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Abstract: In recent years, as indoor security robots are widely used in large public building 
places, robots have shouldered the pressure of solving security risks, patrol monitoring and fire 
warning. Mobile robots with rich sensors accomplish many computation-intensive tasks which 
account for a large proportion of the total energy consumption, thus affecting the service life of 
their batteries. Most security robots use micro-control units to maintain low energy consumption 
and hardware complexity, greatly limiting the local computing capacity of robots. In the case of 
analysing real-time video data and a large amount of sensor data, offloading a numerous 
intensive computing tasks to edge servers has become an extensive solution. This paper proposes 
a system model containing multi-robot terminals and multi-edge servers which uses a simulated 
annealing algorithm based on exchanging two different edge servers. This algorithm realises 
energy efficiency optimisation for security robots under minimum latency and power limitation 
by offloading partial computation-intensive tasks to edge servers. The feasibility of the proposed 
algorithm is also verified by the simulation results. 
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1 Introduction 
With the development of urbanisation, the urban 
population has increased rapidly. The emergence of large 
numbers of people is bound to bring a series of high 
energy consumption (Korzhakov et al., 2021) and public 
security problems, especially in large densely populated 
building spaces, e.g., commercial squares, bus stations, 
railway stations, airports, schools and hotels. Aiming to 

create a safe and low carbon emissions indoor 
environment is becoming increasingly critical. Therefore, 
the current situation of public security in cities must be 
greatly improved. Presently, the public security problems 
raised in the above scenarios are solved with the large-
scale deployment of security robots, but some new 
problems have also emerged. 

Security robots (Bailin, 2019) have abundant sensors, 
e.g., infrared thermometers, high-definition cameras, 
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smell detectors, audio signal receiver transmitters and the 
thermal imaging system. These mobile sensors incessantly 
detect the surrounding environment and produce video 
and audio data. (Lin et al.，2021), propose a wildfire 
hotspot detection system using flying robot and provide a 
comprehensive and reliable fire detection algorithm. 
However, a single security robot’s terminal has limited 
resources (Ge, 2018), such as low battery capacity and 
weak data computing capability. These restrictions limit 
the operation time of security robots or hinder their 
decision-making in complex situations. 

Cloud computing has attracted great attention in recent 
decades. (Zhao et al.，2020) discuss a health status 
evaluation method for wind turbines employing the 
advantages of the cloud model in dealing with uncertain 
information. In traditional cloud computing model, the 
robots can use the rich computing power of the cloud to 
offload some computation-intensive tasks to the cloud 
server (Barbarossa et al.，2014) and minimise the energy 
consumption of mobile terminals. But the lengths of cable 
and wireless networks between security robot terminals 
and cloud computing centres are long, it will cause 
network congestion and increase latency which affects 
robot real-time response. (Grigorik et al.，2013), propose 
a game theory method to realise efficient computing 
offloading of mobile cloud computing. This paper 
designed a decentralised computing offloading mechanism 
to realise the Nash equilibrium of the game, which can 
effectively reduce computing consumption. However, the 
energy-saving optimisation of large-scale mobile devices 
is well solved, and the problem of latency is not solved. In 
some specific application scenarios, (Rahman et al., 2017) 
study the smart factory environment, in which smart 
devices offload task-intensive data to the cloud server, and 
they only consider the energy consumption of resources. 
(Wang et al.，2016) discuss a Stackelberg game-based 
resource allocation strategy in the intelligent warehouse 
environment where the tasks are assigned according to 
bandwidth allocation cost. However, the problem of 
latency in resource allocation is not investigated while 
allocating resources for robotic tasks. 

According to Tolia et al. (2016), in some low-latency 
scenarios, users are dissatisfied when the delay exceeds 80 
ms and lose interest when the delay exceeds 1 s. In 
addition, maintaining the stable performance of ultra-long 
distance transmission tasks at the cloud side within a short 
time is difficult due to practical reasons, such as network 
routing path selection, packet processing of network 
routing nodes and security supervision of the network 
content (Tolia et al., 2006). The application of mobile 
edge computing technology (Barbarossa et al., 2014) has 
compensated for the shortcoming of cloud computing 
mentioned above. The research on computation offloading 
in edge computing (Al-Shuwaili and Simeone, 2017) has 
recently attracted the attention of many scholars, 
especially in the terms of minimising energy consumption 
(Ge et al., 2012) when the offloading target satisfies the 
latency minimisation constraint. In (Sardellitti et al., 

2015), a multi-terminal system where multiple mobile 
users ask for computation offloading to a common cloud 
server was considered. This paper formulates the 
offloading problem as the joint optimisation of the radio 
resources (i.e., transmission precoding matrices of the 
terminals) and the computational resources (i.e., the CPU 
cycles/second assigned by the cloud to each terminal) to 
minimise the overall energy consumption of users while 
meeting latency constraints. A study (Wang et al., 2016) 
investigated partial computation offloading by jointly 
optimising the computational speed of smart mobile 
devices, the transmission power of devices, and the 
offloading ratio with two system design objectives: 
minimising the energy consumption of smart mobile 
devices and the latency of application execution. To 
address the energy consumption minimisation problem, 
the present study considered it as a convex problem, 
adopted a variable substitution technique and obtained the 
optimal solution. To address the non-convex and  
non-smooth LM problem, this work proposed a locally 
optimal algorithm (Wu et al., 2019) with a univariable 
search technique. 

In Geng et al. (2018), the problem of energy-efficient 
computation offloading on multicore-based mobile 
devices running multiple applications was considered. 
This paper formalises the problem as a mixed-integer 
nonlinear programming problem that is NP-hard and then 
proposes a novel heuristic algorithm to jointly solve the 
offloading decision and task scheduling problem. The 
basic idea is to prioritise tasks from different applications 
to ensure that application time constraints and task-
dependency requirements are satisfied. In Li and Wang 
(2018), the problem of energy-aware edge server 
placement was studied, and a more effective placement 
scheme with low energy consumption was explored. This 
work formulated the problem as a multi-objective 
optimisation problem and devised a particle-swarm-
optimisation-based energy-aware edge server placement 
algorithm to find the optimal solution. Finally, in Li and 
Wang (2018), the placement model of edge server was 
considered, and the problem of reducing energy 
consumption was transformed into a multivariable 
optimisation problem. That is, the optimal solution was 
obtained by designing an energy optimisation algorithm 
based on particle swarm optimisation. Finally, simulation 
shows that compared with other algorithms, the energy 
consumption could be reduced by 10% under the 
constraint of meeting the maximum latency. 

Combined with edge computing, this paper proposes 
an edge computing model based on a security robot. In 
this model, the security robot takes advantage of edge 
servers with abundant computational resources to offload 
partial tasks for computing. Generally, a security robot 
and an edge server have a one-to-one correspondence, but 
security robots have different computing powers and edge 
servers have different data processing rates. These factors 
contribute to the problem of distributing computation-
intensive tasks (or edge servers) correctly for security 
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robots under maximum latency and power constraints. 
Solving this problem can improve the cruise capability 
and reliability of robots. To solve this problem, we 
propose a simulated annealing algorithm (Wu et al., 
2019b) based on exchanging two different edge servers 
and determine the optimal match scheme. Finally, the 
simulation results verify the effectiveness of the proposed 
algorithm scheme. 

Notations: In this paper, E is denoted as the edge 
server’s set. M means the number of the edge servers. R is 
denoted as the robots’ task set. K means the number of the 
security robots. 

2 Computation offloading system model 
2.1 Model Components 
On the basis of the analysis of the security robot system 
above, this paper proposes a security robot model 
combined with edge computing as shown in Figure 1. The 
model consists of two parts. 

Security robots. Computation-intensive tasks, such as 
simultaneous localisation and mapping (SLAM) (Taheri 
and Xia, 2021) algorithms, are offloaded to edge servers 
via the wireless network embedded in the robots’ vehicle. 

Edge servers. The edge servers handle the partial 
computation-intensive tasks offloaded by the selected 
security robots located around the site. 

Figure 1 Computation offloading model of security robots  
(see online version for colours) 

 

2.2 Model workflow 
Numerous computing tasks are generated by security 
robots when performing patrolling services and executing 
SLAM algorithms (Chen et al., 2021). This model 
assumes that each robot connects to an edge server, and 
each edge server only undertakes the tasks of one security 
robot. The simulated annealing algorithm is used in this 

model for the robot terminals to achieve minimal energy 
consumption. 

3 Problem formulation 
The edge server group is denoted as set E = {1, 2, 3, ..., 
M}, and each security robot task is represented as set  
R = {1, 2, 3, ..., K}. We assume that M ≥ K, i.e., z. the 
number of edge servers is greater than or equal to the 
number of mobile security robots. To achieve one-to-one 
robot and edge server correspondence, 

We set up (M-K) virtual tasks Stot = 0. Figure 2 shows 
the mapping relationship between the security robots and 
the edge servers, i.e., ω (k) = m means the Kth task of the 
security robot offloads to the mth edge server. 

Figure 2 Mapping relationship between security robot and 
edge server (see online version for colours) 

 

The order of power gain of M edge server channels is 
assumed to be 

1 2 ... Mg g g> > >  (1) 

Under the conditions above, the minimum transmission 
power (Sarker et al., 2019) (transmission time is t, s) sent 
by the security robot to the edge server is 
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In equation (2), parameter Sk (Mbits) represents the 
number of tasks transmitted by each security robot to the 
edge server through the wireless network; parameter W 
(MHz) denotes the channel bandwidth; parameter n0 
(W/MHz) denotes the power density of the background 
noise; and parameter gi (dimensionless parameters) 
denotes the random channel gain. Then, the total energy 
spent by the security robots to offload tasks to the edge 
servers is 

( ){ } , , ( )tot
up k k RE tP S t ω k∀ ∈=  (3) 

Thus, the overall latency ( )ove
kd  of the Kth security robot to 

complete its assigned task is 
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We use equation (4) to quantify the total latency of the 
security robot. uL, k (bits/s) is the local computing speed of 
the Kth security robot, uω(k) (Mbits/s) is the computing 
speed of the edge server selected by the Kth security robot, 
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In EM-i, tPtot ({Sk}∀k∈R, t, ω(k)) is the transmission 

energy consumption of the security robots’ offloading 

tasks ( )3
,

,

tot
kk

L k
k R L k

S S ρ u
u∈

−  represents the local CPU 

computing energy consumption of the security robots 
(based on the dynamic voltage adjustment principle, the 
computational power of the local CPU is the third power 
of the computing speed which is determined by the chip 
structure ρ). Constraint (6) indicates that the power 
transmitted by the network cannot exceed the power 
budget of the security robot (Pmax). Constraint (7) 
indicates that the total latency of each security robot 
cannot exceed the maximum latency ( ).max

kT  Constraint 
(8) indicates that the total local CPU calculation rate of 
the security robot cannot exceed max

Lu . 

4 Allocation method based on simulated 
annealing algorithm 

4.1 Decomposition of problem 
Solving optimisation problem EM-i is a great challenge 
under the condition that the security robot and the edge 
server are not fixed matched. The most direct method is to 
make arbitrary combinations of tasks, calculate the 
minimum energy consumption of each combination, and 
then determine the most suitable situation. 

This method is undoubtedly feasible for the scenario 
with few robots and edge servers but complicated to use in 
cases with many robots and edge servers. To overcome 
the challenges, a simulated annealing algorithm can 
provide a powerful method that a slow decrease in the 
probability of accepting worse solutions as the solution 
space is explored, and accept worse solutions allows for a 
more extensive search for global optimal solution (Çetin 
and Keçebaş, 2021). It means, the temperature 
progressively decreases from an initial value to zero. At 
each iteration, the algorithm randomly selects a mapping 
relationship, measures its energy consumption, and moves 
to another solution according to the temperature-
dependent probabilities of selecting better or worse match. 
Through this algorithm, the local matching server can 
achieve an approximate solution to the global minimum 
energy consumption. 

In the given state of this set of matching relations, 
mapping relation ω (m) is given. From inequality (7), we 
can conclude that 
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Inequality (9) represents the minimum computation speed 
of the robots required by the tasks processed locally. In 
addition, 
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Inequality (9) is substituted into objective function Em-i 
which can be transformed into (P1) 
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Variable: { }k k Rt and S ∀ ∈  

Problem (P1) is still a non-convex optimisation problem. 
To solve this problem, we regard variable t as a constant 
under constraint condition max0 , .kt T k R≤ ≤ ∀ ∈  Within this 
constraint range, the minimum energy consumption of 
(P1) determined by the matching relation can be solved 
through linear search using the CVX of the MATLAB 
software (Gustafsson et al., 2015). 

In the initialisation, the algorithm generates the initial 
solution at random. It means that the security robot group 
randomly matches the edge servers. Under this matching 
condition, the optimal energy consumption is solved. 
Then, in order to avoid the local optimal solution, we 
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generate a new solution by perturbation. That is a new 
edge server group is selected for the security robots to 
match, so as to generate a new optimal energy 
consumption solution. The difference outcome is made 
between the newly matching scheme of the optimal 
energy consumption and that of the original scheme and 
determine whether to accept the original solution directly 
or the new solution by the Metropolis criterion. 

In this paper, we set the initial annealing temperature 
T0 , the number of iteration in each cooling and annealing 
speed q. Accordingly, the updating way of temperature is: 

1i iT T q+ = ∗  (14) 

In equation (14) Ti is the ith temperature, q is the annealing 
speed and its value range is (0, 1). 

4.2 Algorithm flow 
Step 1 Setting the initial solution: At the beginning of 

the algorithm, we set the initial annealing 
temperature T = T0, the lowest annealing 
temperature Tmin and the number of iteration Q in 
each cooling. An matching mapping 
{ } ,( ) m R k Eω m k ∀ ∈ ∀ ∈=  between a security robot and 
an edge sever is randomly generated, and the 
minimal energy consumption of the problem 
about EM-i is solved under this mapping. We 
make ( ){ } ,

min
m R k E

best ω m kE E
∀ ∈ ∀ ∈==  and update T to the 

new temperature Ti. 

Step 2 Generating the difference between the new 
solution of the minimal energy consumption and 
current solution of that: A updating matching 
relation is generated by disturbing the original 
matching relation, and the minimum energy 
consumption 
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corresponding difference is: 
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Step 3 Judging whether the new solution can be 
accepted: If Δ ≤ 0, we update the original 
solution 
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outcome according to the Metropolis criterion: 
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Cooling is carried out in accordance with formula (14). At 
the temperature Ti + 1, acceptance of new solutions are 
solved in step 2 and 3. 

Step 4 Finding the feasible solution: we judge whether 
the temperature T reaches the lowest temperature 
Tmin. If it reaches the minimal temperature, the 

algorithm will be terminated. Otherwise, we 
return to step (2) to continue the algorithm. 

5 Simulation results and analysis 

5.1 Simulation scenario and parameters setting 

Table 1 Simulation parameters and values 

Parameters Physical meaning Values 

M Number of edge servers 5 
K Number of security robots 5 
W Channel bandwidth /MHz 8 
n0 The power density of background 

noise /W/MHz 
10–8 

Pmax Maximum power of security robot 
/W 

50 

max
kT  Maximum computing latency/s [2, 3 ,4, 5, 6] 

max
Lu  Maximum computation speed of 

the robot 
8 Mbits/s 

T0 Initial temperature 300 
Tmin Final temperature 0.02 
q Speed of annealing 0.95 

This paper verifies the performance of the proposed 
algorithm in the scenario with five security robots and five 
edge servers. We establish a 5-ES scene in which five 
edge servers are evenly distributed around the circle with 
a radius of 500 m, and security robots are randomly 
distributed in this circular scene. To better observe the 
convergence effect, two groups of experiments were 
conducted, and the variable was set to the total number of 
tasks of each security robot. According to the distance 
model, the continuous channel gain from the security 
robot to the edge server was generated. The random 
channel power gain we used {gi}i∈E = {9.1831 × 10–6, 
5.4139 × 10–6, 3.2571 × 10–6, 2.4311 × 10–6, 2.2623  
× 10–6, 2.2623 × 10–6}. We set the bandwidth W = 8 MHz, 
n0 = 10–8 and five edge servers’ computation speed  
uωk = [12, 15, 11, 10, 9] Mbit/s. The maximum power of a 
security robot was 5 J/s. The robots’ maximum latency 

[ ]2, 3, 4, 5, 6max
kT = s. We set the two groups of total tasks 

for each security robot [ ]5, 6, 7, 8, 9max
kS =  M and [11, 12, 

13, 10, 8] M and the maximum computation speed of the 
robots to 8max

Lu =  Mbits/s. Initial temperature T was set to 
300. All simulations ran on Intel(R) Core (TM)i7 
6300HQCPU@2.30 GHz PC. The complete simulation 
parameters are shown in Table 1. The simulation 
parameters come from (Zhong et al., 2020). 

Figure 3 shows the convergence graph of the energy 
optimisation used by the simulated annealing algorithm 
which is based on exchanging two different edge servers 
in the 5-ES scenario. The horizontal axis is iterations i, 
and the vertical axis is the minimum energy consumption 
obtained by the optimisation algorithm in this proposed 
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scenario (J). The discrete results are connected to facilitate 
the observation of the convergence effect of the final 
energy. According to the simulation results, when the total 
task of the security robots is [ ]5, 6, 7, 8, 9 ,tot

kS M=  iteration 
i is 72, and the time consumed by the algorithm is 0.654 × 
103s. When i is 28, the energy consumption converges to 
0.0904 J. At this point, the mapping relations between 
security robots and edge servers are ω1 = 4, ω2 = 5, ω3 = 3, 
ω4 = 2 and ω5 = 1. Figure 4 shows the numbers of tasks of 
the security robots are [ ]11,12,13,10, 8 , is 73,tot

kS M i=  and 
the time consumed by the running is 0.725 × 103s. When i 
is 33, the energy consumption converges to 0.2024 J. At 
this point, the mapping relations between security robots 
and edge servers are ω1 = 5, ω2 = 2, ω3 = 1, ω4 = 3 and  
ω5 = 4. 

To verify the feasibility of this algorithm, permutation 
on all the tasks [ ]5, 6, 7, 8, 9tot

kS M=  was performed, and 
the corresponding minimal energy consumption 

{ }( )( ) m R

min
ω mE

∈
 was solved. To simplify the expression, this 

paper defines [a, b, c, d, e] as the security robots whose 
total amounts of tasks are a, b, c, d and e, respectively, and 

these tasks are offloaded to the corresponding edge 
servers. 

Figure 3 { }
min

m m R
ωE ∗

∈
-i convergence graph (total task amount  

[5, 6, 7, 8, 9] m) (see online version for colours) 

 

Table 2 The minimal energy consumption of entire permutation in 5-ES scenario 

Permutation 
scheme Emin (J)  Permutation 

scheme Emin (J)  Permutation 
scheme Emin (J)  Permutation 

scheme Emin (J) 

[5,6,7, 8,9] 0.1055  [5 6 8 7 9] 0.1043  [5 6 8 9 7] 0.1041  [5 6 9 7 8] 0.1034 
[5 7 6 9 8] 0.1032  [5 7 8 6 9] 0.1042  [5 7 9 6 8] 0.1039  [5 7 9 8 6] 0.1023 
[5 8 6 9 7] 0.1017  [5 8 7 6 9] 0.1012  [5 8 7 9 6] 0.1008  [5 8 9 6 7] 0.1019 
[5 8 9 7 6] 0.1015  [5 9 6 7 8] 0.1010  [5 9 6 8 7] 0.1004  [5 9 7 6 8] 0.0988 
[5 9 7 8 6] 0.0995  [5 9 8 6 7] 0.0993  [5 9 8 7 6] 0.0987  [6 5 7 9 8] 0.0982 
[6 5 7 8 9] 0.0976  [6 5 8 7 9] 0.0974  [6 5 8 9 7] 0.1037  [6 5 9 7 8] 0.1035 
[6 5 9 8 7] 0.1028  [6 7 5 8 9] 0.1024  [6 7 5 9 8] 0.1017  [6 7 8 5 9] 0.1015 
[6 7 8 9 5] 0.1044  [6 7 9 5 8] 0.1005  [6 7 9 8 5] 0.1007  [6 8 5 7 9] 0.1022 
[6 8 5 9 7] 0.1017  [6 8 7 5 9] 0.1003  [6 8 7 9 5] 0.1003  [6 8 9 5 7] 0.0982 
[6 8 9 7 5] 0.0985  [6 9 5 7 8] 0.0998  [6 9 5 8 7] 0.0995  [6 9 7 5 8] 0.0980 
[6 9 7 8 5] 0.0981  [6 9 8 5 7] 0.0969  [6 9 8 7 5] 0.0972  [7 6 5 8 9] 0.1034 
[7 6 5 9 8] 0.1032  [7 6 8 5 9] 0.1006  [7 6 8 9 5] 0.1006  [7 6 9 5 8] 0.0995 
[7 6 9 8 5] 0.0997  [7 5 6 8 9] 0.1015  [7 5 6 9 8] 0.1013  [7 5 8 6 9] 0.0997 
[7 5 8 9 6] 0.0991  [7 5 9 6 8] 0.0986  [7 5 9 8 6] 0.0982  [7 8 6 5 9] 0.0981 
[7 8 6 9 5] 0.0980  [7 8 5 6 9] 0.0990  [7 8 5 9 6] 0.0982  [7 8 9 6 5] 0.0954 
[7 8 9 5 6] 0.0948  [7 9 6 5 8] 0.0957  [7 9 6 8 5] 0.0959  [7 9 5 6 8] 0.0966 
[7 9 5 8 6] 0.0962  [7 9 8 6 5] 0.0942  [7 9 8 5 6] 0.0936  [8 6 7 5 9] 0.0984 
[8 6 7 9 5] 0.0966  [8 6 5 7 9] 0.0962  [8 6 5 9 7] 0.0971  [8 6 9 7 5] 0.0971 
[8 6 9 5 7] 0.0962  [8 7 6 5 9] 0.0971  [8 7 6 9 5] 0.0970  [8 7 5 6 9] 0.0980 
[8 7 5 9 6] 0.0973  [8 7 9 6 5] 0.0945  [8 7 9 5 6] 0.0938  [[8 5 6 7 9] 0.0985 
[8 5 6 9 7] 0.0980  [8 5 7 6 9] 0.0976  [8 5 7 9 6] 0.0969  [8 5 9 6 7] 0.0957 
[8 5 9 7 6] 0.0952  [8 9 6 7 5] 0.0928  [8 9 6 5 7] 0.0924  [8 9 7 6 5] 0.0920 
[8 9 7 5 6] 0.0914  [8 9 5 6 7] 0.0923  [8 9 5 7 6] 0.0931  [9 6 7 8 5] 0.0952 
[9 6 7 5 8] 0.0950  [9 6 8 7 5] 0.0943  [9 6 8 5 7] 0.0939  [9 6 5 7 8] 0.0968 
[9 6 5 8 7] 0.0966  [9 7 6 8 5] 0.0941  [9 7 6 5 8] 0.0928  [9 7 8 6 5] 0.0230 
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Table 2 The minimal energy consumption of entire permutation in 5-ES scenario (continued) 

Permutation 
scheme Emin (J)  Permutation 

scheme Emin (J)  Permutation 
scheme Emin (J)  Permutation 

scheme Emin (J) 

[9 7 8 5 6] 0.0916  [9 7 5 6 8] 0.0947  [9 7 5 8 6] 0.0942  [9 8 6 7 5] 0.0919 
[9 8 6 5 7] 0.0915  [9 8 7 6 5] 0.0914  [9 8 7 5 6] 0.0904  [9 8 5 6 7] 0.0931 
[9 8 5 7 6] 0.0952  [9 8 5 7 6] 0.0950  [9 5 6 7 8] 0.0943  [9 5 6 8 7] 0.0939 
[9 5 7 6 8] 0.0952  [9 5 7 8 6] 0.0950  [9 5 8 6 7] 0.0944  [9 5 8 6 7] 0.0939 

 
A total of 120 data was generated by the entire 
permutation. From the Table 2, the optimal allocation 
scheme was [9 8 7 5 6], and the total energy consumption 
obtained at this time was 0.0904 J, which is consistent 
with the results obtained by the proposed algorithm. 

5.2 Comparison of algorithm results 
Figure 5 validates the accuracy of our proposed algorithm 
in solving this energy optimisation problem compared to 
LINGO (i.e., a commercial optimisation package). All 
tested cases in Figure 5 show that our proposed algorithm 
can achieve the results almost same as those from 
LINGO’s global solver with a narrow difference. 

Figure 5 Proposed algorithm accuracy compared with lingo 
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Figure 6 shows the energy consumption comparison 
between the algorithm proposed in this paper that security 
robots match appropriate edge servers to optimise energy 
consumption and the scheme that all computing tasks are 
locally processed by security robots under different max

Lu  
conditions. The data shows that the overall energy saving 
compared to the local scheme is nearly 20%. Specifically, 
the scheme that all computing tasks are processed locally 
means that in the 5-ES scenario, all security robot 
terminals use the local computing resources of intelligent 
devices to process energy-intensive tasks without 
offloading edge computing tasks. The results of Figure 5 
show that the energy consumption obtained by the 
algorithm proposed in this paper can be much better than 
that of the scheme where all tasks are processed locally. 

Figure 6 Contrast experiment between proposed algorithm and 
local scheme under different max

Lu  conditions  
(see online version for colours) 

 

Figure 7 Contrast experiment between proposed algorithm and 
non-match edge computing server scheme under 
different max

Lu  conditions 

 

Figure 7 shows the energy consumption comparison 
between the algorithm proposed in this paper that security 
robots match appropriate edge servers to optimise energy 
consumption and non-match edge computing server’s 
scheme under different max

Lu  conditions in the 5-ES 
scenario. The data shows that the overall energy saving 
compared to the non-match scheme is nearly 12%. This 
simulation experiment verifies the significance of 
matching the right edge computing servers. This is due to 
the difference in the ability of each edge computing 
servers to handle various types of tasks. 



 Energy efficiency optimisation modelling for security robots by edge computing 43 

Figure 8 Contrast experiment between proposed algorithm and 
traditional algorithm under different stot conditions 

 

Figure 8 shows the comparison between our proposed 
algorithm and the traditional algorithm in terms of total 
latency in 3-ES system. The data shows that the latency of 
the edge computing model is nearly 25 % better than that 
of the cloud’s model. Specifically, the traditional 
algorithm means all robots, terminals use the local 
computing and cloud computing resources to deal with 
computing tasks. It can be analysed from the figure that 
the latency obtained by the algorithm proposed in this 
paper is better than that obtained by the traditional 
algorithm. This advantage is due to the rich computing 
resources of edge servers and their low latency offloading 
of computing task. 

6 Conclusions 
In this paper, the issue of energy optimisation for security 
robots by using edge computing technology has been 
discussed. First, the scenario of multiple robots and edge 
servers has been considered, and simulated annealing 
algorithm based on exchanging two different edge servers 
has been proposed. Second, this approach has found the 
optimal match between security robots and edge servers 
and has achieved minimum energy consumption for 
security robots. Finally, the simulation results have shown 
that our proposed algorithm is better than the local scheme 
and non-match scheme in energy saving. In the future, we 
plan to consider a complex scenario where a single 
security robot’s task can be simultaneously offloaded to 
different edge servers to further optimise the energy 
consumption. 
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