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Abstract: The purpose of this study is to model, map, and identify why some areas present a 
completely different dispersion pattern of COVID-19, as well as creating a risk model, composed 
of variables such as probability, susceptibility, danger, vulnerability, and potential damage, that 
characterises each of the defined regions. The model is based on a risk conceptual model 
proposed by Bachmann and Allgöwer in 2001, based on the wildfire terminology, analysing the 
spatial distribution. Additionally, a model based on population growth, chaotic maps, and 
turbulent flows is applied in the calculation of the variable probability, based on the work of 
Bonasera (2020). The results for the Portuguese case are promising, regarding the fitness of the 
said models and the outcome results of a conceptual model for the epidemiological risk 
assessment for the spread of coronavirus for each region. 
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1 Introduction 
The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) outbreak has been ongoing since it was 
first reported in December 2019 in China, and it rapidly 
took pandemic proportions (Søreide et al., 2020). This 
widespread of the coronavirus or COVID-19 virus could 
be compared to the spreads of fires in California 
(Bonasera et al., 2020; Jia et al., 2020). The start occurs in 
one focal point and quickly spread over larger regions 
until it becomes difficult to stop. As of June 2021, the 
number of cases and deaths exponentially incremented 
reaching a total of 174 million confirmed cases and 3.8 
million deaths (Worldometer, 2021). 

Mathematical models are a powerful tool that proved 
their importance in previous diseases outbreaks, 
conducive to the understanding of the dynamics of disease 
(Hazarika and Gupta, 2020; Lyra et al., 2020; Nogueira  
et al., 2020). They provide useful predictions about the 
transmission of the disease and the effectiveness of 
possible control measures. This kind of information is 
crucial for public health policymakers (Jia et al., 2020; 
Kang et al., 2020). 

The SARS-CoV-2 virus had the first confirmed case in 
mainland Portugal in March 2020. This virus had an initial 
spread more centralised in the North region. The 
distribution and initial concentration of the infected have 
been the subject of various assumptions and empiricism. 
However, no study indicates or quantifies the reason for 
this geographic distribution quantitatively, that is, using 
complex models that allow determining and modelling a 
correct geographic distribution based on demographics or 
on statistically significant variables that add statistical 
value to the model. The interest in this dichotomy between 
the various NUTS III of mainland Portugal is, from a 

scientific point of view, crucial to understand the spread 
of the pandemic at a national level and to be able to take 
mitigating measures that allow the reduction or control of 
the pandemic dispersion. The purpose of this study is to 
model, map, and identify why these areas present a 
completely different dispersion pattern, as well as creating 
a risk model, composed of variables such as probability, 
susceptibility, danger, vulnerability, and potential damage, 
that characterises each of the defined regions. 

2 Literature review 
Mathematical epidemiology is a subfield of epidemiology 
that is based on the characteristics of biological 
phenomena transcribing them into models that will be 
solved by analytical and simulation processes. In the 
mathematical modelling of epidemics, two types of 
models are considered: deterministic and stochastic (Chen, 
2015; Singh et al., 2018). 

Deterministic models: given the initial conditions, the 
epidemic process is generally described through 
differential equations that model the infectious process 
within a dynamical system. In deterministic models it is 
possible to control the factors that intervene in the 
dynamics of the process, and, therefore, it is possible to 
predict concrete results according to these factors 
(Philippe and Mansi, 1998). There is no ambiguity in the 
results. Stochastic models: are probabilistic, with the state 
variable being an inherent property to every individual in 
the population. This approach may involve more detail 
about the properties of the system, which can be 
elaborated based on the properties and actions of everyone 
in the population and its structure of contacts (Uehara  
et al., 2012). In stochastic models, it is impossible to 
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control the factors that intervene in the dynamics of the 
phenomenon, and consequently, it is not possible to obtain 
unique results. Each possible outcome has an associated 
probability. Stochastic models depend on random 
variations such as the risk of disease exposure and the 
contagion period. These models are mainly used when 
these variations are considered important, as is the case in 
small populations. 

2.1 Risk conceptual model 
In 2001, a risk conceptual model was proposed 
(Bachmann and Allgöwer, 2001) based on the wildfire 
terminology, analysing the spatial distribution of wildland 
fire risk using a geographic information system. This 
model is composed of several variables, which can be 
adapted, as well, to the epidemiological context. Not 
because of the spatial behaviour but because the 
development and assumption of the different components 
of the model which allow the implementation of a more 
comprehensive risk model covering several different 
aspects of a risk situation development. 

2.2 Probability 
Probability expresses the likelihood that a given event will 
occur and thus, it can be understood as an indicator of the 
uncertainty of the occurrence of this event. In a classical 
approach, it is understood that all events, not being 
conditioned to the previous existence of others, have the 
same possibility of occurring and therefore an equal 
probability. In conditioned probabilities, it is understood 
that a given event has a given probability of occurring, 
conditioned on the probability that a previous event has 
occurred (Calapez et al., 2021). 

2.3 Susceptibility 
Susceptibility expresses the propensity of a given area or 
territorial unit to be affected by the phenomenon studied, 
evaluated based on its intrinsic properties. A territorial 
unit will be susceptible as it is more affected or enhances 
the occurrence and development of the phenomenon. In 
the case of COVID-19, a given area will be more 
susceptible the better it allows the propagation of the 
pandemic (Weissman et al., 2020). 

2.4 Danger 
The danger is equivalent to what is called a hazard in 
Anglo-Saxon literature. The danger is, according to 
Varnes’ definition (1984), the probability of occurrence of 
potentially destructive phenomena, in each time interval 
and each area. This notion of danger encompasses two 
dimensions: time and space. Therefore, it encompasses the 
two components described above, probability, whose  
 
 
 

calculation can be based on the existing history for the 
event, and susceptibility, which addresses aspects related 
to the territory for which the phenomenon is being 
studied. 

2.5 Vulnerability 
Vulnerability expresses the degree of loss to which a 
given element is subject to the occurrence of the treated 
phenomenon. Vulnerability is expressed on a scale that 
varies between zero – no damage occurs – and one – the 
damage is total, destroying the element at risk  
(Rivera-Izquierdo et al., 2020). 

2.6 Risk 
In the literature, the mathematical expression of risk is 
often found as the product of danger and vulnerability,  
R = P x V (Bachmann and Allgöwer, 2002). One 
difficulty this approach raises is that it cannot adequately 
differentiate the actual loss of different elements with the 
same vulnerability. Looking at COVID-19, and as an 
example, a small area may have a greater vulnerability 
than a considerably larger area and is therefore subject to 
a greater degree of infection. That is, based on R = P x V 
if we assume that the risk is higher in areas with higher 
population density will seek to identify a contingency plan 
for these areas first and placing the remaining areas with a 
lower risk scale. However, the chances of infection in 
areas with lower density may correspond to a greater 
attractiveness of dispersion. At this point the introduction 
of an additional variable, the economic value variable 
(number of infected people x potential number of 
admissions), is useful. Potential harm is thus the product 
between vulnerability and the value of the element at risk. 

Recalling the definition presented by Bachmann and 
Allgöwer (2002), the risk is the probability that  

COVID-19 will occur in a specific location, under 
certain circumstances, and its expected consequences, 
characterised by impacts on the affected objects. Based on 
this definition and transposing the same conceptual 
framework to the pandemic, internationally accepted in 
other domains, risk will be understood here as the product 
between danger and potential damage (Figure 1). 

The import of these concepts to an area such as 
epidemiology implies the use of more complex 
mathematical models as integrators of various factors. 

Modern chaos theory has been applied successfully to 
several science fields which have some common features: 
a small perturbation, grows exponentially with a defined 
coefficient, the Lyapunov exponent, and finally saturates 
(Bonasera and Zhang, 2020; Zheng and Bonasera, 2020). 
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Figure 1 Risk methodology and wildfire research 

 
Source: Andreas Bachmann and Allgöwer (2001) 

 
As Bonasera (2020) puts it, equation (1) is the logistic 
equation as a model of population growth. It is the 
solution of a simple first-order non-linear ordinary 
differential equation, in which d0 indicates the moment 
that a small perturbation occurs, it grows exponentially 
with a coefficient λ, the Lyapunov exponent, and it finally 
saturates to a value d∞ >> d0 (Bonasera et al., 2020; 
Bonasera and Zhang, 2020). This is an adequate model for 
the parameterisation of the probabilistic component of the 
risk model presented by Bachmann and Allgöwer (2001). 

The gravity model is a framework borrowed from 
transportation theory. It can also be used to model the 
spread of infectious diseases (Kraemer et al., 2019; 
Vespignani et al., 2020). The geographic spread of 
infectious pathogens may be driven by infected 
individuals traveling between areas and on the local 
characteristics such as population density and contact 
patterns, among others. 

Like the gravity model, the radiation model considers 
the origin and destination of the trips made, which allows 
calculating the time and distance, and the drawn from 
other populations within the same radius, allowing it to 
create patterns. This model assumes that every location 
has a certain level of competitiveness and attractiveness. 

Equation (2) (gravity model) and equation (3) 
(radiation model) represent the predicted human 
movements between each pair of places, so the human 
mobility estimates are reflective of the general fluxes of 
the population. In other words, the susceptibility of a 
given location to be affected by the phenomenon. 
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In 2019, this model was validated on data from the  
2014-2016 Ebola virus disease outbreak in West Africa 
(Kraemer et al., 2019) and in 2020, again, by Kraemer, the 
effect of human mobility and control measures on the 
COVID-19 epidemic in China (Vespignani et al., 2020). 

2.7 Theme for the investigation 
The solution proposed for this study is based on two 
aspects, deterministic and probabilistic. This strand is 
framed in two quantitative models, chaos theory, and 
gravity model to find a trend or pattern that allows an  
in-depth study of measurements of geometric distance, 
density, and complex and dynamic systems on the  
SARS-CoV-2 virus as well as creating a risk model. 
Chaos theory will be used to model how a small 
disturbance can grow exponentially and then saturate to a 
finite value, a mechanism like the dissemination of 
COVID-19. On the other hand, the gravity model 
simulates the dispersion of COVID-19 based on the 
centroids of the regions, tending to be the most populated 
places, with the places with the greatest circulation of 
transport, namely airports and international railway 
stations. Due to the population dynamics, namely the 
pedestrian behaviours (Mykoniatis et al., 2021) the 
inclusion of this model is mainly aimed at including the 
spatial and geographic variables in the spread of the 
pandemic. This model aims to reproduce the observed 
timing and spread of the pandemic at a regional level, 
considering variables as transmission, population size, 
vulnerability, and distance. 

2.8 Critical analysis 
The spatial distribution of COVID-19, despite being 
studied by several authors including Bonasera and Zhang 
(2020), Jia et al. (2020) and Santos (2020) only indicates 
the current distribution of the number of COVID-19 
infections, not calculating or using predictive models for 
the construction of a risk component composed of several 
variables. In terms of epidemic simulation models applied 
to COVID-19, Bai (2020) applied a system of first-order 
ordinary differential equations (ODEs) and spatial agent-
based model (ABM) although without having into account 
the chaotic movement of people along the different stages 
of the several quarantines imposed. Thus, this risk model 
proposal, based in the conceptual frame of Bachmann and 
Allgo (2001), aims to consolidate issues not addressed in 
other studies, enabling the prediction of risk variation in 
each region as a function of the evolution predicted by the 
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model using the conjunction of a mathematical and a 
statistical model. 

3 Research objectives/research questions 
Based on the adoption of a deterministic and stochastic 
philosophy, the purpose of finding a trend or standard that 
allows an in-depth study of measurements of geometric 
distance, density, and complex and dynamic systems on 
the SARS-CoV-2 virus. These models are complementary 
to each other and will allow a more comprehensive and 
holistic view of the pandemic situation in Portugal. That 
is, the conjugation of these models will allow the 
understanding, or at least a significant approximation, to 
the development of a risk model with a high level of 
accuracy for understanding the dynamics of COVID-19 
propagation at the national level. 

4 Research methodology 
COVID-19 virus has shown different variations since the 
beginning of the pandemic. To have a brighter view of its 
impact, the government resorted to the method of 
epidemiological waves temporal space. According to the 
World Health Organization, the term ‘wave’, when related 
to the virus, corresponds to the variation of the cases 
(Hazarika and Gupta, 2020). We can state that a wave 
ended when the virus was brought under control and cases 
had fallen substantially and, for the next wave to start, it is 
necessary to have a sustained rise in infections. Therefore, 
a wave can be defined by two main characteristics: its 
upwards and downwards periods; and by the increase in 
an upward period or the decrease in a downward period to 
be substantial by sustaining over a period to distinguish 
them from an uptick, a downtick, reporting errors, or 
volatility in new cases. 

In Portugal, it is possible to identify three different 
waves since the beginning of the pandemic. The first 
started in March 2020 and it lasted until the beginning of 
May. This first was characterised by the appearance of 
this virus in Portugal, because of a shoe fair in Italy. The 
second wave, dated from October to the beginning of 
December, was marked by a significant increase in the 
indicators, such as the number of cases and people in the 
UCI, leading to another lockdown. The third and final 
wave started in December and ended at the end of January 
2021. This was the one that had the most impact in 
Portugal with all the indicators achieving their maximum 
and bringing the country to the brink of collapse. By that 
time, Portugal had achieved a maximum of 12,000 cases a 
day (urworldindata.org, 2021). 

4.1 Proposed risk conceptual model 
Based on the work of Bachmann and Allgöwer (2001), the 
proposed risk conceptual model is as in Figure 2. In the 

proposed model, the risk can be calculated by multiplying 
the potential damage by the danger. In their work, they 
defined forest fire risk as the probability of a wildfire  
to occur at a specified location and under given 
circumstances and its expected outcome as defined by the 
impacts on the affected objects. The migration from the 
initial premise to the proposed model is based on this 
same concept. It tries to comprehend the probability of a 
positive case to occur at a specified location and under 
given circumstances and its expected outcome as defined 
by the impacts on the affected people. 

In the model, the danger is calculated by the 
probability of the event and how susceptible the area is to 
that event, while the potential damage is calculated by the 
economic value multiplied by the vulnerability. The main 
innovation of this model is related to how each of its basic 
components is obtained. The use of chaos theory and 
gravity model to model the probability and susceptibility 
components, respectively, is shown as the main novelty. 

The evolution of COVID-19 transmission has been 
widely researched in the past year. Bonasera and Zhang, 
(2020) and Zheng and Bonasera (2020) found not only a 
way to model the evolution of the number of COVID 
cases, but also the probability of a test coming up positive. 
The models were originally tested for the Italian 
population, therefore both models were tested for the 
Portuguese reality using data collected from official data 
from Portuguese institutions, namely the Directorate-
General for Health (DGS, 2021). After testing if the model 
fit the Portuguese data, the model was used to calculate 
the probability of a COVID-19 test from each area be 
positive on a given day. 

This study used the NUTS III, Nomenclature of 
Territorial Units for Statistical Purposes, which is a 
hierarchical system used to divide the territory into 
regions, according to the Regulation (EC) No. 1059/2003 
of the European parliament and the Council of 26 May 
2003. These references are applied by the European Union 
and Eurostat to elaborate regional statistics and to define 
and elaborate local politics and funds distribution, 
respectively. When using this classification as a reference, 
it was possible to identify more regionally specific data, 
such as the COVID-19 tests performed, positive tests, 
virus effects, among others reported daily, important for 
the study as well as spatial detail which will allow a more 
concrete statistical analysis. If the authors have chosen, 
the NUT II it will englobe a low level of detail for the 
proposed work. In the opposite, level of municipality, will 
create a complex entropy due to not uniform data 
distribution among the several municipalities which could 
envisage the model. Thus, using a NUTS III in this study 
will provide a more comprehensive spatial data 
distribution which can be replicated to same geographical 
areas in other European countries due to the same 
geographical division. 
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Figure 2 Proposed epidemiological risk conceptual model for COVID-19 

 
Source: Self-elaborated 

 
To calculate susceptibility, a model was created based on 
the gravity model. Including as focus points all airports 
and train stations with international connections, the first 
step was to calculate the mean distance of each area to 
these focal points. The closer the area to all the focal 
points, the more susceptible it was to being affected by 
COVID, as these focal points are entries for new 
transmission chains. Since COVID-19 is transmitted by 
people, the susceptibility metric is given by the mean 
distance to the focal points adjusted by the population 
density of each area. The values of population density to 
each area were retrieved from PORDATA (2021a). Once 
all susceptibility values were calculated, they were 
normalised for values between one and zero. While it was 
important to normalise the scale, the area less susceptible 
should not be ignored, therefore zero was replaced with a 
very small value – 10–5. 

Figure 3 Identification of mainland Portuguese NUTS III 

 

The danger parcel of the model is given by the 
susceptibility multiplied by the probability, since the first 
was already normalised and the second is a value between 
zero and one, there is no need to normalise the result. 
Furthermore, the probability is the only factor used 
allowed to be null, which means that danger can also be 
null if the probability of a test coming up positive for that 
area was found zero by the probability model. 

When analysing the effects of COVID-19, human life 
is the main affected asset, and therefore, the economic 
value of each area is given by the total population of the 
area. The values used for the total population were 
collected from PORDATA (2021b), which represent the 
total number of people living in the area at the end of 
2019. 

As found by many authors, including Götzinger and  
Santiago-García (2020), Goujon et al. (2020), Meena et al. 
(2020) Nogueira et al. (2020), Rivera-Izquierdo et al. 
(2020) and Shahid et al. (2020), COVID-19 has been 
affecting more older people, not only are they more likely 
to develop serious symptoms but are also more likely to 
die from it. This means that areas, where the population is 
older, are more vulnerable to the disease. This 
vulnerability was calculated by comparing the population 
distribution by age group of each area with the country 
mean. If the area has more elders than the country’s 
average, then it will increase its vulnerability. On the other 
hand, if there are more children or teenagers then the 
vulnerability will decrease. Finally, the values calculated 
were normalised and the zero values were replaced with 
10–5. 

The potential damage of each area is given by the 
normalised value of the total population multiplied by the 
vulnerability of the area. Afterward, these values are 
normalised and multiplied by the danger already 
calculated to obtain the values of risk, which are once 
more transformed in scale from zero to one. All the 
variables are summarised in Table 1. 

Figure 4 represents by pseudocode, the form of 
computational implementation using the Miniconda 
version 4.9.2 and Python version 3.8 tools. 

Figure 4 Pseudocode for calculating relative risk 

 
Source: Self-elaborated 
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Table 1 Summary table with the different variables, their description, and calculation method 

Variable Description Calculation method 

Probability Probability of a test coming up positive Positives divided by the total number of tests 
Susceptibility The closer the area to all the focal points, as airports and 

international train stations, the more susceptible of being 
affected by COVID 

Euclidean distance function to calculate distances 
between centroids and focal points 

Vulnerability Comparing the population distribution by age group of each 
area with the country means 

Population distribution data by age group, 
calculate the difference in the distribution of the 
entire country, normalise the vulnerability values 

Economic value Number of individuals living in a certain region Total population of the area 
Danger The older the population and higher the probability, the more 

dangerous is the region. 
Susceptibility multiplied by the probability 

Potential damage The normalised value of the total population multiplied the 
vulnerability of the area 

Population distribution data, calculate the 
difference in the distribution of the entire country, 

normalise the vulnerability values 
Risk The probability that COVID-19 will occur in a specific 

location, under certain circumstances, and its expected 
consequences, characterised by impacts on the affected objects 

Potential damage multiplied by danger 

Source: Self-elaborated 
 

5 Results and discussion 
5.1 Risk conceptual model 
Table 2 aggregates all the results obtained for the 
parameterisations of the different components of the risk 
model, by region, on May 13, 2021. The table sorts the 
relative risk by region from highest to least, namely in the 
Lisbon metropolitan area to Tâmega and Sousa. 
Predictably, the regions of the metropolitan areas of 
Lisbon and Porto are those that present a higher relative 
risk, 1 and 0.631, respectively. In contrast, Baixo Alentejo 
and Tâmega and Sousa are the regions with the lowest 
relative risk, mainly due to their location and 
vulnerability. Given the variables in question, such as 
resident population and distance to transport focal points, 
the two largest Portuguese cities have the highest relative 
values. On the study date, and regarding the probability of 
obtaining a positive test, the metropolitan area of Lisbon 
also had the highest values (0.265), followed by the 
regions Viseu dao Lafões and Coimbra (0.265 and 0.249), 
places with many active cases. On the other hand, Alto 
Tâmega and Tâmega e Sousa have the lowest probability 
values (0.132 and 0.154, respectively). Beira Baixa and 
Baixo Alentejo are the regions with the lowest 
susceptibility, due to the distance of their centroids and 
focal points of transportation in Portugal. Also, as 
expected, the regions of the metropolitan areas of Lisbon 
and Porto have the highest values. Alto Tâmega, Terras 
and Trás-os-Montes e Beiras e Serra da Estrela are the 
regions with the highest vulnerability (1, 0.854 and 0.733, 
respectively) meaning that they are the regions with the 
oldest population in the country, unlike the regions of 
Aveiro, Ave, and Tâmega e Sousa. 

 

 

Figure 5 Number of positive cases for Alentejo Litoral 

 
Source: Self-elaborated 

The first step was to test the fitness of the model proposed 
by Bonasera et al. (2020), Bonasera and Zhang (2020) and 
Zheng and Bonasera (2020). The model calculates the 
number of positives, and the probability of a test is 
positive for individual waves of the disease. Therefore, 
this study focused on the third Portuguese wave that 
started after Christmas. It was possible to model the total 
number of positive COVID-19 cases of each area with 
very high accuracy, the lowest R2 obtained was 0.985 for 
Alentejo Litoral (Figure 5). The model for the probability 
of a test coming out positive also adjusted very well to the 
data, the lowest R2 was 0.966 achieved for the 
metropolitan area of Lisbon (Figure 6). In Table 3 are the 
equation (1) parameter values obtained for the different 
Portuguese mainland regions. 
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Table 2 Results obtained for the different components of the proposed risk model, by region, on May 13, 2021 

Number NUTS III Susceptibility Probability Economic 
value Vulnerability Danger Potential 

damage Relative risk 

1 Lisbon metropolitan area 9.98E-01 2.65E-01 1.00E+00 1.15E-01 2.65E-01 1.00E+00 1.00E+00 
2 Porto metropolitan area 9.95E-01 1.69E-01 6.04E-01 1.90E-01 1.68E-01 9.96E-01 6.31E-01 
3 Beiras e Serra da Estrela 9.14E-01 2.35E-01 7.39E-02 7.33E-01 2.15E-01 4.70E-01 3.82E-01 
4 Região de coimbra 9.62E-01 2.49E-01 1.52E-01 2.76E-01 2.40E-01 3.63E-01 3.29E-01 
5 Viseu Dão Lafões 9.36E-01 2.65E-01 8.79E-02 4.00E-01 2.48E-01 3.04E-01 2.85E-01 
6 Médio Tejo 9.22E-01 1.98E-01 8.12E-02 4.42E-01 1.83E-01 3.11E-01 2.15E-01 
7 Alto Minho 9.55E-01 2.40E-01 8.05E-02 3.11E-01 2.29E-01 2.17E-01 1.88E-01 
8 Lezíria do Tejo 8.52E-01 2.24E-01 8.31E-02 2.92E-01 1.91E-01 2.10E-01 1.52E-01 
9 Terras de  

Trás-Os-Montes 
7.25E-01 1.83E-01 3.75E-02 8.54E-01 1,33E-01 2,78E-01 1,39E-01 

10 Cávado 9.87E-01 2.10E-01 1.41E-01 1.10E-01 2.07E-01 1.35E-01 1.05E-01 
11 Douro 9.32E-01 2.18E-01 6.66E-02 2.36E-01 2.03E-01 1.37E-01 1.05E-01 
12 Alto Tâmega 7.63E-01 1.32E-01 3.01E-02 1.00E+00 1.01E-01 2.61E-01 9.95E-02 
13 Oeste 9.41E-01 2.04E-01 1.25E-01 1.05E-01 1.92E-01 1.14E-01 8.24E-02 
14 Alentejo Central 4.70E-01 2.14E-01 5.32E-02 4.19E-01 1.00E-01 1.93E-01 7.33E-02 
15 Algarve 9.61E-01 1.63E-01 1.53E-01 8.26E-02 1.57E-01 1.10E-01 6.50E-02 
16 Alto Alentejo 3.77E-01 2.02E-01 3.65E-02 6.27E-01 7.62E-02 1.98E-01 5.71E-02 
17 Alentejo Litoral 5.59E-01 1.86E-01 3.27E-02 4.96E-01 1.04E-01 1.40E-01 5.51E-02 
18 Região De Leiria 9.02E-01 1.90E-01 9.94E-02 8.76E-02 1.71E-01 7.55E-02 4.87E-02 
19 Região de Aveiro 9.50E-01 1.99E-01 1.27E-01 4.52E-02 1.89E-01 4.98E-02 3.55E-02 
20 Beira Baixa 2.80E-01 1.61E-01 2.80E-02 7.29E-01 4.49E-02 1.77E-01 3.00E-02 
21 Ave 9.87E-01 1.96E-01 1.44E-01 2.44E-02 1.93E-01 3.04E-02 2.22E-02 
22 Baixo Alentejo 1.00E-04 2.40E-01 4.06E-02 4.98E-01 2.40E-05 1.75E-01 1.59E-05 
23 Tâmega e Sousa 9.83E-01 1.54E-01 1.45E-01 1.00E-05 1.51E-01 1.45E-06 2.20E-07 

Source: Self-elaborated 
 

Figure 6 Probability for M.A. of Lisbon 

 
Source: Self-elaborated 

Once the parameters for each probability model were 
known it was possible to calculate the probability of each 
test for the present and future dates. Comparing the results 
obtained with those registered by Bonasera, roughly a year 
earlier, these are very close. In his work, Bonasera, says 
that for the different regions of Italy, the probability of 
testing positive for the virus as a function of time at 120 
days will vary approximately between 0.1 and 0.45. The 
average value obtained for the regions in Portugal is 0.2, 
with a maximum of 0.265 referring to Viseu Dao Lafões 
and a minimum of 0.132 in Alto Tâmega, Figure 7. 

Figure 7 Probability distribution, by region 

 
Source: Self-elaborated 
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Table 3 Fitness values for the probability parameter for the different Portuguese mainland regions 

Number NUTS III D0 d∞ λ d 

1 Lisbon metropolitan area 0.06634 0.44063 0.13830 57.39568 
2 Porto metropolitan area 0.008363 0.27998 0.49941 51.32681 
3 Beiras e Serra da Estrela 0.037866 0.42375 0.28606 53.98518 
4 Região de Coimbra 0.05265 0.41113 0.17981 58.24238 
5 Viseu Dão Lafões 0.05414 0.50427 0.21761 48.11530 
6 Médio Tejo 0.02559 0.35983 0.32474 42.89124 
7 Alto Minho 0.04168 0.42617 0.17460 50.82159 
8 Lezíria do Tejo 0.04642 0.37081 0.16175 58.04667 
9 Terras de Trás-Os-Montes 0.01155 0.34102 0.46523 50.36391 
10 Cávado 0.00490 0.37706 0.62805 43.14844 
11 Douro 0.034343 0.38332 0.31338 53.71805 
12 Alto Tâmega 0.00302 0.25392 0.61109 34.42030 
13 Oeste 0.043665 0.33410 0.19072 58.69298 
14 Alentejo Central 0.01037 0.42999 0.49797 33.68746 
15 Algarve 0.02160 0.25883 0.29582 54.53307 
16 Alto Alentejo 0.02748 0.38462 0.30978 46.19382 
17 Alentejo Litoral 0.03489 0.26899 0.14814 59.50167 
18 Região De Leiria 0.02562 0.33280 0.32152 49.28826 
19 Região De Aveiro 0.01330 0.32570 0.43044 48.63915 
20 Beira Baixa 0.02098 0.30217 0.35030 49.23719 
21 Ave 0.01292 0.35320 0.46704 48.00785 
22 Baixo Alentejo 0.02250 0.38114 0.30685 58.11607 
23 Tâmega e Sousa 0.01256 0.24104 0.40628 57.82926 

Note: according to equation (1). 
Source: Self-elaborated 

 
Figure 8 Susceptibility distribution, by region 

 
Source: Self-elaborated) 

The susceptibility of each area was calculated according 
to the processes described before, and it was possible to 
identify Lisbon’s metropolitan area as the most 
susceptible area closely followed by the Porto’s 
metropolitan, and Baixo Alentejo as the least susceptible, 
Figure 8. These results are aligned to what could be 
expected, the metropolitan areas not only have the highest 
population densities but also include airports and train 
stations with international connections. On the other hand, 
Baixo Alentejo not only is further from the international 
connections used as focus points but also has a very low 
population density. Afterward, it was possible to calculate 
the danger of each area, as can be seen in Figure 9. While 
the areas in most or least danger are the ones most and 
least susceptible, the relationship is not true for the 
remaining areas. For instance, the metropolitan area of 
Porto, which was the second most susceptible is only the 
14th in most danger due to its lower probability. 
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Figure 9 Danger distribution 

 
Source: Self-elaborated 

Figure 10 Potential damage distribution 

 
Source: Self-elaborated 

Figure 10 shows the potential damage of each area, 
calculated according to the description given in the 
methodology section. Once again, this map shows what 
was already expected given that the Portuguese 
population, especially the younger generation, is 
concentrated in the metropolitan areas. Finally, the risk 
values can be obtained by multiplying these two final 
factors (Figure 11). The final map shows the relative risk 
of each area for COVID-19 transmission, which enables 
the creation of localised measures pointing to the most 
vulnerable areas. The most susceptible areas to being 
infected by COVID-19 are the metropolitan areas and the 
Beiras region. 

Figure 11 Relative risk distribution 

 
Source: Self-elaborated 

Figure 12 Spearman correlation for the parameters introduced 
in the proposed risk model 

 
Source: Self-elaborated 

5.2 Correlation indexes 
Robust correlation measures can be used to construct 
multivariate covariance matrices, based on pairwise 
covariances (Puth et al., 2015). Non-parametric 
correlation estimators as the Kendall and Spearman 
correlation are widely used in the applied sciences. They 
are often said to be robust, in the sense of being resistant 
to outlying observations. They are examples of a non-
parametric rank-order correlation that does not make any 
assumptions about the distribution of the data (Croux and 
Dehon, 2010). They also measure the monotonic 
relationship between two variables (Puth et al., 2015). A 
higher absolute value of Spearman’s or Kendall’s 
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correlation coefficient indicates that there is a monotonic 
(but not necessarily linear) relationship between the 
variables (Puth et al., 2015). The correlation between the 
different parameters of the risk model has been tested. 
Figure 12 and Figure 13 show the obtained results for 
Spearman and Kendall correlation, respectively. 

Figure 13 Kendall correlation for the parameters introduced in 
the proposed risk model 

 
Source: Self-elaborated 

Pearson’s correlation presents better results than Kendall’s 
correlation. As described above, these correlations 
describe some monotonic relationships between 
parameters, namely in the pair susceptibility and 
economic value, potential damage and relative risk, with a 
positive relationship, and the pairs vulnerability and 
susceptibility and vulnerability and economic value with a 
negative relationship. Coefficients close to 0 represent 
non-correlation between parameters. The correlations 
verified make sense within the pandemic context and the 
model itself. In terms of monotonic growth, the proximity 
to mobility centres is also reflected in the proportion of 
the population, as well as potential damage and relative 
risk. In the inverse field, vulnerability has a negative 
monotonic relationship with the parameters referring to 
susceptibility and economic value, in the sense that, in 
practice, the regions furthest away from the economic 
centres are more aged. 

6 Conclusions 
The COVID-19 pandemic was and still is analysed by its 
waves. This not only allows us to understand when it has 
reached its maximum but also positioned it in terms of 
events and festivities. The need for a more robust risk 
analysis model, which allows for the application of more 
localised measures and actions, proved to be extremely 
important during the different waves of COVID-19 seen 
in Portugal, especially since it differs from region to 
region, as shown with NUTS III. 

A model based on work carried out in the 1990s and 
00s on risk models for the assessment of wildland fires 
was proposed, with changes in the calculation of their 

components. These changes allow the application of more 
sophisticated models, such as the gravity model, radiation 
model, and the determination of the risk applied to this 
context, which is closer to the evolution of the pandemic. 

The application of the chaotic model to calculate the 
probability had interesting results, with an average fit (R2) 
in the order of 0.9804. The development of the curve and 
the model itself is closer to that verified empirically with 
the accentuated growth in the number of positive cases 
until reaching a plateau of stabilisation. 

We believe that the inclusion of factors, such as the 
presence of airports and train stations with international 
tickets, population and age indicators adds strength to the 
analysis carried out and the application of measures more 
focused on regional needs and contexts. Therefore, the 
areas that were identified as being riskier are the 
metropolitan areas, for their traffic and international flow, 
and Beiras, mostly because of its elder population. Given 
the analysis carried out with these correlations, it is 
important to emphasise that the analysis of relative risk 
should not be done in isolation, but together with other 
parameters to complement the information. Different 
positive or negative variations may affect the negative risk 
value, hindering the implementation of effective and 
efficient measures locally, given geographic and 
demographic differences. 

7 Limitation of the study and future work 
The proposed model does not include the incorporation of 
information such as the total number of vaccinated and by 
age group, migratory and tourist flows, or phases of 
deconfinement. As future work, it is proposed the 
inclusion of these factors. 
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