

 40 Int. J. Product Lifecycle Management, Vol. 14, No. 1, 2022

 Copyright © 2022 Inderscience Enterprises Ltd.

Analysis of the life-cycle cost and capability
trade-offs associated with the procurement and
sustainment of open systems

Shao-Peng Chen and Peter Sandborn*
Department of Mechanical Engineering,
University of Maryland,
College Park, MD 20742, USA
Email: spchen@umd.edu
Email: sandborn@umd.edu
*Corresponding author

William Lucyshyn
Center for Governance of Technology and Systems,
School of Public Policy,
University of Maryland,
College Park, MD 20742, USA
Email: lucyshyn@umd.edu

Abstract: System openness refers to the extent to which system components
(e.g., hardware and software) can be independently integrated, removed, or
replaced without adversely impacting the existing system. Openness is an
intuitively understood concept used to describe the architecture and
implementation of safety-, mission- and infrastructure-critical systems. While
openness is widely associated with life-cycle cost avoidance, system openness
can also lead to increased costs in some cases. Previous efforts to establish
value have relied on qualitative system analyses, with the results often
articulated as an intangible ‘openness score’ that fails to provide the
information necessary to understand the conditions under which there is a
life-cycle cost avoidance. This paper develops a model that quantifies the
relationship between system openness, life-cycle cost and system capability
risks. A case study that evaluates the acoustic rapid COTS insertion (A-RCI)
Sonar System is provided.

Keywords: open systems; life-cycle cost modelling; capability; obsolescence
management; acoustic rapid COTS insertion; A-RCI; open systems approach;
OSA; system of systems approach; SOSA; business case.

Reference to this paper should be made as follows: Chen, S-P., Sandborn, P.
and Lucyshyn, W. (2022) ‘Analysis of the life-cycle cost and capability
trade-offs associated with the procurement and sustainment of open systems’,
Int. J. Product Lifecycle Management, Vol. 14, No. 1, pp.40–69.

Biographical notes: Shao-Peng Chen is a PhD student in the Reliability
Engineering Program at the University of Maryland advised by
Dr. Peter Sandborn. He received his BS degree in Mechanical Engineering
from National Taiwan University and had a two-year experience as a
Mechanical Design Engineer in the Robotic Industry. His current research is

 Analysis of the life-cycle cost and capability trade-offs 41

focused on modelling and quantifying the life-cycle cost and benefits of open
systems. He is interested in strategizing system maintenance, including
constructing reliability models based on real-world data and implementing the
models for a simulation-based optimisation to improve current maintenance
practices.

Peter Sandborn is a Professor in the Department of Mechanical Engineering at
the University of Maryland. His research group develops models for optimising
the sustainment of critical systems. He is an Associate Editor of the IEEE
Transactions on Electronics Packaging Manufacturing and a member of the
Board of Directors of the PHM Society. He is a fellow of the IEEE, the ASME
and the PHM Society. He is the author of several books on cost modelling,
maintenance, and technology obsolescence and over 200 technical papers.

William Lucyshyn is a Research Professor and the Director of Research at the
Center for Governance of Technology and Systems, in the School of Public
Policy, at the University of Maryland. His current projects include public and
private sector partnering; transforming Department of Defense sustainment and
supply chain management; and identifying government sourcing and
acquisition best practices. Previously, he served as a SES Program Manager
and the Principal Technical Advisor to the Director of the DARPA and
currently serves on the editorial board for the Defense Acquisition Research
Journal.

This paper is a revised and expanded version of a paper entitled ‘Understanding
and modeling the life-cycle cost tradeoffs associated with the procurement of
open systems’ presented at Acquisition Research Symposium, Monterey,
California, USA, 13–14 May 2020.

1 Introduction

Manufacturers and sustainers of critical systems face many long-term budgetary
challenges. Critical systems, such as aircraft, rail, industrial controls, power generation,
defence and communications infrastructure, are expensive to procure and sustain over
their long-life cycles (measured in decades). Because of their prohibitively high cost of
replacement (which is in many cases borne by taxpayers), these safety-, mission-, and
infrastructure-critical systems cannot be replaced as often as they should be.
Concurrently, technology is evolving, which limits the useful life of many systems, thus
requiring frequent upgrades to maintain the capability that is required to remain
competitive or effective in accomplishing their intended purpose.

Critical systems have traditionally been developed using acquired proprietary systems
and interfaces, which make it challenging to modernise and reduces opportunities for
competition. Implementing an open-systems architecture permits the development and
acquisition of modular, interoperable systems enabling components to be added,
modified, or replaced by different vendors throughout the system’s life cycle. This
creates the potential for increased competition and innovation (Guertin and Womble,
2012). For example, the US Air Force’s program to upgrade the B-2 bomber’s
communications, networking, and defensive management systems will cost over
$2 billion, in part because the prime contractor owns all the necessary proprietary

 42 S-P. Chen et al.

technical data and software. Because this system is ‘closed’, competing this effort was
not a viable economic option (GAO, 2014).

A variety of strategies are being explored, or reemphasised, to increase the
efficiencies of acquisition processes. One way for the critical systems community to
minimise the cost and time needed to modify or upgrade systems is by using an open
systems approach (OSA) for system design and development. When used appropriately,
OSA can provide a degree of flexibility, enabling the integration of rapidly changing
technologies. However, as with all approaches, there are costs as well as benefits. This
paper explores a business case methodology to assess the application-specific cost
effectiveness of OSA.

1.1 Open systems approach

System openness refers to the extent to which system components (e.g., hardware and
software) can be independently integrated, removed, or replaced without causing an
adverse impact on the existing system. The quality, functionality, and efficiency of
open-system architectures have led to their wide acceptance by business and industry,
and they are starting to be used by nations that have advanced defence industries
(Mladenović et al., 2013).

For example, the US Department of Defense (DoD) established a program in 1994 to
promote the use of open-systems approaches from the top-down. In fact, the acquisition
strategy for a given system must identify where, why, and how modular open systems
will be used (DoD, 2015). The DoD’s OSA, now referred to as modular open systems
approach (MOSA),1 promotes the use of modular design to encourage companies to
improve and manufacture technologies that are interoperable with the DoD’s current
system.

The UK’s Ministry of Defence (MoD) has a similar strategy for the use of
open-systems architecture referred to as the system of systems approach (SOSA) open
systems strategy. The SOSA open systems strategy describes the open-systems vision and
the roadmap for achieving the required level of openness across the defence enterprise.
The MoD’s policy provides high-level guidance and states that an open-systems approach
should be adopted to realise benefits that include: ease of interoperability, ease of
modification, improved integration, improved opportunities for competition and
innovation, and improve obsolescence management (UK MoD, 2013). The UK along
with several other countries (Norway, Germany and Sweden) have also adopted programs
to upgrade their submarines’ combat management systems using an open systems
approach and commercial off the shelf (COTS) components (Peruzzi, 2019). Finally,
although the Australian Defence Forces do not mandate the use of open system
architectures, a 2016 Defence White Paper identified the opportunities offered using
open-system design concepts (Dunn et al., 2018).

Conventional wisdom supports the notion of open systems but quantifying the actual
cost avoidance remains elusive. The objective of this paper is to create a model that
allows the quantification of the relationship between system openness and life-cycle cost
on an application-specific basis. An example of this could be the use of radar technology
on an aircraft. With an OSA, the radar technology could be replaced or upgraded without
replacing numerous related subsystems. Closed-systems architecture, on the other hand,
effectively restricts access to configuration and programming information from outside
parties. Closed systems often make upgrading a piece of equipment difficult and costly.

 Analysis of the life-cycle cost and capability trade-offs 43

Further, closed systems can lead to ‘vendor lock’ where the customer becomes dependent
on a single service provider because the costs of changing vendors are prohibitive.

Historically, critical functionality in complex electronic systems was provided by
custom-made components and custom proprietary architectures, requiring long
development times and high development costs. However, recent technological
advancements have allowed for the increased generalisability of both hardware and
software (and system architecture); now components can be designed once, and then used
in many different applications. These advancements have increased the viability of using
OSA in general, and a modular open systems approach (MOSA) in particular (Abbott
et al., 2008).

While the defence community supports implementing OSA whenever possible, there
are numerous reasons to be cautious since business and engineering-trade-offs must be
made that could change the incentive structure and reduce the system effectiveness. First,
if there are no standards for a new product, then a closed-system architecture may be best
until standards are created (Firesmith, 2015). Second, if there is only one vendor that can
provide a subsystem or service (i.e., a ‘sole source’), then attempting to make an open
system may have no benefit; for example, the remote vision system on the Boeing
KC-46A2 is sole sourced to Boeing (SAF Public Affairs, 2020). This newly developed
complex system is critical to the aircraft’s primary mission (aerial refuelling), it must be
fully integrated with the proprietary aircraft systems and has limited/no application to
other military systems or commercial use. As a result, a sole source development was the
most efficient solution. Finally, the system support duration and the quantity of systems
supported have to be carefully considered in the open versus closed system design
decision (e.g., see the A-RCI case study presented in Section 3 of this paper).

Generally, it is implicitly assumed that the use of OSA decreases the total life-cycle
cost of a system. Leveraging existing open technology, including COTS components,
avoids many costs associated with designing custom systems, and reduces the time
required for the development or refresh of a system (Logan, 2004). The use of OSA helps
mitigate the effects of obsolescence, lengthens the system’s support life, allows for the
incremental insertion of new technologies (OSJTF, 2004; Boudreau, 2006), and evolving
functionality. The use of well-defined standards promotes smooth interfacing both within
and between systems, while the proliferation of common components has the positive
impact of fostering competition between suppliers. Component design reuse (within and
between systems) eliminates redundant components, thus reducing logistical costs.

However, there are costs associated with openness that should be considered.
Building a subsystem from commercially available components might add unnecessary
functionality into the system and increase the system complexity, resulting additional
effort for component and system-level qualification (Grant et al., 2000; Hanratty et al.,
2002; Clough, 2003). Alternatively, it may be necessary to modify COTS components to
meet performance requirements (Wright et al., 1997; Jensen and Petersen, 1982), thereby
adding costs. In addition, the enterprise that manages the system likely has no control
over the supply chains for COTS components, which tend to be more volatile than
proprietary ones (Lewis et al., 2000). This may make it necessary to refresh open systems
designs more frequently (Clark and Clark, 2007; Abts, 2002), which leads to an increase
in the number of fielded configurations, which complicates logistics, resulting in more
expense.

 44 S-P. Chen et al.

This paper seeks to quantitatively analyse OSA, specifically the relationship between
OSA and life-cycle cost.

1.2 Existing work

Several previous efforts have addressed the measurement of system openness. The
MOSA Program Assessment and Rating Tool (PART or MOSA PART) was developed
by the US Navy’s Open Systems Joint Task Force (OSJTF) (OSJTF, 2004). Based upon
MOSA PART, the Naval Open Architecture Enterprise Team (OAET) developed the
Open Architecture Assessment Model (OAAM) and the Open Architecture Assessment
Tool (OAAT) (NOAET, 2009). These tools used similar user-based ratings to measure a
system’s openness. Tool users first answer a series of self-rating questions. Based on the
weights of each question, the tools then calculate the final ratings for system openness
principles. The tools primarily ask system-level and ‘to what extent’ questions, e.g.,
‘to what extent do system components and selected commercial products conform to
standards selected for system interfaces?’. The answers to these qualitative questions are
highly dependent on the users’ subjective points of view towards the system and
program.

In 2011 and 2012, several parties including the US Air Force Research Laboratory’s
RYM subgroup collaborated to develop a set of metrics to evaluate the openness of an
architecture. This effort resulted in a new tool called the MOSA metrics calculator
(MOSA, 2012). Instead of asking subjective system-level questions, the MOSA metrics
calculator uses objective component-level questions. The component characteristics that
result from the MOSA metrics calculator are more quantifiable and can be accumulated.

In addition to the problem of subjectivity, a common problem that these tools share is
that they were not designed to assess the cost associated with openness. The main goal of
PART, OAAT, and the MOSA metrics calculator is measuring the level of conformance
to the open system principles, while assuming that increased openness is always
beneficial. Without accounting for cost in detail, assuming that the value of benefits
outweighs the costs in every case is questionable.

Another approach to measuring openness comes from PMH Systems and the
University of Southampton. This work uses a quantifiable metric, the fraction of
interfaces that use open standards, and a stochastic model to estimate the decrease in cost
and development time associated with increasing openness (Henderson, 2009). However,
the model also implicitly relies on the assumption that increased openness is always
beneficial. Additionally, the metric developed cannot resolve different levels of openness
and most importantly only addresses the design phase, ignoring significant costs and
avoidances that occur later in the system’s life cycle.

In the software industry, the concept of COTS has been widely discussed since late
1990s and life-cycle-cost models of COTS-based systems have been proposed by several
researchers. COTS integration cost calculator (CICC) and constructive COTS cost model
(COCOTS) estimate the costs incurred to integrate a COTS software into a larger system
(Abts and Boehm, 1997; Abts et al., 2000). These proposed models are limited to the
impact of COTS software implementations.

Previous efforts either rely on a highly qualitative analysis of a system to compare
system implementations to determine openness, or are limited to specific systems and
partial system openness, e.g., the evaluation of COTS in software systems. These
approaches do not provide sufficient information to understand the conditions under

 Analysis of the life-cycle cost and capability trade-offs 45

which life-cycle cost avoidance can be maximised (or whether there even is cost
avoidance), or to make business case decisions. The objective of this paper is to quantify
the relationship between system openness and life-cycle cost.

Section 2 of this paper describes a stochastic discrete-event simulation model
developed to determine the difference in life-cycle and implementation cost between two
versions of the same system (having different levels of openness). Section 2 also
introduces a model to quantify the value of capability updates to the system. Section 3
provides a case study using the model. In Section 4 we discuss the generalisation of the
model.

2 Model development

In this study, our goal is to compare the life-cycle cost between two different system
configurations, determining which one is more cost beneficial. This section presents a
stochastic discrete-event simulation developed to generate a list of system life-cycle
events that were then used as the inputs to a cost model. The cost model is then used to
determine the difference in life-cycle cost between two versions of the same system (the
versions having different levels of openness). A demonstration version of this process is
provided in the Appendix.

The total life-cycle cost incurred designing, building, operating, and retiring a system
is,3

= + + + +Total Development Production O&S Refresh CapabilityC C C C C C (1)

where CDevelopment are the non-recurring costs of system design, development and
qualification; CProduction captures the recurring costs to manufacture and field the system;
CO&S are the costs of sustainment incurred from system deployment to the
end-of-support; and CRefresh are the costs of implementing and qualifying technology
refresh(es) during the system support life. CCapability are the potential costs associated with
the technology in the system being out-of-date relative to the state-of-practice.

A discrete-event simulation was developed as the first step of the life-cycle cost
comparison process in this paper. In general, discrete-event simulators model a sequence
of events along a timeline. A deterministic schedule or probability distributions are used
as inputs to the simulator to predict the event dates. At each event, various properties of
the system can be calculated and accumulated. The timeline is simulated (and relevant
parameters accumulated) through many possible time histories using Monte Carlo
sampling, to create a statistical interpretation of the life-cycle costs.

In the discrete-event simulator developed for this paper, the event dates are
determined by sampling time-to-failure (TTF) distributions, forecasted component
obsolescence date distributions, and a predetermined refresh/redesign schedule. The
events of interest are maintenance events, production events (delivery of new systems),
retirement events (retirement of fielded systems), logistics events (management of spares,
lifetime buys of parts to manage obsolescence) and design redesigns/refreshes.

Sections 2.1 and 2.2 discuss the costs in equation (1) and how they were determined
by the cost model. Section 2.2 illustrates how capability cost is valued by model.

 46 S-P. Chen et al.

2.1 Cost model

Figure 1 shows the structure of the life-cycle cost used in this paper. The life-cycle cost
includes five cost categories: development/adoption, production, refresh, operation and
support (O&S) and capability. These cost categories were selected because they are
sensitive to the degree of system openness. For example, the cost of fuel is one particular
cost that may not be affected by openness, so it is not considered in our life-cycle cost
structure. Ultimately, we are only interested in the difference in the life-cycle cost
between cases with varying degrees of openness, therefore, some costs can be omitted
(i.e., they subtract out of the analysis, see Section 3.2.1).

Figure 1 Life-cycle cost structure

2.1.1 Development/adoption costs (CDevelopment)
CDevelopment is the cost associated with designing a new system that satisfies a set of
requirements, and includes the majority of the costs incurred before the final design is
selected, including the cost of designing the system architecture and customised
components, adopting appropriate COTS components and open standards, as well as the
costs of partial or alternative designs considered, but not implemented. Prototyping and
design overhead costs are included. CDevelopment also includes the non-recurring
engineering (NRE) costs, which may consist of the qualification testing used to
demonstrate that the standards, components, subsystems, and the complete system meet
performance, reliability, security, and other requirements.

In the cost model, the cost of development/adoption is only incurred at the beginning
of the timeline when the first version of the architecture was developed. It can be divided
to three sub-categories corresponding to design/adoption and qualification of the three
aspects of the system: architecture, component and standard.

The design and qualification cost of the architecture is related to the complexity and
the openness of the architecture. For example, a more complicated architecture with more
components and interactions within the architecture requires higher cost for design and
qualification. In addition, a more open architecture means that more open standards are
applied at the interfaces in the architecture. Design for open standards requires more
activities such as evaluating if current and future components can conform to the standard
so that the components can be truly ‘plug-and-play’. As a result, the process of design for
an open standard may cost more than a proprietary interface.

The design and qualification cost of components is the cost to design or select the
components for the system. This cost depends on the type of components used in the

 Analysis of the life-cycle cost and capability trade-offs 47

architecture. Typically, using a COTS component results in a smaller design cost than
creating a proprietary component since the former can be acquired directly from the
market. Each component also requires qualification testing to assure it meets the criteria
of performance and reliability. In our model, the total adoption/development cost
associated with the components is calculated by summing the design/qualification cost of
each type of component that is used in the architecture.

The design and qualification cost of standards is the cost to select the open standards.
Standards are adopted based on maturity, market acceptance, and potential availability
for future system upgrades. Similar to the component design/qualification cost, our cost
model also assumes that the design and qualification cost of standards only depends on
the type of standards that are chosen in the architecture.

2.1.2 Production costs (CProduction)
CProduction includes all costs to manufacture and field the system, including component
procurement, assembly/manufacturing, stress screening of hardware components (if any),
and recurring testing costs.

The production events are generated based on the system’s production schedule. In
our model, the production (recurring) cost of a system instance is defined as the sum of
the costs of the procurement of all the system components and the installation of the
components into the final system in the field. The procurement and installation cost of a
component depends on the type of component. For the same functionality, the production
cost of a COTS component is assumed to be less expensive than a proprietary
component.

2.1.3 Operation and support costs (CO&S)
CO&S are the costs of sustainment incurred from system deployment to the end-of-support,
including the costs of: system operation, modifying, maintaining, supplying, training, and
inventory supporting. The events associated with sustainment include, but are not limited
to: system failure repair, periodic maintenance, sparing management and obsolescence
mitigation.

Maintenance events occur when a system failure occurs. Maintenance includes the
labor to perform maintenance and the cost of spare components (if relevant). The model
assumes that the downtime associated with a failure is negligible (availability impacts are
not included, i.e., we assume that they are the same for the cases compared and therefore
subtract out – see Section 3.2.1). The model also assumes that replacement components
(spares) are good-as-new. If the component is still available in the market, it will be
procured as needed.

When the obsolescence of a component occurs, a bridge or lifetime buy is made to
procure a sufficient number of components to support the system until the next system
refresh or the end of system support, whichever happens the soonest – these components
must cover future production and maintenance needs. The cost incurred at the
obsolescence event is the procurement cost of the bridge buy of components.

Since bridge or lifetime buy components are purchased in advance and stored in
inventory, each component incurs an additional inventory cost that depends on the
duration of its storage. Inventory (holding) costs are charged when the parts are taken
from the inventory and used for maintenance. The shelf life of all components is assumed

 48 S-P. Chen et al.

to be long enough that parts bought in a lifetime buy can be used for the rest of the
system support life.

2.1.4 Refresh costs (CRefresh)
Through the entire life-cycle, system design refresh may be desirable (or necessary) to
assure that the system remains supportable or to maintain the technological capability of
the system (see Section 2.2). System refresh replaces the obsolete or technologically
out-of-date components with procurable and possibly more technologically advance
components. Refresh costs include the cost to develop or adopt the components, the cost
to deliver the refresh to the individual system, and the cost to re-qualify the system as
needed.

In the cost model, refresh costs consist of two cost sub-categories: refresh
development/adoption and refresh production.

A predetermined schedule of refresh development events is provided as an input to
the model. The development of a design refresh results in a new baseline architecture,
with a new version of components or standards in the architecture. The system follows
the current architecture baseline for production and refreshes delivery until the next
refresh development occurs.

At a refresh development event, every component and standard in the architecture is
examined. If a component is obsolete or is required to be upgraded, it will be refreshed. A
refresh-required component might affect other components or standards to be refreshed
due to functional dependencies in the architecture.

In our model, a refreshed component is replaced with another component with the
same function, same procurement life, and good-as-new reliability. If the refreshed
component interfaces with its surrounding components with open standards, a
‘plug-and-play’ refresh may be achieved, i.e., we could switch the component without
affecting the surrounding components and standards and replace it with a new component
that conforms to the open standard. On the other hand, if the connection between
components is a proprietary link or the open standard is obsolete, the new component
may require that the connected components also have to be refreshed.

The structure of refresh development/adoption cost is similar to CDevelopment described
in Section 2.1.1 except that the design and qualification cost of the architecture is
excluded from the refresh cost. Since the architecture itself does not change throughout
the life-cycle, there is no cost associate with the architecture design. Therefore, the
refresh development/adoption cost is the sum of the design and qualification cost of the
components and the standards that are required to be refreshed.

For refresh production, every fielded system adopts the same refresh production
interval after its initial production. Therefore, the actual delivery date of the refresh to
each system might be different. For example, for a 4-year refresh schedule, a system
fielded in year 0 would receive its refresh in years 4, 8, 12, etc. Another system fielded in
year 3 would receive its refresh in years 7, 11, 15, etc. The version of components
received for refreshes depends on the refresh development baseline available in the year
of the refresh for the particular fielded instance of the system. An example of evaluating
the component version in a system instance is demonstrated in the Appendix.

The refresh production cost has the same structure as production cost, including the
cost of purchasing and assembly of the components to the system. The refresh production

 Analysis of the life-cycle cost and capability trade-offs 49

cost in each system refresh production is the total procurement cost and installation of the
components that required to be delivered to the legacy system.

2.2 Cost of system technological capability (CCapability)

Technological superiority is a priority for some critical systems, especially defense
systems. With more advanced technological capability, systems are more competitive and
the possible threat from adversaries may be reduced. To maintain technological
superiority, constant system upgrades may be required. In systems where technological
superiority is a priority, the system’s upgrade frequency may be fixed and the life-cycle
cost is optimised based on this constraint. In other systems, technological capability may
be less important and its value can be traded off against other cost factors. This study
considers both cases in the case study presented in Section 3:

1 the capability benefit of implementing technology refresh is quantified, as one of the
cost factors, i.e., the cost of system technological capability (CCapability)

2 open versus closed implementations of a system with a fixed refresh schedule.

In general, capability is defined as “the ability to achieve a desired effect under specified
standards and conditions through combinations of means and ways to perform a set of
tasks” (DoDAF, n.d.). For the purposes of this paper, we will define the system’s
technological capability as its ability to accomplish the ‘mission’ it was designed for. For
example, the absolute capability of a sonar system is its effectiveness in detecting objects
in the surrounding area, while its relative capability is its effectiveness detecting
adversaries early enough to take appropriate action. In the case of a sonar system, the
system’s technological capability is determined by performance parameters that include:
detection range, response time, detection accuracy, etc.

The cost of system technological capability is not just the cost to implement the
capability, which is already included in the cost model described in Section 2.1, but the
costs that result from the capability (or lack of capability). More precisely, the cost is a
result of the effectiveness of the system in performing the tasks required of it. Since the
effectiveness is strongly tied to system upgrade and refresh, the cost of system
technological capability can also be viewed as a metric to quantify the value of a
particular refresh plan.

Studies that are related to the concept of capability cost can be found in the area of
refresh plan quantification. Figure 2 shows two examples of how a refresh plan can be
valued. These studies started by assigning an absolute value to system performance or
capability. The system value is a function of time and can be increased by refreshing the
system technology. Engel and Browning (2008) assumed that there is an upper limit of
system value, called the ‘value desired by stakeholders’, which is also an increasing
function over time, see Figure 2. The lifetime value loss is the area between the actual
system value and value desired by stakeholders. Alternatively, Zellers (2016) assumes
that the system’s minimum requirements over time is a lower bound, and life-cycle value
is the area between the two step curves in Figure 2. Both approaches use the area between
system value and either the upper bound or lower bound to represent the total life-cycle
loss/value (both models are essentially equivalent).

 50 S-P. Chen et al.

Figure 2 Quantification of the loss/value of a refresh plan (see online version for colours)

In this paper, instead of using an absolute capability metric, e.g., Figure 2, the concept of
relative capability is introduced. For a system that is designed to operate in a competitive
environment such as defence, the cost of system technological capability is related to the
system competitiveness among the population of adversaries. Therefore, relative
capability between competitors is a more appropriate metric to reflect the cost of system
capability than absolute capability. In Figure 3, the distribution curves represent how an
adversary’s capability evolves over time (from t1 to t2), and the vertical line indicates the
fixed capability of a fielded system that does not receive any refreshes in the same
timeframe. The population of adversary systems is represented by a distribution
indicating the variance of the capability in adversary systems. The area under the
distribution to the right of the fixed system capability represents the probability of the
fixed system losing the capability competition to an adversary system. Figure 3
demonstrates that even if a system’s absolute capability is fixed (i.e., does not change
from t1 to t2), it may be losing its capability relative to the environment it is in. Decreases
in relative capability represent a cost, which is either a decrease in the effectiveness of the
system in performing the mission it was designed to perform, or an increase in the risk of
losing the system4.

The relative capability of a system instance can be represented by the shaded area in
Figure 3, the probability that the system capability is less than an adversary’s system
capability. At a given time point, the probability of the system losing the capability
competition can be written as p(Δt) where Δt, the technology lag time, represents the
technology age difference between the system and the advisory at the time point. That is,
at a time point when the system is installed with an older technology, i.e., a positive Δt,
the system would have a larger value of p(Δt), and therefore is more likely to lose the
capability competition to its adversary.

 Analysis of the life-cycle cost and capability trade-offs 51

Figure 3 The adversary’s absolute capability distribution shifts to the right over time relative to a
fixed system capability (see online version for colours)

In the case study presented in Section 3, we assume that the adversary capability follows
state-of-practice technology and therefore the Δt is always positive5. The Δt of a system
at a given time point can be represented as the age of the current architecture used in the
system. To be more specific, Δt is the time difference between the current time point and
the time of development completion of the architecture currently used in the system, i.e.,
the time point when the architecture is still state-of-practice. For example, if there is a
system instance where its current architecture was first developed in 2002. The
technology lag time for this system instance in 2006 is four years. If there is no refresh
delivery to the system instance, Δt would only increase over time.

Each delivery of a technology refresh to the fielded system instance resets Δt and the
relative capability to a higher level (lower probability of losing the capability
competition). Frequent technology refreshes keep the system more up-to-date during its
life cycle, reducing the probability of losing the technology competition. Note, although
we are discussing the cost of relative capability in the context of a defence application,
the concept is relevant to non-defence systems too. For example, a system whose
competitiveness in the marketplace depends on constant technology refreshing – the risk
could be loss of market share.

To obtain the quantitative cost, we must construct the relationship between relative
capability and cost. For a defence system, the cost of system capability may translate into
risk, which evaluates the potential loss of systems and missions. The life-cycle risk of a
system is the sum of system annual risk over its operation life.

Equation (2) provides the general formulation of the risk cost (cost per unit time) of a
system instance in a given time window associated with relative capability.

qR IpC= (2)

In equation (2), I represents the expected number of events (encountering an adversary
system) in a time window, e.g., 2 times per year. The p is defined as the probability that
the system capability is less than an adversary system capability in this time window. Cq
is the expected consequence (measured as a cost per event) if a system loses the
capability competition to the adversary.

 52 S-P. Chen et al.

Based on equation (2), the calculation of the total cost of technological capability is
the sum of the annual risk cost of each system instance throughout the life cycle,

(),
1 1

Δ
= =

=
N T

Capability i j q
i j

C Ip t C (3)

where N is the number of systems, i.e., fleet size, and T is the total number of support
years for the fleet of systems. In equation (3), I and Cq are both assumed to be
deterministic values (they could be represented by probability distributions if the
appropriate information was available).

For p(Δti,j), the relationship between Δt and the probability p was first subjectively
determined. The Δti,j of ith system instance (note, system instances are distinguished
because not all of the system instances receive the results of a technology refresh at the
same time) in jth year can be evaluated based on the production/refresh schedule and the
adversary technology evolution assessment process. The corresponding p can be
determined using the Δt in the subjective function p(Δt). The product Ip(Δti,j)Cq models
the expected annual cost of the system instance i in year j, given the discrete technology
lag time Δt.

3 A-RCI case study

In this section, we present a case study of the acoustic rapid COTS insertion (A-RCI)
sonar system. The A-RCI program, implemented a COTS-based open architecture for a
submarine sonar signal processing system. The A-RCI eliminated traditional system
architecture that used specialised proprietary components that were built to military
specification. Embracing the use of COTS and commercial standards, allowed for the
sonar signal processing system to be upgraded, without altering other sonar system
components (Guertin and Miller, 1998). In addition, the A-RCI case is also regarded as a
successful example of open-systems architecture. One study cites preliminary results
compiled from ten years of data on both the acoustic rapid COTS insertion program and
its predecessor indicating a life-cycle cost improvement of nearly 5:1 (Boudreau, 2006).

The transformation from a closed system to a COTS-based open system was
completed in a four-phase implementation strategy (Guertin and Miller, 1998). In
phases 1 and 2, A-RCI developed a multi-purpose processor (MPP) to process the data
from both a towed array (TA) and a hull array (HA). Phase 3 added spherical array MPP
and switch MPP to replace the legacy system spherical array processing functions.
Phase 4 integrated another high-frequency sail array MPP into A-RCI. By the end of
phase 4, a COTS-based open-architecture A-RCI system completely replaced the original
legacy system.

In order to exercise the model described in Section 2, we examined the life-cycle cost
difference between two different A-RCI configurations with different degrees of
openness.

We wish to clarify that the data describing the A-RCI in this section represents our
interpretation of the A-RCI and the A-RCI program, and may not exactly match the
actual system or program. The A-RCI is a defence system that spans many years, and as
such, a complete dataset describing the A-RCI is not publicly available.

 Analysis of the life-cycle cost and capability trade-offs 53

Table 1 Input parameters for modelling the A-RCI

Input parameters Input value Source
Architecture Figure 4 Guertin and Miller

(1998)
Production schedule Figure 6 Schuster (2007)
Retirement schedule Figure 6 Schuster (2007)
Architecture
R&D cost

Phase I $48,350,000 From calibration,
see Section 3.1.1 Phase II $39,015,000

Phase III $55,745,000
Phase IV $56,825,000

Hardware:
COTS cards

R&D cost per card type $2,083,333 From calibration,
see Section 3.1.1 Procurement cost per card $7,331

Installation cost per card $733
Reliability Weibull (1.75, 12)
Procurement life 3 years Assumed value

Hardware:
proprietary
cards

R&D cost per card type $3,125,000 From calibration,
see Section 3.1.1 Procurement cost per card $14,545

Installation cost per card $1,454
Reliability Weibull (1.75, 12)
Procurement life 6 years Assumed value

Hardware:
infrastructure

R&D cost per infrastructure type $1,000,000 From calibration,
see Section 3.1.1 Procurement cost per infrastructure $400,000

Installation cost per infrastructure $40,000
Reliability Weibull (1.75, 30)
Procurement life 20 years Assumed value

Software R&D cost $12,500,000 From calibration,
see Section 3.1.1 Procurement cost $90,909

Installation cost $9,090
Reliability Weibull (1.75, 12)
Procurement life 3 years Assumed value

Standards R&D cost per standard type $2,000,000 From calibration,
see Section 3.1.1

Procurement life 10 years Assumed value
Maintenance action cost/failure $38,389 From calibration,

see Section 3.1.1
Bridge buy buffer % of demand 50% Assumed value
Holding cost/component/year $1,000 Assumed value
WACC 5%/year Assumed value

 54 S-P. Chen et al.

3.1 A-RCI input data

In this section, the data describing the A-RCI case is provided. Table 1 lists the input
parameters used in the simulation for the A-RCI. Some inputs had to be assumed since
there was no A-RCI specific information available, e.g., component procurement life.
Some inputs were determined through calibration of the model against known A-RCI
life-cycle costs, see Section 3.1.1.

The architectural input data was based on Guertin and Miller (1998). Figure 4 shows
the A-RCI architecture assumed in this analysis. A-RCI consists of four primary cabinets.
Inside each cabinet there are one or more VME drawers containing an array of cards. The
software connections between the cabinets are indicated as middleware. Open standards
are also represented by the linkages shown in Figure 4. The actual number of components
(cards) is larger than those shown in Figure 4. The components that are common to all
system architectures, i.e., they would be the same whether an open or closed system are
omitted. There is no need to model the common components since their impact on the
life-cycle cost will subtract out of the relative cost model (see Section 3.2.1).

Figure 4 Architecture assumed in the A-RCI case study (see online version for colours)

Due to the complexity of the A-RCI architectures, we adopted a design structure matrix
(Eppinger and Browning, 2016) approach to model the A-RCI. The design structure
matrix captures how the system’s components interact with each other. Capturing the
component interactions is necessary to cost the design refreshes, i.e., when a particular
component is changed at a refresh, other required component changes are captured by the
design matrix; similarly, the interactions captured in the design matrix guide
re-qualification requirements for the system at refreshes.

 Analysis of the life-cycle cost and capability trade-offs 55

Figure 5 Partial design matrix of the A-RCI phase 3 architecture

Figure 6 Installation profile for the A-RCI (see online version for colours)

Nu
m

be
r o

f
Hu

lls

Source: Schuster (2007)

 56 S-P. Chen et al.

Because of space constraints, Figure 5 only shows the portion of the design structure
matrix of the A-RCI phase 3 architecture that represents the architecture of TA/HA MPP.
For an element aij in the ith row and jth column, the value of the element indicates how
component i interacts with component j. If aij is blank, there is no dependency between
components i and j. Different values of aij represent different types of interfaces between
components i and j. The values of aij have no quantitative meaning, they just enumerate
distinct connections: positive integers represent the open standards used in A-RCI (1:
middleware; 2: FDDI, ATM; 3: VMEbus, RACEway; 4: FCS, Ethernet). The modules
shown in Figure 5 are adopting all open standards.

The installation and retirement profile and number of system instances of the A-RCI
is shown in Figure 6 (Schuster, 2007).

3.1.1 Data calibration

The components and the standards that were used in the A-RCI were described in detail
by Guertin and Miller (1998), however, the development and production cost, reliability
and procurement life are not provided. To determine these values, we reverse-engineered
the reported A-RCI life-cycle cost data.

The reported A-RCI life-cycle cost data was obtained from a 2006 presentation from
ASSETT Corporation (ASSETT, 2006) that summarised top-down and bottom-up cost
estimations for the A-RCI system from 1996 through 2006. The ASSETT presentation
provided the A-RCI annual cost data based on annual budget and contract data, which
were mapped into three categories: Development cost, Production cost and O&S cost.

A simplified surrogate life-cycle cost model of intermediate variables was built for
calibration. The intermediate variables included quantities such as average development
cost of the architecture and average production cost per system. After the intermediate
variables were calibrated to the known life-cycle cost totals, they were combined with
other known information such as the number of components and architectures, to
estimate the simulation model data. For example, we first estimated the refresh
development cost per year intermediate variable, based on the total development cost
from ASSET and the refresh schedule used for the A-RCI. The average refresh cost per
component was the refresh development cost per year divided by the number of refreshed
components in each.

The details of calibration process can be found in (Chen, 2022). The results of the
calibration process are included in Table 1.

3.2 Modelling results

In this study, two system configurations were compared based on their life-cycle cost:

Original A-RCI the actual A-RCI architecture, more open.

Closed version a less-open version of A-RCI where two of the modules (Spherical
Array MPP and Switch MPP in Figure 4) adopted closed standards
and proprietary components were used instead of COTS parts.

Both configurations followed the same production/retirement schedule (Figure 6) and
used the same input data described in Table 1.

 Analysis of the life-cycle cost and capability trade-offs 57

In sections that follow, the concept of a relative life-cycle cost is introduced using an
example simulation result. Selected sensitivity analysis was performed to evaluate how
three main key parameters, risk profile, end-of-support year and fleet size, affect the
simulation result.

3.2.1 Relative life-cycle cost analysis approach
It is often not practical to calculate the absolute value of all the life-cycle costs for a
system. To assess the cost of openness we are actually only interested in the difference in
the costs discussed in Sections 2.1 and 2.2 between the two system implementations. This
approach is referred to as a relative cost model (Sandborn, 2017). The advantage of a
relative cost model is that all the costs that are a ‘wash’ between the two architectures
(i.e., the same) do not have to be modelled because they subtract out. The cost difference
between two cases is significantly easier to determine than the absolute cost of the cases.
The model described in this paper never produces absolute costs, only the cost
differences between two cases.

Figure 7 The relative cost model approach to obtain the accumulated cost difference (expected
consequence per capability competition loss is Cq = $1 million, end-of-support =
36 years, 6-year refresh interval) year 0 is FY99 (see online version for colours)

Figure 7 shows the process of obtaining relative cost, including an example result from
the simulation model. On the left side of Figure 7 are the absolute accumulated costs for
the entire fleet of two scenarios calculated from the discrete-event simulation. In both
cases many time-history solutions are used (each is the result of a unique combination of
samples from the input probability distributions, so each is one possible time history for
the fleet). The darker solid line in the right figure is the mean of the time histories. The
absolute accumulated costs for the two system configurations on the left side of Figure 7
are NOT particularly meaningful, because the relevant life-cycle costs that are not
affected by system openness are omitted. The right side of Figure 7 shows the difference
between the two system costs. The vertical axis in the right figure is the life-cycle cost
difference. Figure 7 shows that at the end of 36 years, the mean value of the accumulated

 58 S-P. Chen et al.

cost different is greater than zero, indicating that the original version of the A-RCI will
have a lower life-cycle cost than the closed version for this example case.

Figure 8 Life-cycle cost difference as a function of end-of-support year (expected consequence
per capability competition loss is Cq = $1 million, 6-year refresh interval) year 0 is
FY99 (see online version for colours)

Figure 8 shows the life-cycle cost difference as a function of end-of-support year.6 The
result in Figure 7 is the 36 year end-of-support data point in Figure 8. In Figure 8, a
positive result indicates that given the end-of-support life, the original A-RCI
configuration is more cost effective, while a negative result value indicates that the
less-open version of A-RCI is more cost effective. This result can be interpreted as: for
the assumed risk profile, if the end-of-support year is between 35 to 39, we should choose
the less-open version of A-RCI rather than the original A-RCI. The results shown in
Figures 7 and 8 represent one specific case to demonstrate the methodology. In the
sections that follow we will conduct a more detailed analysis comparing the open and
closed versions of the A-RCI.

3.2.2 The effect of refresh strategy
In the previous section, we demonstrated how the simulation can be used to assess the
life-cycle cost difference between two system configurations. In this section, we examine
how the best refresh strategy could be determine based on its effect on the life-cycle cost.

Refresh strategy affects both refresh cost and capability cost. More frequent
refreshing costs more, but, a more frequent refresh strategy can keep fielded systems
more up-to-date thereby reducing the cost of capability. For the same openness
configuration, frequent refresh may be preferable when the system is used in a
competitive environment.

 Analysis of the life-cycle cost and capability trade-offs 59

We first compared the life-cycle cost of the original (open) A-RCI and the closed
version assuming the same A-RCI refresh cycle, i.e., two-year refresh interval. The result
in Figure 9 shows that the original A-RCI is always more beneficial than the closed
version (for a 2-year refresh interval).

We next varied the refresh strategy of the less open version of A-RCI, but kept the
original A-RCI configuration with the same original 2-year refresh interval. Three other
refresh strategies were considered: no refresh, 6-year and 4-year refresh intervals shown
in Figure 9. In this case, no-refresh is the optimum refresh strategy for the closed version
of A-RCI since the curve is below the other cases and below 0 in Figure 9. The closed
version of A-RCI is more cost effective than the original as the no-refresh curve is
negative in the end-of-support year range from 30 to 45.

Figure 9 Life-cycle cost difference given different refresh strategies (Cq = $1M assumed) year 0
is equivalent to FY99 (see online version for colours)

Figure 9 indicates that more frequent refresh increases the life-cycle cost difference
between the closed version and the original version. As stated previously, refresh cost
and capability cost are two cost factors that are directly influenced by the frequency of
refresh. Frequent refresh results in high refresh cost but lower capability cost. Figure 9
shows that for a $1M consequence cost, the increase in refresh cost is more significant
than the decrease in the capability cost penalty.

3.2.3 Sensitivity analysis
In addition to the length of life cycle (end of support year) and the refresh strategy, in this
section, we further analysed how other external factors could affect the cost of openness.
The risk profile and the fleet size are selected as two key factors in our case study and a
corresponding sensitivity analysis was performed.

In the context of this case study, risk profile is characterised as the consequence of
losing the capability competition to adversary systems and the frequency of encountering
an adversary system, i.e., the product of I and Cq in equation (2). For the A-RCI, the risk

 60 S-P. Chen et al.

profile likely varies based on adversarial conditions. If the risk profile is more severe
(either a higher probability or a higher consequence), given the same system capability,
the capability cost is expected to be higher.

For the sensitivity analysis, the risk profile was varied by changing the expected
consequence of losing the capability competition when encountering an adversary
system. The expected consequence ranged from Cq = $1 million to $20 million per
capability competition loss.

Figure 10 Cost difference comparison of 30-year support life given different risk profiles and
refresh strategies (see online version for colours)

Figure 10 shows the cost difference between the two configurations (the original A-RCI
with its 2-year refresh and the closed architecture A-RCI with various refresh intervals)
all of which have a 30-year support life. Each data point is the mean of one simulation
cost difference result. The four curves shown represent different refresh strategies that
were implemented to the closed configuration. In Figure 10, the data points that have a
positive cost difference are the results for which the original A-RCI configuration is more
cost effective, and the negative cost difference points indicate that the less open version
of A-RCI is preferred.

The curve of the 2-year refresh interval is a flat line in Figure 10. Since the two
configurations both follow the same A-RCI refresh cycle, theoretically, the technology
performance would be the same throughout the life cycle in both configurations.
Therefore, there would be no sensitivity to the capability cost.

Based on Figure 10, we can observe how the risk profile and the refresh strategy
jointly affect the result. First, the three curves in Figure 10, except the 2-year refresh
interval, are all increasing functions, indicating that no matter what refresh strategy the
closed version A-RCI adopts, the open configuration becomes more beneficial as the
expected consequence increases. However, since the original A-RCI has the most
frequent refreshes, the increasing in capability cost of the original A-RCI is less than the
increasing in capability cost in the closed version of the A-RCI resulting in positive
slopes of the three curves. Second, the slopes of the three curves decrease as the refresh

 Analysis of the life-cycle cost and capability trade-offs 61

becomes more frequent. The life-cycle cost of the closed A-RCI with no refresh is more
sensitive to the risk. Among the three refresh strategies, when the expected consequence
(Cq) is less than $6 million, no refreshes represents the optimum strategy. 2-year interval
refresh becomes preferable when the expected consequence is more than $6 million.
Lastly, once the expected consequence is over $3 million, it is always more cost effective
to adopt an open system approach rather closed approach. In conclusion, as the expected
consequence increases, capability cost becomes dominant. Therefore, in order to reduce
the capability cost and have a lower cost per refresh, an open configuration with frequent
refresh is favourable.

Figure 11 Cost difference comparison of 30-year support life given different fleet sizes and
refresh strategies (see online version for colours)

The number of fielded systems is another factor that potentially impacts the results.
Recurring costs, e.g., production cost and refresh delivery cost, and capability cost are
directly influenced by the number of fielded systems. Figure 11 shows two sensitivity
analyses of the number of fielded systems under low and high-risk profiles separately. In
Figure 11, all the systems were supported for 30 years and three scenarios were
considered: 0.5, 1 and 1.5 times the original A-RCI fleet size. As the fleet size grows, the
influence of the fleet-size-dependent cost factors has more impact on life-cycle cost.
These factors include system production cost, system refresh delivery cost and capability
cost and the most dominant cost factor determines whether an open system is cost
effective or not. On the left side of Figure 11, capability cost is slightly more dominant in
2-year, 4-year and 6-year refresh interval. The original A-RCI configuration with more
frequent refresh and less capability cost therefore becomes more cost effective as the fleet
size increases. For no refresh strategy, refresh delivery cost is more dominant, so the
closed version with no refresh and less refresh delivery cost becomes more cost effective
over the fleet size. On the right side of Figure 11, the expected consequence is increased
to $10 million, leading to a significant capability cost. Thus, the original A-RCI is always
better and the effect of capability is magnified as more systems are fielded.

3.2.4 A-RCI refresh plan as a mandate
In Section 2.2, we mentioned that there are cases where the required system capability
and performance over time is not traded off against life-cycle cost. In these cases, the

 62 S-P. Chen et al.

refresh schedule is predetermined and treated as a constraint in the decision-making
process. In these cases, the cost difference between the open and closed versions of
ignores the capability cost (CCapability) since both versions adopt the same refresh plan. We
considered these refresh-fixed cases by assigning both open and closed versions the
A-RCI a 2-year refresh plan. The results for this case are the orange triangle lines in
Figure 9 through Figure 11. In all situations, the original open A-RCI always has a lower
life-cycle cost than the closed version. The results can be interpreted as, with the 2-year
refresh constraint, the original A-RCI architecture is a more cost effective way to sustain
the A-RCI systems.

4 Discussion and conclusions

The goals of implementing an open system architecture (OSA) are often defined in
qualitative terms. One clear benefit is that an OSA can reduce the potential for ‘vendor
lock’, i.e., it can increase the buyers’ power over vendors by enabling multi-vendor
competition during virtually all phases of a system’s life cycle. This increased
competition can also incentivise improved vendor performance and innovation, driving
prices lower at the same time (Guertin and Womble, 2012). Often, it is taken for granted
that the use of open system architecture (OSA) decreases the total life-cycle cost of a
system. However, there is a lack of studies quantifying the cost avoidance and assessing
the circumstances under which this assumption is true. This paper presents a framework
for the quantitative analysis of OSA by modelling the life-cycle cost difference associated
with system openness, including open architecture, open standard and commercial
off-the-shelf (COTS). The cost impact of openness is evaluated by including these
concepts of openness into lifetime events and corresponding costs.

A case study of the A-RCI has been used to demonstrate the application of
quantitative analysis on cost in relation to system openness. The life-cycle cost difference
between the original A-RCI and a less open version of A-RCI was evaluated. Sensitivity
analysis was performed to determine how the important factors, including refresh
strategy, end-of-support year, risk profile and fleet size, affected the comparison result.
Given the condition that the expected consequence of capability loss (Cq) is less than $3
million, the closed version was found to be more cost effective than the original A-RCI
architecture and its 2-year refresh plan, when the closed version did not refresh. Given a
fixed 2-year refresh plan for both versions, the original A-RCI architecture is always
better. It should be noted that the results presented in this paper are highly dependent on
the input data that consists of our interpretation of the A-RCI and the A-RCI program,
which may not be representative of the actual system or program. It should also be noted
that programs like the A-RCI are not composed of just hardware and software, but also
people whose behaviour, experience, and training all contribute to the final life-cycle cost
of the system.

Future work will include several elements. More details including shelf life impacts
of components purchased in lifetime buys and other types of inventory management
realities could be included. More openness impacts could also be considered in the
model. For example, examining the impact of developing open-source software. It is
believed that open source reduces the development cost since a wider community of
developers are able to review and test the code. However, when the source code is
published openly, hackers can easily find and exploit vulnerabilities in the software.7

 Analysis of the life-cycle cost and capability trade-offs 63

Thus, the trade-off is that more money would need to be spent on cybersecurity
enhancement. Second, further study will focus on developing the relationship between
system openness and life-cycle cost. For example, a model of life-cycle cost associated
with COTS functional density has been proposed from a software perspective (Abts,
2002). For a complex system integrating both hardware and software, a more
sophisticated model is needed. Moreover, since system openness is not just about the
number of COTS, a quantitative metric for system openness should also be developed.

Acknowledgements

Funding for this work is provided by Naval Postgraduate School (Grant Number
HQ00341910006). We would also like to thank ASSETT, Inc. and Mr. William Johnson
for providing us with valuable insights on the cost of the A-RCI system.

References
ASSETT (2006) Submarine Sonar Cost Analysis Report.
Abbott, J.W., Levine, A. and Vasilakos, J. (2008) ‘Modular/open systems to support ship

acquisition strategies’, Proc. Am. Soc. of Naval Engineers Day, Arlington, VA.
Abts, C.M. and Boehm, B.W. (1997) COTS Software Integration Cost Modeling Study, Contract,

30602(94-C), 1095.
Abts, C., Boehm, B. W. and Clark, E.B. (2000) ‘COCOTS: A COTS software integration lifecycle

cost model-model overview and preliminary data collection findings’, Proceedings of the
ESCOM-SCOPE Conference, pp.18–20.

Abts, C. (2002) ‘COTS based systems (CBS) functional density – a heuristic for better CBS
design’, Proceedings of the First International Conference on COTS-Based Software Systems,
Springer, Orlando, FL, pp.1–9.

Boeing (n.d.) KC-46A Pegasus [online] https://www.boeing.com/defense/kc-46a-pegasus-tanker/
(accessed January 2022).

Boudreau, M. (2006) Acoustic Rapid COTS Insertion: A Case Study in Spiral Development. Naval
Postgraduate School Report.

Chen, S-P. (2022) ‘Appendix A: Calibration of the A-RCI case study’, Analysis of the Life-Cycle
Cost and Capability Tradeoffs Associated with the Procurement and Sustainment of Open
Systems, PhD dissertation in the Department of Mechanical Engineering, University of
Maryland.

Clark, B. and Clark, B. (2007) ‘Added source of costs in maintaining COTS-intensive systems’,
Cross Talk, The J. of Defense Software Engineering, Vol. 20, No. 6, pp.4–8.

Clough, A. (2003) Commercial-off-the-Shelf (COTS) Hardware and Software for Train Control
Applications: System Safety Considerations, No. DOT-VNTSC-FRA-02-01, John A. Volpe
National Transportation Systems Center (US).

DoD (2015) DoD Instruction 5000.02, Operation of the Defense Acquisition System [online]
https://www.acq.osd.mil/fo/docs/500002p.pdf (accessed 22 December 2020).

DoDAF (n.d.) DM2 Data Groups [online] https://dodcio.defense.gov/Library/DoD-Architecture-
Framework/dodaf20_capability_mm/#:~:text=A%20capability%2C%20as%20defined%20her
e,published%20by%20the%20Joint%20Staff (accessed January 2022).

Dunn, S., Laroche, J. and Mitchell, P. (2018) ‘Open system architectures for the ADF:
opportunities and challenges’, Australian Defence Force Journal, No. 204.

 64 S-P. Chen et al.

Engel, A. and Browning, T.R. (2008) ‘Designing systems for adaptability by means of architecture
options’, Systems Engineering, Vol. 11, No. 2, pp.125–146.

Eppinger, S.D. and Browning, T.R. (2016) Design Structure Matrix Methods and Applications,
The MIT Press, Cambridge, MA.

Firesmith, D. (2015) ‘Open system architectures: when and where to be closed’, Software
Engineering Institute Blog [online] https://insights.sei.cmu.edu/sei_blog/2015/10/open-
system-architecture-when-and-where-to-be-closed.html (accessed 5 January 2021).

GAO (2014) Review of Private Industry and Department of Defense Open Systems Experiences,
GAO-14-617R.

Guertin, N.H. and Miller, R.W. (1998) ‘A-RCI – the right way to submarine superiority’, Naval
Engineers Journal, Vol. 110, No. 2, pp.21–33.

Guertin, N.H. and Womble, B. (2012) ‘Competition and the DoD marketplace’, Proceedings of the
Ninth Annual Acquisition Research Symposium, NPS-AM-12-C9P17R01-076.

Grant, J., Rankine, R., Brown, K.M., Carter, W.R. and Foreman, J. (2000) Ensuring Successful
Implementation of Commercial Items in Air Force Systems, Scientific Advisory Board
(Air Force), Washington DC.

Hanratty, J.M., Lightsey, R.H. and Larson, A.G. (2002) Open Systems and the Systems Engineering
Process, Office of the Undersecretary of Defense, Acquisition and Technology; Open Systems
Joint Task Force.

Henderson, P. (2009) The Case for Open Systems Architecture, 14 December [online]
http://pmh-systems.co.uk/Papers/MOSACaseFor/ (accessed January 2022).

Hoepman, J-H. and Jacobs, B. (2008) ‘Increased security through open source’, Communications of
the ACM, Vol. 50, No. 1, pp.79–83.

Jensen, F. and Petersen, N.E. (1982) Burn-in: An Engineering Approach to the Design and Analysis
of Burn-in Procedures, Wiley, New York.

Lewis, P., Hyle, P., Parrington, M., Clark, E., Boehm, B., Abts, C. and Manners, R. (2000) Lessons
Learned in Developing Commercial Off-The-Shelf (COTS) Intensive Software Systems,
Federal Aviation Administration Software Eng. Resource Center Report.

Logan, G.T. (2004) The Modular Open Systems Approach (MOSA), OSJTF Presentation to the
Exec. Prog. Managers Course [online] http://acc.dau.mil/CommunityBrowser.aspx?id=37585.

Mladenović, D., Jovanović, D. and Denić, N. (2013) ‘Open source solutions in the development of
military unmanned aerial systems’, Scientific Technical Review, Vol. 63, No. 1, pp.36–46.

MOSA (2012) AFRL/RYM Metrics Working Group, MOSA Metrics Calculator, Unpublished.
NOAET (2009) Naval Open Architecture Enterprise Team, Open Architecture Assessment Tool,

Version 3.0, User’s Guide.
OSJTF (2004) Open Systems Joint Task Force, ‘Program Manager’s Guide: A Modular Open

Systems Approach (MOSA) to Acquisition’, US Department of Defense [online]
http://www.acq.osd.mil/osjtf/pdf/PMG_04.pdf (accessed September 2004).

Peruzzi, L. (2019) ‘A new generation of submarine combat management systems’, European
Security & Defence [online] https://euro-sd.com/2019/05/articles/13130/a-new-generation-of-
submarine-combat-management-systems/ (accessed 29 December 2020).

SAF Public Affairs (2020) Air Force, Boeing Agree on Final KC-46 RVS 2.0 Design, 2 April
[onlne] https://www.afrc.af.mil/News/Article/2135364/air-force-boeing-agree-on-final-kc-46-
rvs-20-design/ (accessed January 2022).

Sandborn, P. (2017) Cost Analysis of Electronic Systems, 2nd ed., World Scientific, Singapore.
Schramm, Z. (2013) A Model for Estimating the Cost Tradeoffs Associated with Open Electronic

Systems, MS thesis, Dept. of Mechanical Engineering, University of Maryland.
Schuster, J. (2007) Recent Progress in Submarine Sonar … and Future Challenges in ASW, MI

Department of Mechanical Engineering, Center for Ocean Engineering, Ocean Acoustics
Group 7 [online] http://acoustics.mit.edu/dyerparty/Ira%20Dyer%20talk%20rev%201.pdf
(accessed January 2022).

 Analysis of the life-cycle cost and capability trade-offs 65

Taylor, D. (2018) ‘Why Linux is better than Windows or macOS for security’, Computerworld,
6 February 2018 [online] https://www.computerworld.com/article/3252823/why-linux-is-
better-than-windows-or-macos-for-security.html (accessed January 2022).

UK MoD (2013) Guidance System of Systems Approach (SOSA) Open Systems Strategy [online]
https://www.gov.uk/government/publications/system-of-systems-approach-sosa-open-
systems-strategy (accessed 23 December 2020).

Wright, M., Humphrey, D. and McCluskey, P. (1997) ‘Uprating electronic components for use
outside their temperature specification limits’, IEEE Transactions on Components, Packaging,
and Manufacturing Technology, Part A, Vol. 20, No. 2, pp.252–256.

Zellers, E.M. (2016) Design of Flexible Technology Refresh Plans for Military Open Systems
Architectures, PhD dissertation in the Department of Aerospace Engineering, Georgia Institute
of Technology.

Appendix

This appendix presents a simple example to demonstrate the life-cycle cost calculation
used in this paper. For demonstration purposes this example is deterministic, however, in
the A-RCI case presented in Section 3 of the paper, many of the inputs are probability
distributions. The example architecture considered is a four-component/three-interface
system shown in Figure A1. Components 1 and 3 are COTS. Components 2 and 4 are
proprietary. The interfaces of components 2, 4 and components 1, 3 are open standards
and the interface of component 1, 2 is a proprietary interface. Table A1 shows the
parameters used in this example.

Figure A1 The example architecture (see online version for colours)

Note: The thick line denotes a proprietary interface; the thin line denotes an open
standard.

 66 S-P. Chen et al.

Table A1 Example analysis parameters

 Reliability
(year)

Support life
(year) Design cost Procurement

cost Install cost

Proprietary W(1.75,8) 5.4 $500 $2 $0.2
COTS W(1.75,8) 2.4 $100 $1 $0.1
 Support life (year) Design cost
Open standard 18 $500
System 1 2 3 4
Production time (year) 0 1 2 3
Retire time (year) 30 30 30 30
Holding cost $1/year per part
Discount rate 0

Step 1 Establish the refresh schedule8 for the architectural baseline that is based on the
obsolescence dates of the components and the standard. In Figure A2, at the first
refresh (t = 4), components 1 and 3 are refreshed because they are obsolete.
Component 2 is also refreshed since it is connected to component 1 with
proprietary interface. At the second refresh (t = 8) all components are refreshed
since they are all obsolete. At the 5th refresh (t = 20), since the open standard is
also obsolete, all the components and the open standard are refreshed. Once the
required components at each design refresh are determined, the corresponding
refresh development cost is the sum of the design cost of the refreshed
components/standard.

Figure A2 The architectural baseline timeline

Step 2 Generate the system-level production and failure events. In Figure A3, we use
component 3 and system 3 as an example. We first build the baseline version
and the system version. The component 3 baseline version is based on the
‘Comp3’ timeline in Figure A2. The version increases by one when there is a
refresh development event occurring. System 3 is first produced at t = 2 and has
a refresh interval of four years. Thereafter, every four years of system 3
production (t = 6, 10, 14 and so on), the component 3 on system 3 is upgraded to
the version based on the version in the baseline at the same year. In this case,
there is a system production event at t = 2. The refresh production events are at

 Analysis of the life-cycle cost and capability trade-offs 67

the times when the system component receives a refresh installation (version
change). For the failure events, starting at the initial production, time-to-failures
are sampled and put on the timeline until the next refresh production. This
process should be done for all components in all systems.

Figure A3 The component 3 and system timelines (see online version for colours)

Note: The number in each block (year) represents the version

Step 3 Make the required component bridge buy9 to support all post-obsolescence
events. Once all system events are generated in step 2, for the same component,
combine and sort all system-level events and the obsolescence events based on
version and time. As shown in Table A2, The value of stock at component
obsolescence, representing the number for the bridge buy, is the same as the
number post-obsolescence events with the same version. At each of the post-
obsolescence events, the stock number decreases by one as a component is taken
out of the inventory.

Step 4 Evaluate the event cost. At the ‘obsolete’ event, the cost is the procurement cost
of the bridge buy. For the events ‘system production’, ‘refresh production’ and
‘failure’, if the component is not obsolete yet, the event cost is the component
procurement cost plus the installation cost. If these events are after the obsolete
date, the cost becomes the installation cost plus the inventory cost. The
inventory cost is the multiplication of the stock number, holding time and the
holding base cost.

Table A2 Partial events of component 3 and the corresponding event costs

Time Type Version System Stock Holding
time

Inventory
cost

Bridge
buy cost

Procurement
+ installation

cost
0.00 System

production
1 1 0 0.00 0.00 0 1.1

1.00 System
production

1 2 0 0.00 0.00 0 1.1

2.00 System
production

1 3 0 0.00 0.00 0 1.1

2.40 Obsolete 1 0 3 0.00 0.00 3 0

 68 S-P. Chen et al.

Table A2 Partial events of component 3 and the corresponding event costs (continued)

Time Type Version System Stock Holding
time

Inventory
cost

Bridge
buy cost

Procurement
+ installation

cost
3.00 System

production
1 4 3 0.60 1.80 0 0.1

3.30 Failure 1 2 2 0.30 0.61 0 0.1
4.80 Failure 1 3 1 2.69 2.69 0 0.1
4.00 Refresh

production
2 1 0 0.00 0.00 0 1.1

5.00 Refresh
production

2 2 0 0.00 0.00 0 1.1

6.00 Refresh
production

2 3 0 0.00 0.00 0 1.1

6.40 Obsolete 2 0 4 0.00 0.00 4 0
6.92 Failure 2 2 4 0.52 2.09 0 0.1
7.00 Refresh

production
2 4 3 0.08 0.24 0 0.1

8.09 Failure 2 3 2 1.09 2.19 0 0.1
9.18 Failure 2 3 1 1.08 1.08 0 0.1

Step 5 Repeat Step 1 to Step 4 for sufficient trials (sampling the time-to-failure
distributions to generate demands) to generate a total life-cycle cost distribution.

Notes
1 This paper uses OSA to refer to Open Systems Approach in general and MOSA to refer to the

US DoD approach specifically.
2 The KC-46A is a widebody, multirole aircraft that can refuel military aircraft inflight, and can

also carry passengers, cargo, and patients (Boeing, n.d.).
3 Some preliminary work done formulating a model based on the equation (1) appears in

(Schramm, 2013).
4 This means that even though the lowest life-cycle cost solution might be to field a system,

make lifetime buys of parts as they become obsolete and never refresh the system, this may be
an impractical solution for some systems because their relative capability of the system
decreases over time.

5 This doesn’t mean that all adversary systems are necessarily state-of-practice, but that the
capability of the adversary population has the same trend as the state-of-practice.

6 The accumulated cost difference in each year in Figure 7 does not represent the total life-cycle
cost difference corresponding to an end-of-support year equal to that year. Varying the end-of-
support year affects the cost of the events during the life cycle, resulting in different cost
difference accumulations. For example, the number of components purchased in a lifetime buy
is a function of the end-of-support year.

 Analysis of the life-cycle cost and capability trade-offs 69

7 Consequently, it is believed that proprietary software is better protected against external
attacks. Experience shows that when open-source code is actively reviewed, it has proven to
be secure (e.g., the popular operating system Linux) (Taylor, 2018). However, this may not be
the case with software that has a limited distribution. This may also not be the case with air-
gapped systems like the A-RCI. Some also argue the vulnerabilities are more quickly detected
in open systems (Hoepman and Jacobs, 2008).

8 At each design refresh, obsolete or upgrade-required components are refreshed. In addition,
these components might cause other components that are connected to them with proprietary
interfaces to be refreshed.

9 When the component becomes obsolete, a sufficient number of components are purchased and
held in the inventory to support the fleet until the next refresh.

