, interoperable systems enabling components to be added, 
modified, or replaced by different vendors throughout the system’s life cycle. This 
creates the potential for increased competition and innovation (Guertin and Womble, 
2012). For example, the US Air Force’s program to upgrade the B-2 bomber’s 
communications, networking, and defensive management systems will cost over  
$2 billion, in part because the prime contractor owns all the necessary proprietary 
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technical data and software. Because this system is ‘closed’, competing this effort was 
not a viable economic option (GAO, 2014). 

A variety of strategies are being explored, or reemphasised, to increase the 
efficiencies of acquisition processes. One way for the critical systems community to 
minimise the cost and time needed to modify or upgrade systems is by using an open 
systems approach (OSA) for system design and development. When used appropriately, 
OSA can provide a degree of flexibility, enabling the integration of rapidly changing 
technologies. However, as with all approaches, there are costs as well as benefits. This 
paper explores a business case methodology to assess the application-specific cost 
effectiveness of OSA. 

1.1 Open systems approach 

System openness refers to the extent to which system components (e.g., hardware and 
software) can be independently integrated, removed, or replaced without causing an 
adverse impact on the existing system. The quality, functionality, and efficiency of  
open-system architectures have led to their wide acceptance by business and industry, 
and they are starting to be used by nations that have advanced defence industries 
(Mladenović et al., 2013). 

For example, the US Department of Defense (DoD) established a program in 1994 to 
promote the use of open-systems approaches from the top-down. In fact, the acquisition 
strategy for a given system must identify where, why, and how modular open systems 
will be used (DoD, 2015). The DoD’s OSA, now referred to as modular open systems 
approach (MOSA),1 promotes the use of modular design to encourage companies to 
improve and manufacture technologies that are interoperable with the DoD’s current 
system. 

The UK’s Ministry of Defence (MoD) has a similar strategy for the use of  
open-systems architecture referred to as the system of systems approach (SOSA) open 
systems strategy. The SOSA open systems strategy describes the open-systems vision and 
the roadmap for achieving the required level of openness across the defence enterprise. 
The MoD’s policy provides high-level guidance and states that an open-systems approach 
should be adopted to realise benefits that include: ease of interoperability, ease of 
modification, improved integration, improved opportunities for competition and 
innovation, and improve obsolescence management (UK MoD, 2013). The UK along 
with several other countries (Norway, Germany and Sweden) have also adopted programs 
to upgrade their submarines’ combat management systems using an open systems 
approach and commercial off the shelf (COTS) components (Peruzzi, 2019). Finally, 
although the Australian Defence Forces do not mandate the use of open system 
architectures, a 2016 Defence White Paper identified the opportunities offered using 
open-system design concepts (Dunn et al., 2018). 

Conventional wisdom supports the notion of open systems but quantifying the actual 
cost avoidance remains elusive. The objective of this paper is to create a model that 
allows the quantification of the relationship between system openness and life-cycle cost 
on an application-specific basis. An example of this could be the use of radar technology 
on an aircraft. With an OSA, the radar technology could be replaced or upgraded without 
replacing numerous related subsystems. Closed-systems architecture, on the other hand, 
effectively restricts access to configuration and programming information from outside 
parties. Closed systems often make upgrading a piece of equipment difficult and costly. 
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Further, closed systems can lead to ‘vendor lock’ where the customer becomes dependent 
on a single service provider because the costs of changing vendors are prohibitive. 

Historically, critical functionality in complex electronic systems was provided by 
custom-made components and custom proprietary architectures, requiring long 
development times and high development costs. However, recent technological 
advancements have allowed for the increased generalisability of both hardware and 
software (and system architecture); now components can be designed once, and then used 
in many different applications. These advancements have increased the viability of using 
OSA in general, and a modular open systems approach (MOSA) in particular (Abbott  
et al., 2008). 

While the defence community supports implementing OSA whenever possible, there 
are numerous reasons to be cautious since business and engineering-trade-offs must be 
made that could change the incentive structure and reduce the system effectiveness. First, 
if there are no standards for a new product, then a closed-system architecture may be best 
until standards are created (Firesmith, 2015). Second, if there is only one vendor that can 
provide a subsystem or service (i.e., a ‘sole source’), then attempting to make an open 
system may have no benefit; for example, the remote vision system on the Boeing  
KC-46A2 is sole sourced to Boeing (SAF Public Affairs, 2020). This newly developed 
complex system is critical to the aircraft’s primary mission (aerial refuelling), it must be 
fully integrated with the proprietary aircraft systems and has limited/no application to 
other military systems or commercial use. As a result, a sole source development was the 
most efficient solution. Finally, the system support duration and the quantity of systems 
supported have to be carefully considered in the open versus closed system design 
decision (e.g., see the A-RCI case study presented in Section 3 of this paper). 

Generally, it is implicitly assumed that the use of OSA decreases the total life-cycle 
cost of a system. Leveraging existing open technology, including COTS components, 
avoids many costs associated with designing custom systems, and reduces the time 
required for the development or refresh of a system (Logan, 2004). The use of OSA helps 
mitigate the effects of obsolescence, lengthens the system’s support life, allows for the 
incremental insertion of new technologies (OSJTF, 2004; Boudreau, 2006), and evolving 
functionality. The use of well-defined standards promotes smooth interfacing both within 
and between systems, while the proliferation of common components has the positive 
impact of fostering competition between suppliers. Component design reuse (within and 
between systems) eliminates redundant components, thus reducing logistical costs. 

However, there are costs associated with openness that should be considered. 
Building a subsystem from commercially available components might add unnecessary 
functionality into the system and increase the system complexity, resulting additional 
effort for component and system-level qualification (Grant et al., 2000; Hanratty et al., 
2002; Clough, 2003). Alternatively, it may be necessary to modify COTS components to 
meet performance requirements (Wright et al., 1997; Jensen and Petersen, 1982), thereby 
adding costs. In addition, the enterprise that manages the system likely has no control 
over the supply chains for COTS components, which tend to be more volatile than 
proprietary ones (Lewis et al., 2000). This may make it necessary to refresh open systems 
designs more frequently (Clark and Clark, 2007; Abts, 2002), which leads to an increase 
in the number of fielded configurations, which complicates logistics, resulting in more 
expense. 
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This paper seeks to quantitatively analyse OSA, specifically the relationship between 
OSA and life-cycle cost. 

1.2 Existing work 

Several previous efforts have addressed the measurement of system openness. The 
MOSA Program Assessment and Rating Tool (PART or MOSA PART) was developed 
by the US Navy’s Open Systems Joint Task Force (OSJTF) (OSJTF, 2004). Based upon 
MOSA PART, the Naval Open Architecture Enterprise Team (OAET) developed the 
Open Architecture Assessment Model (OAAM) and the Open Architecture Assessment 
Tool (OAAT) (NOAET, 2009). These tools used similar user-based ratings to measure a 
system’s openness. Tool users first answer a series of self-rating questions. Based on the 
weights of each question, the tools then calculate the final ratings for system openness 
principles. The tools primarily ask system-level and ‘to what extent’ questions, e.g.,  
‘to what extent do system components and selected commercial products conform to 
standards selected for system interfaces?’. The answers to these qualitative questions are 
highly dependent on the users’ subjective points of view towards the system and 
program. 

In 2011 and 2012, several parties including the US Air Force Research Laboratory’s 
RYM subgroup collaborated to develop a set of metrics to evaluate the openness of an 
architecture. This effort resulted in a new tool called the MOSA metrics calculator 
(MOSA, 2012). Instead of asking subjective system-level questions, the MOSA metrics 
calculator uses objective component-level questions. The component characteristics that 
result from the MOSA metrics calculator are more quantifiable and can be accumulated. 

In addition to the problem of subjectivity, a common problem that these tools share is 
that they were not designed to assess the cost associated with openness. The main goal of 
PART, OAAT, and the MOSA metrics calculator is measuring the level of conformance 
to the open system principles, while assuming that increased openness is always 
beneficial. Without accounting for cost in detail, assuming that the value of benefits 
outweighs the costs in every case is questionable. 

Another approach to measuring openness comes from PMH Systems and the 
University of Southampton. This work uses a quantifiable metric, the fraction of 
interfaces that use open standards, and a stochastic model to estimate the decrease in cost 
and development time associated with increasing openness (Henderson, 2009). However, 
the model also implicitly relies on the assumption that increased openness is always 
beneficial. Additionally, the metric developed cannot resolve different levels of openness 
and most importantly only addresses the design phase, ignoring significant costs and 
avoidances that occur later in the system’s life cycle. 

In the software industry, the concept of COTS has been widely discussed since late 
1990s and life-cycle-cost models of COTS-based systems have been proposed by several 
researchers. COTS integration cost calculator (CICC) and constructive COTS cost model 
(COCOTS) estimate the costs incurred to integrate a COTS software into a larger system 
(Abts and Boehm, 1997; Abts et al., 2000). These proposed models are limited to the 
impact of COTS software implementations. 

Previous efforts either rely on a highly qualitative analysis of a system to compare 
system implementations to determine openness, or are limited to specific systems and 
partial system openness, e.g., the evaluation of COTS in software systems. These 
approaches do not provide sufficient information to understand the conditions under 
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which life-cycle cost avoidance can be maximised (or whether there even is cost 
avoidance), or to make business case decisions. The objective of this paper is to quantify 
the relationship between system openness and life-cycle cost. 

Section 2 of this paper describes a stochastic discrete-event simulation model 
developed to determine the difference in life-cycle and implementation cost between two 
versions of the same system (having different levels of openness). Section 2 also 
introduces a model to quantify the value of capability updates to the system. Section 3 
provides a case study using the model. In Section 4 we discuss the generalisation of the 
model. 

2 Model development 

In this study, our goal is to compare the life-cycle cost between two different system 
configurations, determining which one is more cost beneficial. This section presents a 
stochastic discrete-event simulation developed to generate a list of system life-cycle 
events that were then used as the inputs to a cost model. The cost model is then used to 
determine the difference in life-cycle cost between two versions of the same system (the 
versions having different levels of openness). A demonstration version of this process is 
provided in the Appendix. 

The total life-cycle cost incurred designing, building, operating, and retiring a system 
is,3 

= + + + +Total Development Production O&S Refresh CapabilityC C C C C C  (1) 

where CDevelopment are the non-recurring costs of system design, development and 
qualification; CProduction captures the recurring costs to manufacture and field the system; 
CO&S are the costs of sustainment incurred from system deployment to the  
end-of-support; and CRefresh are the costs of implementing and qualifying technology 
refresh(es) during the system support life. CCapability are the potential costs associated with 
the technology in the system being out-of-date relative to the state-of-practice. 

A discrete-event simulation was developed as the first step of the life-cycle cost 
comparison process in this paper. In general, discrete-event simulators model a sequence 
of events along a timeline. A deterministic schedule or probability distributions are used 
as inputs to the simulator to predict the event dates. At each event, various properties of 
the system can be calculated and accumulated. The timeline is simulated (and relevant 
parameters accumulated) through many possible time histories using Monte Carlo 
sampling, to create a statistical interpretation of the life-cycle costs. 

In the discrete-event simulator developed for this paper, the event dates are 
determined by sampling time-to-failure (TTF) distributions, forecasted component 
obsolescence date distributions, and a predetermined refresh/redesign schedule. The 
events of interest are maintenance events, production events (delivery of new systems), 
retirement events (retirement of fielded systems), logistics events (management of spares, 
lifetime buys of parts to manage obsolescence) and design redesigns/refreshes. 

Sections 2.1 and 2.2 discuss the costs in equation (1) and how they were determined 
by the cost model. Section 2.2 illustrates how capability cost is valued by model. 
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2.1 Cost model 

Figure 1 shows the structure of the life-cycle cost used in this paper. The life-cycle cost 
includes five cost categories: development/adoption, production, refresh, operation and 
support (O&S) and capability. These cost categories were selected because they are 
sensitive to the degree of system openness. For example, the cost of fuel is one particular 
cost that may not be affected by openness, so it is not considered in our life-cycle cost 
structure. Ultimately, we are only interested in the difference in the life-cycle cost 
between cases with varying degrees of openness, therefore, some costs can be omitted 
(i.e., they subtract out of the analysis, see Section 3.2.1). 

Figure 1 Life-cycle cost structure 

 

2.1.1 Development/adoption costs (CDevelopment) 
CDevelopment is the cost associated with designing a new system that satisfies a set of 
requirements, and includes the majority of the costs incurred before the final design is 
selected, including the cost of designing the system architecture and customised 
components, adopting appropriate COTS components and open standards, as well as the 
costs of partial or alternative designs considered, but not implemented. Prototyping and 
design overhead costs are included. CDevelopment also includes the non-recurring 
engineering (NRE) costs, which may consist of the qualification testing used to 
demonstrate that the standards, components, subsystems, and the complete system meet 
performance, reliability, security, and other requirements. 

In the cost model, the cost of development/adoption is only incurred at the beginning 
of the timeline when the first version of the architecture was developed. It can be divided 
to three sub-categories corresponding to design/adoption and qualification of the three 
aspects of the system: architecture, component and standard. 

The design and qualification cost of the architecture is related to the complexity and 
the openness of the architecture. For example, a more complicated architecture with more 
components and interactions within the architecture requires higher cost for design and 
qualification. In addition, a more open architecture means that more open standards are 
applied at the interfaces in the architecture. Design for open standards requires more 
activities such as evaluating if current and future components can conform to the standard 
so that the components can be truly ‘plug-and-play’. As a result, the process of design for 
an open standard may cost more than a proprietary interface. 

The design and qualification cost of components is the cost to design or select the 
components for the system. This cost depends on the type of components used in the 
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architecture. Typically, using a COTS component results in a smaller design cost than 
creating a proprietary component since the former can be acquired directly from the 
market. Each component also requires qualification testing to assure it meets the criteria 
of performance and reliability. In our model, the total adoption/development cost 
associated with the components is calculated by summing the design/qualification cost of 
each type of component that is used in the architecture. 

The design and qualification cost of standards is the cost to select the open standards. 
Standards are adopted based on maturity, market acceptance, and potential availability 
for future system upgrades. Similar to the component design/qualification cost, our cost 
model also assumes that the design and qualification cost of standards only depends on 
the type of standards that are chosen in the architecture. 

2.1.2 Production costs (CProduction) 
CProduction includes all costs to manufacture and field the system, including component 
procurement, assembly/manufacturing, stress screening of hardware components (if any), 
and recurring testing costs. 

The production events are generated based on the system’s production schedule. In 
our model, the production (recurring) cost of a system instance is defined as the sum of 
the costs of the procurement of all the system components and the installation of the 
components into the final system in the field. The procurement and installation cost of a 
component depends on the type of component. For the same functionality, the production 
cost of a COTS component is assumed to be less expensive than a proprietary 
component. 

2.1.3 Operation and support costs (CO&S) 
CO&S are the costs of sustainment incurred from system deployment to the end-of-support, 
including the costs of: system operation, modifying, maintaining, supplying, training, and 
inventory supporting. The events associated with sustainment include, but are not limited 
to: system failure repair, periodic maintenance, sparing management and obsolescence 
mitigation. 

Maintenance events occur when a system failure occurs. Maintenance includes the 
labor to perform maintenance and the cost of spare components (if relevant). The model 
assumes that the downtime associated with a failure is negligible (availability impacts are 
not included, i.e., we assume that they are the same for the cases compared and therefore 
subtract out – see Section 3.2.1). The model also assumes that replacement components 
(spares) are good-as-new. If the component is still available in the market, it will be 
procured as needed. 

When the obsolescence of a component occurs, a bridge or lifetime buy is made to 
procure a sufficient number of components to support the system until the next system 
refresh or the end of system support, whichever happens the soonest – these components 
must cover future production and maintenance needs. The cost incurred at the 
obsolescence event is the procurement cost of the bridge buy of components. 

Since bridge or lifetime buy components are purchased in advance and stored in 
inventory, each component incurs an additional inventory cost that depends on the 
duration of its storage. Inventory (holding) costs are charged when the parts are taken 
from the inventory and used for maintenance. The shelf life of all components is assumed 
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to be long enough that parts bought in a lifetime buy can be used for the rest of the 
system support life. 

2.1.4 Refresh costs (CRefresh) 
Through the entire life-cycle, system design refresh may be desirable (or necessary) to 
assure that the system remains supportable or to maintain the technological capability of 
the system (see Section 2.2). System refresh replaces the obsolete or technologically  
out-of-date components with procurable and possibly more technologically advance 
components. Refresh costs include the cost to develop or adopt the components, the cost 
to deliver the refresh to the individual system, and the cost to re-qualify the system as 
needed. 

In the cost model, refresh costs consist of two cost sub-categories: refresh 
development/adoption and refresh production. 

A predetermined schedule of refresh development events is provided as an input to 
the model. The development of a design refresh results in a new baseline architecture, 
with a new version of components or standards in the architecture. The system follows 
the current architecture baseline for production and refreshes delivery until the next 
refresh development occurs. 

At a refresh development event, every component and standard in the architecture is 
examined. If a component is obsolete or is required to be upgraded, it will be refreshed. A 
refresh-required component might affect other components or standards to be refreshed 
due to functional dependencies in the architecture. 

In our model, a refreshed component is replaced with another component with the 
same function, same procurement life, and good-as-new reliability. If the refreshed 
component interfaces with its surrounding components with open standards, a  
‘plug-and-play’ refresh may be achieved, i.e., we could switch the component without 
affecting the surrounding components and standards and replace it with a new component 
that conforms to the open standard. On the other hand, if the connection between 
components is a proprietary link or the open standard is obsolete, the new component 
may require that the connected components also have to be refreshed. 

The structure of refresh development/adoption cost is similar to CDevelopment described 
in Section 2.1.1 except that the design and qualification cost of the architecture is 
excluded from the refresh cost. Since the architecture itself does not change throughout 
the life-cycle, there is no cost associate with the architecture design. Therefore, the 
refresh development/adoption cost is the sum of the design and qualification cost of the 
components and the standards that are required to be refreshed. 

For refresh production, every fielded system adopts the same refresh production 
interval after its initial production. Therefore, the actual delivery date of the refresh to 
each system might be different. For example, for a 4-year refresh schedule, a system 
fielded in year 0 would receive its refresh in years 4, 8, 12, etc. Another system fielded in 
year 3 would receive its refresh in years 7, 11, 15, etc. The version of components 
received for refreshes depends on the refresh development baseline available in the year 
of the refresh for the particular fielded instance of the system. An example of evaluating 
the component version in a system instance is demonstrated in the Appendix. 

The refresh production cost has the same structure as production cost, including the 
cost of purchasing and assembly of the components to the system. The refresh production 
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cost in each system refresh production is the total procurement cost and installation of the 
components that required to be delivered to the legacy system. 

2.2 Cost of system technological capability (CCapability) 

Technological superiority is a priority for some critical systems, especially defense 
systems. With more advanced technological capability, systems are more competitive and 
the possible threat from adversaries may be reduced. To maintain technological 
superiority, constant system upgrades may be required. In systems where technological 
superiority is a priority, the system’s upgrade frequency may be fixed and the life-cycle 
cost is optimised based on this constraint. In other systems, technological capability may 
be less important and its value can be traded off against other cost factors. This study 
considers both cases in the case study presented in Section 3: 

1 the capability benefit of implementing technology refresh is quantified, as one of the 
cost factors, i.e., the cost of system technological capability (CCapability) 

2 open versus closed implementations of a system with a fixed refresh schedule. 

In general, capability is defined as “the ability to achieve a desired effect under specified 
standards and conditions through combinations of means and ways to perform a set of 
tasks” (DoDAF, n.d.). For the purposes of this paper, we will define the system’s 
technological capability as its ability to accomplish the ‘mission’ it was designed for. For 
example, the absolute capability of a sonar system is its effectiveness in detecting objects 
in the surrounding area, while its relative capability is its effectiveness detecting 
adversaries early enough to take appropriate action. In the case of a sonar system, the 
system’s technological capability is determined by performance parameters that include: 
detection range, response time, detection accuracy, etc. 

The cost of system technological capability is not just the cost to implement the 
capability, which is already included in the cost model described in Section 2.1, but the 
costs that result from the capability (or lack of capability). More precisely, the cost is a 
result of the effectiveness of the system in performing the tasks required of it. Since the 
effectiveness is strongly tied to system upgrade and refresh, the cost of system 
technological capability can also be viewed as a metric to quantify the value of a 
particular refresh plan. 

Studies that are related to the concept of capability cost can be found in the area of 
refresh plan quantification. Figure 2 shows two examples of how a refresh plan can be 
valued. These studies started by assigning an absolute value to system performance or 
capability. The system value is a function of time and can be increased by refreshing the 
system technology. Engel and Browning (2008) assumed that there is an upper limit of 
system value, called the ‘value desired by stakeholders’, which is also an increasing 
function over time, see Figure 2. The lifetime value loss is the area between the actual 
system value and value desired by stakeholders. Alternatively, Zellers (2016) assumes 
that the system’s minimum requirements over time is a lower bound, and life-cycle value 
is the area between the two step curves in Figure 2. Both approaches use the area between 
system value and either the upper bound or lower bound to represent the total life-cycle 
loss/value (both models are essentially equivalent). 
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Figure 2 Quantification of the loss/value of a refresh plan (see online version for colours) 

 

In this paper, instead of using an absolute capability metric, e.g., Figure 2, the concept of 
relative capability is introduced. For a system that is designed to operate in a competitive 
environment such as defence, the cost of system technological capability is related to the 
system competitiveness among the population of adversaries. Therefore, relative 
capability between competitors is a more appropriate metric to reflect the cost of system 
capability than absolute capability. In Figure 3, the distribution curves represent how an 
adversary’s capability evolves over time (from t1 to t2), and the vertical line indicates the 
fixed capability of a fielded system that does not receive any refreshes in the same 
timeframe. The population of adversary systems is represented by a distribution 
indicating the variance of the capability in adversary systems. The area under the 
distribution to the right of the fixed system capability represents the probability of the 
fixed system losing the capability competition to an adversary system. Figure 3 
demonstrates that even if a system’s absolute capability is fixed (i.e., does not change 
from t1 to t2), it may be losing its capability relative to the environment it is in. Decreases 
in relative capability represent a cost, which is either a decrease in the effectiveness of the 
system in performing the mission it was designed to perform, or an increase in the risk of 
losing the system4. 

The relative capability of a system instance can be represented by the shaded area in 
Figure 3, the probability that the system capability is less than an adversary’s system 
capability. At a given time point, the probability of the system losing the capability 
competition can be written as p(Δt) where Δt, the technology lag time, represents the 
technology age difference between the system and the advisory at the time point. That is, 
at a time point when the system is installed with an older technology, i.e., a positive Δt, 
the system would have a larger value of p(Δt), and therefore is more likely to lose the 
capability competition to its adversary. 
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Figure 3 The adversary’s absolute capability distribution shifts to the right over time relative to a 
fixed system capability (see online version for colours) 

 

In the case study presented in Section 3, we assume that the adversary capability follows 
state-of-practice technology and therefore the Δt is always positive5. The Δt of a system 
at a given time point can be represented as the age of the current architecture used in the 
system. To be more specific, Δt is the time difference between the current time point and 
the time of development completion of the architecture currently used in the system, i.e., 
the time point when the architecture is still state-of-practice. For example, if there is a 
system instance where its current architecture was first developed in 2002. The 
technology lag time for this system instance in 2006 is four years. If there is no refresh 
delivery to the system instance, Δt would only increase over time. 

Each delivery of a technology refresh to the fielded system instance resets Δt and the 
relative capability to a higher level (lower probability of losing the capability 
competition). Frequent technology refreshes keep the system more up-to-date during its 
life cycle, reducing the probability of losing the technology competition. Note, although 
we are discussing the cost of relative capability in the context of a defence application, 
the concept is relevant to non-defence systems too. For example, a system whose 
competitiveness in the marketplace depends on constant technology refreshing – the risk 
could be loss of market share. 

To obtain the quantitative cost, we must construct the relationship between relative 
capability and cost. For a defence system, the cost of system capability may translate into 
risk, which evaluates the potential loss of systems and missions. The life-cycle risk of a 
system is the sum of system annual risk over its operation life. 

Equation (2) provides the general formulation of the risk cost (cost per unit time) of a 
system instance in a given time window associated with relative capability. 

qR IpC=  (2) 

In equation (2), I represents the expected number of events (encountering an adversary 
system) in a time window, e.g., 2 times per year. The p is defined as the probability that 
the system capability is less than an adversary system capability in this time window. Cq 
is the expected consequence (measured as a cost per event) if a system loses the 
capability competition to the adversary. 
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Based on equation (2), the calculation of the total cost of technological capability is 
the sum of the annual risk cost of each system instance throughout the life cycle, 

( ),
1 1

Δ
= =

=
N T

Capability i j q
i j

C Ip t C  (3) 

where N is the number of systems, i.e., fleet size, and T is the total number of support 
years for the fleet of systems. In equation (3), I and Cq are both assumed to be 
deterministic values (they could be represented by probability distributions if the 
appropriate information was available). 

For p(Δti,j), the relationship between Δt and the probability p was first subjectively 
determined. The Δti,j of ith system instance (note, system instances are distinguished 
because not all of the system instances receive the results of a technology refresh at the 
same time) in jth year can be evaluated based on the production/refresh schedule and the 
adversary technology evolution assessment process. The corresponding p can be 
determined using the Δt in the subjective function p(Δt). The product Ip(Δti,j)Cq  models 
the expected annual cost of the system instance i in year j, given the discrete technology 
lag time Δt. 

3 A-RCI case study 

In this section, we present a case study of the acoustic rapid COTS insertion (A-RCI) 
sonar system. The A-RCI program, implemented a COTS-based open architecture for a 
submarine sonar signal processing system. The A-RCI eliminated traditional system 
architecture that used specialised proprietary components that were built to military 
specification. Embracing the use of COTS and commercial standards, allowed for the 
sonar signal processing system to be upgraded, without altering other sonar system 
components (Guertin and Miller, 1998). In addition, the A-RCI case is also regarded as a 
successful example of open-systems architecture. One study cites preliminary results 
compiled from ten years of data on both the acoustic rapid COTS insertion program and 
its predecessor indicating a life-cycle cost improvement of nearly 5:1 (Boudreau, 2006). 

The transformation from a closed system to a COTS-based open system was 
completed in a four-phase implementation strategy (Guertin and Miller, 1998). In  
phases 1 and 2, A-RCI developed a multi-purpose processor (MPP) to process the data 
from both a towed array (TA) and a hull array (HA). Phase 3 added spherical array MPP 
and switch MPP to replace the legacy system spherical array processing functions.  
Phase 4 integrated another high-frequency sail array MPP into A-RCI. By the end of 
phase 4, a COTS-based open-architecture A-RCI system completely replaced the original 
legacy system. 

In order to exercise the model described in Section 2, we examined the life-cycle cost 
difference between two different A-RCI configurations with different degrees of 
openness. 

We wish to clarify that the data describing the A-RCI in this section represents our 
interpretation of the A-RCI and the A-RCI program, and may not exactly match the 
actual system or program. The A-RCI is a defence system that spans many years, and as 
such, a complete dataset describing the A-RCI is not publicly available. 



   

 

   

   
 

   

   

 

   

    Analysis of the life-cycle cost and capability trade-offs 53    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Input parameters for modelling the A-RCI 

Input parameters Input value Source 
Architecture Figure 4 Guertin and Miller 

(1998) 
Production schedule Figure 6 Schuster (2007) 
Retirement schedule Figure 6 Schuster (2007) 
Architecture 
R&D cost 

Phase I $48,350,000 From calibration, 
see Section 3.1.1 Phase II $39,015,000 

Phase III $55,745,000 
Phase IV $56,825,000 

Hardware: 
COTS cards 

R&D cost per card type $2,083,333 From calibration, 
see Section 3.1.1 Procurement cost per card $7,331 

Installation cost per card $733 
Reliability Weibull (1.75, 12) 
Procurement life 3 years Assumed value 

Hardware: 
proprietary 
cards  

R&D cost per card type $3,125,000 From calibration, 
see Section 3.1.1 Procurement cost per card $14,545 

Installation cost per card $1,454 
Reliability Weibull (1.75, 12) 
Procurement life 6 years Assumed value 

Hardware: 
infrastructure 

R&D cost per infrastructure type $1,000,000 From calibration, 
see Section 3.1.1 Procurement cost per infrastructure $400,000 

Installation cost per infrastructure $40,000 
Reliability Weibull (1.75, 30) 
Procurement life 20 years Assumed value 

Software R&D cost $12,500,000 From calibration, 
see Section 3.1.1 Procurement cost $90,909 

Installation cost $9,090 
Reliability Weibull (1.75, 12) 
Procurement life 3 years Assumed value 

Standards R&D cost per standard type $2,000,000 From calibration, 
see Section 3.1.1 

Procurement life 10 years Assumed value 
Maintenance action cost/failure $38,389 From calibration, 

see Section 3.1.1 
Bridge buy buffer % of demand 50% Assumed value 
Holding cost/component/year $1,000 Assumed value 
WACC 5%/year Assumed value 
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3.1 A-RCI input data 

In this section, the data describing the A-RCI case is provided. Table 1 lists the input 
parameters used in the simulation for the A-RCI. Some inputs had to be assumed since 
there was no A-RCI specific information available, e.g., component procurement life. 
Some inputs were determined through calibration of the model against known A-RCI 
life-cycle costs, see Section 3.1.1. 

The architectural input data was based on Guertin and Miller (1998). Figure 4 shows 
the A-RCI architecture assumed in this analysis. A-RCI consists of four primary cabinets. 
Inside each cabinet there are one or more VME drawers containing an array of cards. The 
software connections between the cabinets are indicated as middleware. Open standards 
are also represented by the linkages shown in Figure 4. The actual number of components 
(cards) is larger than those shown in Figure 4. The components that are common to all 
system architectures, i.e., they would be the same whether an open or closed system are 
omitted. There is no need to model the common components since their impact on the 
life-cycle cost will subtract out of the relative cost model (see Section 3.2.1). 

Figure 4 Architecture assumed in the A-RCI case study (see online version for colours) 

 

Due to the complexity of the A-RCI architectures, we adopted a design structure matrix 
(Eppinger and Browning, 2016) approach to model the A-RCI. The design structure 
matrix captures how the system’s components interact with each other. Capturing the 
component interactions is necessary to cost the design refreshes, i.e., when a particular 
component is changed at a refresh, other required component changes are captured by the 
design matrix; similarly, the interactions captured in the design matrix guide  
re-qualification requirements for the system at refreshes. 
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Figure 5 Partial design matrix of the A-RCI phase 3 architecture 

 

Figure 6 Installation profile for the A-RCI (see online version for colours) 
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Because of space constraints, Figure 5 only shows the portion of the design structure 
matrix of the A-RCI phase 3 architecture that represents the architecture of TA/HA MPP. 
For an element aij in the ith row and jth column, the value of the element indicates how 
component i interacts with component j. If aij is blank, there is no dependency between 
components i and j. Different values of aij represent different types of interfaces between 
components i and j. The values of aij have no quantitative meaning, they just enumerate 
distinct connections: positive integers represent the open standards used in A-RCI (1: 
middleware; 2: FDDI, ATM; 3: VMEbus, RACEway; 4: FCS, Ethernet). The modules 
shown in Figure 5 are adopting all open standards. 

The installation and retirement profile and number of system instances of the A-RCI 
is shown in Figure 6 (Schuster, 2007). 

3.1.1 Data calibration 

The components and the standards that were used in the A-RCI were described in detail 
by Guertin and Miller (1998), however, the development and production cost, reliability 
and procurement life are not provided. To determine these values, we reverse-engineered 
the reported A-RCI life-cycle cost data. 

The reported A-RCI life-cycle cost data was obtained from a 2006 presentation from 
ASSETT Corporation (ASSETT, 2006) that summarised top-down and bottom-up cost 
estimations for the A-RCI system from 1996 through 2006. The ASSETT presentation 
provided the A-RCI annual cost data based on annual budget and contract data, which 
were mapped into three categories: Development cost, Production cost and O&S cost. 

A simplified surrogate life-cycle cost model of intermediate variables was built for 
calibration. The intermediate variables included quantities such as average development 
cost of the architecture and average production cost per system. After the intermediate 
variables were calibrated to the known life-cycle cost totals, they were combined with 
other known information such as the number of components and architectures, to 
estimate the simulation model data. For example, we first estimated the refresh 
development cost per year intermediate variable, based on the total development cost 
from ASSET and the refresh schedule used for the A-RCI. The average refresh cost per 
component was the refresh development cost per year divided by the number of refreshed 
components in each. 

The details of calibration process can be found in (Chen, 2022). The results of the 
calibration process are included in Table 1. 

3.2 Modelling results 

In this study, two system configurations were compared based on their life-cycle cost: 

Original A-RCI the actual A-RCI architecture, more open. 

Closed version a less-open version of A-RCI where two of the modules (Spherical 
Array MPP and Switch MPP in Figure 4) adopted closed standards 
and proprietary components were used instead of COTS parts. 

Both configurations followed the same production/retirement schedule (Figure 6) and 
used the same input data described in Table 1. 
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In sections that follow, the concept of a relative life-cycle cost is introduced using an 
example simulation result. Selected sensitivity analysis was performed to evaluate how 
three main key parameters, risk profile, end-of-support year and fleet size, affect the 
simulation result. 

3.2.1 Relative life-cycle cost analysis approach 
It is often not practical to calculate the absolute value of all the life-cycle costs for a 
system. To assess the cost of openness we are actually only interested in the difference in 
the costs discussed in Sections 2.1 and 2.2 between the two system implementations. This 
approach is referred to as a relative cost model (Sandborn, 2017). The advantage of a 
relative cost model is that all the costs that are a ‘wash’ between the two architectures 
(i.e., the same) do not have to be modelled because they subtract out. The cost difference 
between two cases is significantly easier to determine than the absolute cost of the cases. 
The model described in this paper never produces absolute costs, only the cost 
differences between two cases. 

Figure 7 The relative cost model approach to obtain the accumulated cost difference (expected 
consequence per capability competition loss is Cq = $1 million, end-of-support =  
36 years, 6-year refresh interval) year 0 is FY99 (see online version for colours) 

 

Figure 7 shows the process of obtaining relative cost, including an example result from 
the simulation model. On the left side of Figure 7 are the absolute accumulated costs for 
the entire fleet of two scenarios calculated from the discrete-event simulation. In both 
cases many time-history solutions are used (each is the result of a unique combination of 
samples from the input probability distributions, so each is one possible time history for 
the fleet). The darker solid line in the right figure is the mean of the time histories. The 
absolute accumulated costs for the two system configurations on the left side of Figure 7 
are NOT particularly meaningful, because the relevant life-cycle costs that are not 
affected by system openness are omitted. The right side of Figure 7 shows the difference 
between the two system costs. The vertical axis in the right figure is the life-cycle cost 
difference. Figure 7 shows that at the end of 36 years, the mean value of the accumulated 
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cost different is greater than zero, indicating that the original version of the A-RCI will 
have a lower life-cycle cost than the closed version for this example case. 

Figure 8 Life-cycle cost difference as a function of end-of-support year (expected consequence 
per capability competition loss is Cq = $1 million, 6-year refresh interval) year 0 is 
FY99 (see online version for colours) 

 

Figure 8 shows the life-cycle cost difference as a function of end-of-support year.6 The 
result in Figure 7 is the 36 year end-of-support data point in Figure 8. In Figure 8, a 
positive result indicates that given the end-of-support life, the original A-RCI 
configuration is more cost effective, while a negative result value indicates that the  
less-open version of A-RCI is more cost effective. This result can be interpreted as: for 
the assumed risk profile, if the end-of-support year is between 35 to 39, we should choose 
the less-open version of A-RCI rather than the original A-RCI. The results shown in  
Figures 7 and 8 represent one specific case to demonstrate the methodology. In the 
sections that follow we will conduct a more detailed analysis comparing the open and 
closed versions of the A-RCI. 

3.2.2 The effect of refresh strategy 
In the previous section, we demonstrated how the simulation can be used to assess the 
life-cycle cost difference between two system configurations. In this section, we examine 
how the best refresh strategy could be determine based on its effect on the life-cycle cost. 

Refresh strategy affects both refresh cost and capability cost. More frequent 
refreshing costs more, but, a more frequent refresh strategy can keep fielded systems 
more up-to-date thereby reducing the cost of capability. For the same openness 
configuration, frequent refresh may be preferable when the system is used in a 
competitive environment. 
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We first compared the life-cycle cost of the original (open) A-RCI and the closed 
version assuming the same A-RCI refresh cycle, i.e., two-year refresh interval. The result 
in Figure 9 shows that the original A-RCI is always more beneficial than the closed 
version (for a 2-year refresh interval). 

We next varied the refresh strategy of the less open version of A-RCI, but kept the 
original A-RCI configuration with the same original 2-year refresh interval. Three other 
refresh strategies were considered: no refresh, 6-year and 4-year refresh intervals shown 
in Figure 9. In this case, no-refresh is the optimum refresh strategy for the closed version 
of A-RCI since the curve is below the other cases and below 0 in Figure 9. The closed 
version of A-RCI is more cost effective than the original as the no-refresh curve is 
negative in the end-of-support year range from 30 to 45. 

Figure 9 Life-cycle cost difference given different refresh strategies (Cq = $1M assumed) year 0 
is equivalent to FY99 (see online version for colours) 

 

Figure 9 indicates that more frequent refresh increases the life-cycle cost difference 
between the closed version and the original version. As stated previously, refresh cost 
and capability cost are two cost factors that are directly influenced by the frequency of 
refresh. Frequent refresh results in high refresh cost but lower capability cost. Figure 9 
shows that for a $1M consequence cost, the increase in refresh cost is more significant 
than the decrease in the capability cost penalty. 

3.2.3 Sensitivity analysis 
In addition to the length of life cycle (end of support year) and the refresh strategy, in this 
section, we further analysed how other external factors could affect the cost of openness. 
The risk profile and the fleet size are selected as two key factors in our case study and a 
corresponding sensitivity analysis was performed. 

In the context of this case study, risk profile is characterised as the consequence of 
losing the capability competition to adversary systems and the frequency of encountering 
an adversary system, i.e., the product of I and Cq in equation (2). For the A-RCI, the risk 
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profile likely varies based on adversarial conditions. If the risk profile is more severe 
(either a higher probability or a higher consequence), given the same system capability, 
the capability cost is expected to be higher. 

For the sensitivity analysis, the risk profile was varied by changing the expected 
consequence of losing the capability competition when encountering an adversary 
system. The expected consequence ranged from Cq = $1 million to $20 million per 
capability competition loss. 

Figure 10 Cost difference comparison of 30-year support life given different risk profiles and 
refresh strategies (see online version for colours) 

 

Figure 10 shows the cost difference between the two configurations (the original A-RCI 
with its 2-year refresh and the closed architecture A-RCI with various refresh intervals) 
all of which have a 30-year support life. Each data point is the mean of one simulation 
cost difference result. The four curves shown represent different refresh strategies that 
were implemented to the closed configuration. In Figure 10, the data points that have a 
positive cost difference are the results for which the original A-RCI configuration is more 
cost effective, and the negative cost difference points indicate that the less open version 
of A-RCI is preferred. 

The curve of the 2-year refresh interval is a flat line in Figure 10. Since the two 
configurations both follow the same A-RCI refresh cycle, theoretically, the technology 
performance would be the same throughout the life cycle in both configurations. 
Therefore, there would be no sensitivity to the capability cost. 

Based on Figure 10, we can observe how the risk profile and the refresh strategy 
jointly affect the result. First, the three curves in Figure 10, except the 2-year refresh 
interval, are all increasing functions, indicating that no matter what refresh strategy the 
closed version A-RCI adopts, the open configuration becomes more beneficial as the 
expected consequence increases. However, since the original A-RCI has the most 
frequent refreshes, the increasing in capability cost of the original A-RCI is less than the 
increasing in capability cost in the closed version of the A-RCI resulting in positive 
slopes of the three curves. Second, the slopes of the three curves decrease as the refresh 
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becomes more frequent. The life-cycle cost of the closed A-RCI with no refresh is more 
sensitive to the risk. Among the three refresh strategies, when the expected consequence 
(Cq) is less than $6 million, no refreshes represents the optimum strategy. 2-year interval 
refresh becomes preferable when the expected consequence is more than $6 million. 
Lastly, once the expected consequence is over $3 million, it is always more cost effective 
to adopt an open system approach rather closed approach. In conclusion, as the expected 
consequence increases, capability cost becomes dominant. Therefore, in order to reduce 
the capability cost and have a lower cost per refresh, an open configuration with frequent 
refresh is favourable. 

Figure 11 Cost difference comparison of 30-year support life given different fleet sizes and 
refresh strategies (see online version for colours) 

 

The number of fielded systems is another factor that potentially impacts the results. 
Recurring costs, e.g., production cost and refresh delivery cost, and capability cost are 
directly influenced by the number of fielded systems. Figure 11 shows two sensitivity 
analyses of the number of fielded systems under low and high-risk profiles separately. In 
Figure 11, all the systems were supported for 30 years and three scenarios were 
considered: 0.5, 1 and 1.5 times the original A-RCI fleet size. As the fleet size grows, the 
influence of the fleet-size-dependent cost factors has more impact on life-cycle cost. 
These factors include system production cost, system refresh delivery cost and capability 
cost and the most dominant cost factor determines whether an open system is cost 
effective or not. On the left side of Figure 11, capability cost is slightly more dominant in 
2-year, 4-year and 6-year refresh interval. The original A-RCI configuration with more 
frequent refresh and less capability cost therefore becomes more cost effective as the fleet 
size increases. For no refresh strategy, refresh delivery cost is more dominant, so the 
closed version with no refresh and less refresh delivery cost becomes more cost effective 
over the fleet size. On the right side of Figure 11, the expected consequence is increased 
to $10 million, leading to a significant capability cost. Thus, the original A-RCI is always 
better and the effect of capability is magnified as more systems are fielded. 

3.2.4 A-RCI refresh plan as a mandate 
In Section 2.2, we mentioned that there are cases where the required system capability 
and performance over time is not traded off against life-cycle cost. In these cases, the 
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refresh schedule is predetermined and treated as a constraint in the decision-making 
process. In these cases, the cost difference between the open and closed versions of 
ignores the capability cost (CCapability) since both versions adopt the same refresh plan. We 
considered these refresh-fixed cases by assigning both open and closed versions the  
A-RCI a 2-year refresh plan. The results for this case are the orange triangle lines in  
Figure 9 through Figure 11. In all situations, the original open A-RCI always has a lower 
life-cycle cost than the closed version. The results can be interpreted as, with the 2-year 
refresh constraint, the original A-RCI architecture is a more cost effective way to sustain 
the A-RCI systems. 

4 Discussion and conclusions 

The goals of implementing an open system architecture (OSA) are often defined in 
qualitative terms. One clear benefit is that an OSA can reduce the potential for ‘vendor 
lock’, i.e., it can increase the buyers’ power over vendors by enabling multi-vendor 
competition during virtually all phases of a system’s life cycle. This increased 
competition can also incentivise improved vendor performance and innovation, driving 
prices lower at the same time (Guertin and Womble, 2012). Often, it is taken for granted 
that the use of open system architecture (OSA) decreases the total life-cycle cost of a 
system. However, there is a lack of studies quantifying the cost avoidance and assessing 
the circumstances under which this assumption is true. This paper presents a framework 
for the quantitative analysis of OSA by modelling the life-cycle cost difference associated 
with system openness, including open architecture, open standard and commercial  
off-the-shelf (COTS). The cost impact of openness is evaluated by including these 
concepts of openness into lifetime events and corresponding costs. 

A case study of the A-RCI has been used to demonstrate the application of 
quantitative analysis on cost in relation to system openness. The life-cycle cost difference 
between the original A-RCI and a less open version of A-RCI was evaluated. Sensitivity 
analysis was performed to determine how the important factors, including refresh 
strategy, end-of-support year, risk profile and fleet size, affected the comparison result. 
Given the condition that the expected consequence of capability loss (Cq) is less than $3 
million, the closed version was found to be more cost effective than the original A-RCI 
architecture and its 2-year refresh plan, when the closed version did not refresh. Given a 
fixed 2-year refresh plan for both versions, the original A-RCI architecture is always 
better. It should be noted that the results presented in this paper are highly dependent on 
the input data that consists of our interpretation of the A-RCI and the A-RCI program, 
which may not be representative of the actual system or program. It should also be noted 
that programs like the A-RCI are not composed of just hardware and software, but also 
people whose behaviour, experience, and training all contribute to the final life-cycle cost 
of the system. 

Future work will include several elements. More details including shelf life impacts 
of components purchased in lifetime buys and other types of inventory management 
realities could be included. More openness impacts could also be considered in the 
model. For example, examining the impact of developing open-source software. It is 
believed that open source reduces the development cost since a wider community of 
developers are able to review and test the code. However, when the source code is 
published openly, hackers can easily find and exploit vulnerabilities in the software.7 
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Thus, the trade-off is that more money would need to be spent on cybersecurity 
enhancement. Second, further study will focus on developing the relationship between 
system openness and life-cycle cost. For example, a model of life-cycle cost associated 
with COTS functional density has been proposed from a software perspective (Abts, 
2002). For a complex system integrating both hardware and software, a more 
sophisticated model is needed. Moreover, since system openness is not just about the 
number of COTS, a quantitative metric for system openness should also be developed. 
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Appendix 

This appendix presents a simple example to demonstrate the life-cycle cost calculation 
used in this paper. For demonstration purposes this example is deterministic, however, in 
the A-RCI case presented in Section 3 of the paper, many of the inputs are probability 
distributions. The example architecture considered is a four-component/three-interface 
system shown in Figure A1. Components 1 and 3 are COTS. Components 2 and 4 are 
proprietary. The interfaces of components 2, 4 and components 1, 3 are open standards 
and the interface of component 1, 2 is a proprietary interface. Table A1 shows the 
parameters used in this example. 

Figure A1 The example architecture (see online version for colours) 

 

Note: The thick line denotes a proprietary interface; the thin line denotes an open 
standard. 
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Table A1 Example analysis parameters 

 Reliability 
(year) 

Support life 
(year) Design cost Procurement 

cost Install cost 

Proprietary W(1.75,8) 5.4 $500 $2 $0.2 
COTS W(1.75,8) 2.4 $100 $1 $0.1 
 Support life (year) Design cost 
Open standard 18 $500 
System 1 2 3 4 
Production time (year) 0 1 2 3 
Retire time (year) 30 30 30 30 
Holding cost $1/year per part 
Discount rate 0 

Step 1 Establish the refresh schedule8 for the architectural baseline that is based on the 
obsolescence dates of the components and the standard. In Figure A2, at the first 
refresh (t = 4), components 1 and 3 are refreshed because they are obsolete. 
Component 2 is also refreshed since it is connected to component 1 with 
proprietary interface. At the second refresh (t = 8) all components are refreshed 
since they are all obsolete. At the 5th refresh (t = 20), since the open standard is 
also obsolete, all the components and the open standard are refreshed. Once the 
required components at each design refresh are determined, the corresponding 
refresh development cost is the sum of the design cost of the refreshed 
components/standard. 

Figure A2 The architectural baseline timeline 

 

Step 2 Generate the system-level production and failure events. In Figure A3, we use 
component 3 and system 3 as an example. We first build the baseline version 
and the system version. The component 3 baseline version is based on the 
‘Comp3’ timeline in Figure A2. The version increases by one when there is a 
refresh development event occurring. System 3 is first produced at t = 2 and has 
a refresh interval of four years. Thereafter, every four years of system 3 
production (t = 6, 10, 14 and so on), the component 3 on system 3 is upgraded to 
the version based on the version in the baseline at the same year. In this case, 
there is a system production event at t = 2. The refresh production events are at 
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the times when the system component receives a refresh installation (version 
change). For the failure events, starting at the initial production, time-to-failures 
are sampled and put on the timeline until the next refresh production. This 
process should be done for all components in all systems. 

Figure A3 The component 3 and system timelines (see online version for colours) 

 

Note: The number in each block (year) represents the version 

Step 3 Make the required component bridge buy9 to support all post-obsolescence 
events. Once all system events are generated in step 2, for the same component, 
combine and sort all system-level events and the obsolescence events based on 
version and time. As shown in Table A2, The value of stock at component 
obsolescence, representing the number for the bridge buy, is the same as the 
number post-obsolescence events with the same version. At each of the post-
obsolescence events, the stock number decreases by one as a component is taken 
out of the inventory. 

Step 4 Evaluate the event cost. At the ‘obsolete’ event, the cost is the procurement cost 
of the bridge buy. For the events ‘system production’, ‘refresh production’ and 
‘failure’, if the component is not obsolete yet, the event cost is the component 
procurement cost plus the installation cost. If these events are after the obsolete 
date, the cost becomes the installation cost plus the inventory cost. The 
inventory cost is the multiplication of the stock number, holding time and the 
holding base cost. 

Table A2 Partial events of component 3 and the corresponding event costs 

Time Type Version System Stock Holding 
time 

Inventory 
cost 

Bridge 
buy cost 

Procurement 
+ installation 

cost 
0.00 System 

production 
1 1 0 0.00 0.00 0 1.1 

1.00 System 
production 

1 2 0 0.00 0.00 0 1.1 

2.00 System 
production 

1 3 0 0.00 0.00 0 1.1 

2.40 Obsolete 1 0 3 0.00 0.00 3 0 
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Table A2 Partial events of component 3 and the corresponding event costs (continued) 

Time Type Version System Stock Holding 
time 

Inventory 
cost 

Bridge 
buy cost 

Procurement 
+ installation 

cost 
3.00 System 

production 
1 4 3 0.60 1.80 0 0.1 

3.30 Failure 1 2 2 0.30 0.61 0 0.1 
4.80 Failure 1 3 1 2.69 2.69 0 0.1 
4.00 Refresh 

production 
2 1 0 0.00 0.00 0 1.1 

5.00 Refresh 
production 

2 2 0 0.00 0.00 0 1.1 

6.00 Refresh 
production 

2 3 0 0.00 0.00 0 1.1 

6.40 Obsolete 2 0 4 0.00 0.00 4 0 
6.92 Failure 2 2 4 0.52 2.09 0 0.1 
7.00 Refresh 

production 
2 4 3 0.08 0.24 0 0.1 

8.09 Failure 2 3 2 1.09 2.19 0 0.1 
9.18 Failure 2 3 1 1.08 1.08 0 0.1 

Step 5 Repeat Step 1 to Step 4 for sufficient trials (sampling the time-to-failure 
distributions to generate demands) to generate a total life-cycle cost distribution. 

Notes 
1 This paper uses OSA to refer to Open Systems Approach in general and MOSA to refer to the 

US DoD approach specifically. 
2 The KC-46A is a widebody, multirole aircraft that can refuel military aircraft inflight, and can 

also carry passengers, cargo, and patients (Boeing, n.d.). 
3 Some preliminary work done formulating a model based on the equation (1) appears in 

(Schramm, 2013). 
4 This means that even though the lowest life-cycle cost solution might be to field a system, 

make lifetime buys of parts as they become obsolete and never refresh the system, this may be 
an impractical solution for some systems because their relative capability of the system 
decreases over time. 

5 This doesn’t mean that all adversary systems are necessarily state-of-practice, but that the 
capability of the adversary population has the same trend as the state-of-practice. 

6 The accumulated cost difference in each year in Figure 7 does not represent the total life-cycle 
cost difference corresponding to an end-of-support year equal to that year. Varying the end-of-
support year affects the cost of the events during the life cycle, resulting in different cost 
difference accumulations. For example, the number of components purchased in a lifetime buy 
is a function of the end-of-support year. 
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7 Consequently, it is believed that proprietary software is better protected against external 
attacks. Experience shows that when open-source code is actively reviewed, it has proven to 
be secure (e.g., the popular operating system Linux) (Taylor, 2018). However, this may not be 
the case with software that has a limited distribution. This may also not be the case with air-
gapped systems like the A-RCI. Some also argue the vulnerabilities are more quickly detected 
in open systems (Hoepman and Jacobs, 2008). 

8 At each design refresh, obsolete or upgrade-required components are refreshed. In addition, 
these components might cause other components that are connected to them with proprietary 
interfaces to be refreshed. 

9 When the component becomes obsolete, a sufficient number of components are purchased and 
held in the inventory to support the fleet until the next refresh. 


