
70 Int. J. Computer Applications in Technology, Vol. 68, No. 1, 2022

Copyright © 2022 Inderscience Enterprises Ltd.

Integration of ubiquitous specifications in the
conception of objects system

Sonia Aimene* and Idir Rassoul
LARI Laboratory of Computer Science,
Mouloud Mammeri University of Tizi-Ouzou,
Tizi-Ouzou 15000, Algeria
Email: aimene.sonya@gmail.com
Email: idir_rassoul@yahoo.fr
*Corresponding author

Abstract: This paper proposes an approach called Ubiquitous System Object (Ubi-SO) based on
standard life cycle. This approach aims to identify, to analyse and to design ubiquitous
requirements that can be incorporated into a traditional system engineering process. The
approach is modelled with the Business Process Management Notation (BPMN) method which is
adapted using the Bizagi Modeler tool. Ubi-SO separates functional, technical and contextual
ubiquitous needs in conceptualisation phase. It is based on extended sequence diagram in analysis
phase and on extended class diagram in design phase using Uml profile for the best adaptation to
ubiquitous domain. Compared with a lot of works, this solution offers guidelines for studying and
spreading ubiquitous needs. To demonstrate the feasibility of our work, the approach is verified
by translating the BPMN into formal Language of Temporal Ordering Specification (LOTOS)
and then validated by the CADP tool.

Keywords: modelling; context-awareness; ubiquitous computing; pervasive applications;
mobility; LOTOS; BPMN; Uml profile; life cycle.

Reference to this paper should be made as follows: Aimene, S. and Rassoul, I. (2022)
‘Integration of ubiquitous specifications in the conception of objects system’, Int. J. Computer
Applications in Technology, Vol. 68, No. 1, pp.70–81.

Biographical notes: Sonia Aimene is a PhD candidate in the Computer Science Department of
the Electrical Engineering and Computer Science Faculty at the Mouloud Mammeri University of
Tizi-Ouzou, Algeria. She holds her MSc degree in Computer Systems and Networks from the
same department in 2014. Her research interests include pervasive information systems,
integration of ubiquitous specifications in the conception of object systems and information
systems.

Idir Rassoul joined the Mouloud Mammeri University of Tizi-Ouzou, Algeria, where he works as
University Lecturer empowered to conduct research in Computer Sciences. After his studies at the
University of Paris IX Dauphine (France) where he obtained the Doctorate 3rd Cycle in Computer
Science, Head of a Research Team at the Laboratory of Research in Computer Science (Lari) in the
field of Software Engineering and Information Systems. Currently, he is developing Collaboration
in Geographic Information Systems including Pervasive Computing and Decision-Making in
Emergency Situations in Collaboration with colleagues of Department of Civil Engineering.

1 Introduction

Extended object oriented development systems offer promising
and advantageous perspectives to ubiquitous system. Today,
the ubiquitous computing paradigm aims at allowing a smooth
integration of the information technologies in diverse domains
including education and healthcare (Ahmed et al., 2017;
Escobar et al., 2017; Batarseh and Gonzalez, 2018; Shahzad
et al., 2020). So, as computing systems become more pervasive
and complex, the nature of applications must change
accordingly. Object oriented systems must then adapt
and support this new vision, which is ubiquity. They must
also allow the orchestration of services in an ubiquitous

environment. Pervasive ubiquitous computing is distinguished
from traditional computing systems by its integration to
pervasive environment and adaptation to the context (Ferscha,
2011). In order to ensure the usability and ubiquity of
applications, it is necessary to meet the requirements of users.
The literature does not specifically address the engineering of
ubiquitous requirements and does not provide methods to
facilitate their specification and so, only a few approaches
provide engineering methods based on a detailed development
process. For example, there are no guidelines for modelling in
Henricksen and Indulska (2006) and there is no engineering
requirements in Vieira et al. (2011) and Cipriani et al. (2011).
An ubiquitous model cannot be complete without adopting a

 Integration of ubiquitous specifications in the conception of objects system 71

development methodology to organise the engineer’s work to
have a process that can facilitate the design of ubiquitous
applications. The literature addresses these challenges primarily
related to the development of processes for capturing,
acquiring and modelling contextual information. To address
this challenge, this paper develops an approach for the
conceptualisation, analysis and design of object-oriented
systems that follow the traditional steps by proposing a new
process called Ubiquitous System Object (Ubi-SO).

This process is based on standard life cycle (Booch, 1995)
and allows identifying, analysing and designing ubiquitous
requirements that can be integrated into traditional system
engineering process. The objective of this approach is to
facilitate the engineering of pervasive applications by
integrating ubiquitous aspect that is context-awareness which is
an important aspect in pervasive computing. This will offer a
solution that provides guidelines for studying and modelling an
ubiquitous process. We model our approach with the BPMN
(White, 2004) method which can be adapted with the Bizagi
Modeller tool for better management and modelling of the
process using its Build time environment in the analysis and
designing parts. The characteristics of our approach are:

 The reuse of phases of a classical system which allows to
benefit and to exploit the bases of engineering.

 Conceptualisation step proposes separation of logical,
technical and contextual ubiquitous specifications to allow
easy modification and better maintenance.

 These specifications will be analysed in the ‘analysis’ step
where we propose the extension of the sequence diagram
using the UML profile and they will be designed in the
‘design’ part where we also proposed the extension of the
class diagram with the UML profile.

The proposed UML ubiquitous profile in analysis and design
steps is a package of specific profiles that extend the standard
notations of two UML diagrams chosen according to different
views of a system (sequence diagram and class diagram). For
each diagram, we propose UML extension mechanisms such as
stereotypes, constraints and tagged values that can model any
contextual situation. The UML profile is used because it
allows, thanks to its customisation, an adaptation of the
situations to the contextual environment. We will then have all
the management steps of this ubiquitous process starting from
the identification of needs to their design and verification.

The approach is verified using LOTOS (Ameyed, 2017)
specification, where we translate each activity of process of
sequence diagram to formal language and validate them with
CADP tool. LOTOS is based on process algebra and it is
extremely useful for temporal logic verification and for
simulation. The formal specification language LOTOS was
chosen because it is an ISO (International Organisation for
Standardisation) standard for which several verification tools
such as CADP are available. This verification is performed
through the proof of behavioural properties related to the
composition scenario, expressed using temporal logic. The rest
of this paper is organised as follows: Section 2 discusses
related work concerning the development of ubiquitous

Information Systems (ISs), basic concepts and foundations for
the approach are presented in Section 3, Section 4 gives the
case study, Section 5 verifies Ubi-SO formally and validates
LOTOS programs, and finally, Section 6 concludes the paper
and describes the further works.

2 Related work

More than 25 years ago, Mark Weiser identified ubiquitous
computing as the third generation of computers, after the
mainframe generation and the personal computer generation
(Weiser, 1991). This vision reflects how we can define current
and future generations of computers based on technological
innovations and applications that influence the human
experience in computing (Abowd, 2016). There are different
studies and researches in ubiquitous domain which has many
modelling methods. Current approaches to modelling and
context management can be found in Bruneliere et al. (2019).
Wang et al. (2018) aimed at providing a concise overview of
the technical characteristics and applications of ubiquitous
manufacturing systems which were published between 1997
and 2017. Various approaches to modelling ubiquitous systems
are based on model-oriented approaches like approach of
Henricksen and Indulska (2006); Vieira et al. (2011); Cipriani
et al. (2011) and Ameyed (2017). A set of conceptual models
designed to support the software engineering process
is proposed in Henricksen and Indulska (2006), including
context modelling techniques, two programming models
and a preference model for representing context-dependent
requirements. They also present a software engineering process
and software infrastructure that can be used in conjunction with
their models. Vieira et al. (2011) presented an integrated
approach to assist the design of Context Sensitive Systems
(CSS). The originality of this work lies in the proposed way of
thinking about context, on the proposed context metamodel and
on the specification of a process for designing CSS. The meta-
model supports building context models by making explicit the
concepts related to context manipulation and by separating the
context structure model from the CSS behaviour model. The
design process details the main activities related to context
specification and the design of CSS, providing a systematic
way to execute these tasks. To provide a graphical user
interface to design schemas for spatial and technical context
models in Cipriani et al. (2011) presentd the NexusEditor
which interactively creates queries, send them to a server and
visualise the results. One main contribution is to show how
schema awareness can improve such a tool. The NexusEditor
dynamically parses the underlying data model and provides
additional syntactic checks, semantic checks and short-cuts
based on the schema information. Furthermore, the tool helps
to design new schema definitions based on the existing ones,
which is crucial for an iterative and user-centric development
of context-aware applications. Ameyed (2017) presented a new
formal approach to context prediction in context-sensitive
proactive systems. They express context and transition in a
diffuse system under a formal presentation, using probabilistic
temporal logic PCTL (a probabilistic extension of temporal

72 S. Aimene and I. Rassoul

logic). They propose a probabilistic transition model to code
the behaviour of the system over time. The combination of
PCTL with the stochastic model allows us to plot, analyse and
predict the future context using the checking model to verify
the properties of future states and thus returning quantitative
results. Most of the related works focus on just the contextual
aspect but neglect the functional and technical ones. We deduce
that most approaches offer context meta-models, but do not
provide guides or instructions for using them to facilitate the
task of designers. For example there is no guideline for adding
requirement context modelling analysis and specifications
phase in Henricksen and Indulska (2006) and there is no
requirement engineering in Vieira et al. (2011) and Cipriani et
al. (2011). In this paper, we aim to consider several criteria by
proposing an approach that includes guide or instructions to the
engineer and make it easier to handle the requirements of his
system. The approach separates functional, technical and
contextual ubiquitous needs by proposing ubiquitous
specification process. These specifications will be analysed in
the ‘analysis’ step where we propose the extension of the
sequence diagram using the UML profile and so, they will be
designed in the ‘design’ part where we also proposed the
extension of the class diagram with the UML profile. This
solution offers guidelines for studying and spreading
ubiquitous needs.

3 Proposed approach

This section is devised in three main parts. In the first part, we
give general concepts of standard life cycle which is the basis
of our new proposal. Then, in the second part, we explain how
the ubiquitous specifications are integrated. Finally, we
show modelling of these specifications using Build Time
environment. After this, their analysis and design are given
using UML Profile.

3.1 Basic concepts

Our approach is inspired by the classical standard life cycle
which includes all stages of the development of any process
depicted in Figure 1. This life cycle is composed of 5 steps
which are described below.

Conceptualisation step seeks to establish an overview of an
idea and validates its basis which is necessary to define all the
objectives in the concepts. Then, analysis step allows
modelling by identifying the classes and objects (their roles,
responsibilities and collaborations) that form the vocabulary of
the problem area. To create architecture for implementation
and allow creating diagrams, the designer uses the design
phase. Finally, the evolution and maintenance phases
respectively allow the implementation to be developed and
modified through successive refinements by making updates, in
order to obtain the final system for delivering the designed
product.

Figure 1 Life cycle of specification and design

Conceptualization Analysis

Design

Evolution

Maintenance

3.2 Integration of ubiquity

Ubi-SO life cycle proposed in this paper consists of
integrating the ubiquitous specifications in standard object
oriented life cycle as follows (see Figure 2).

Figure 2 Ubi_SO life cycle

 Integration of ubiquitous specifications in the conception of objects system 73

3.2.1 Conceptualisation

Specification of ubiquitous needs: It is the acquisition of needs
and it consists of defining the software, the hardware and the
contextual needs according to a set of requirements. This step
allows the designer to detail and classify his material needs
such as the use of different equipment’s. He must specify also
his software and his contextual needs such as the study of the
working environment which includes contextual information.
In this step, we have developed ubiquitous specifications
process which is composed of three parts including technical
Ubi (Ubiquitous), logical Ubi and contextual Ubi specifications
(see Figure 3). To better see the user’s needs, we have
separated the logical, contextual and technical specifications.
The technical specifications represent the choice of hardware.
The logical specifications represent the choice of software. The
contextual specifications define the contextual data and their
integration into the existing environment (See Figure3).

 Logical Ubi specifications: This step represents the user as
an entity that can manage and control his needs with his
ubiquitous equipments. It defines also the interaction
between users.

 Contextual Ubi specifications: This step includes all the
constraints related to the used context in system or
application. It consists of collecting and capturing all
the elements that can influence the current situation of a
user in an environment.

 Technical Ubi specifications: It represents the data
source and equipments including data detection sensors
and surveillance cameras.

Figure 3 Ubiquitous specifications process

3.2.2 Analysis

Development of behavioural model: The definition of system’s
behaviour is added to analysis phase. In this step an analyst
defines the interaction with users and models contextual data
using ubiquitous sequence diagram. This later is obtained with
the extension of basic sequence diagram using concepts of
Uml Profile.

3.2.3 Design

Defining system’s models: In this step, we have defined the
models of system. We propose a ubiquitous class model that

models contextual information and includes all the
characteristics that intervene in the ubiquitous environment.
Ubiquitous class diagram is obtained with the extension of
basic class diagram using concepts of Uml profile.

3.2.4 Evolution

This step allows the engineer to obtain a flexible system that
can be quickly modified in case of new constraints or
strategies, while taking into account the adaptations and
customisations suggested by the work team.

3.2.5 Maintenance

This step allows all the updates and modifications of a
system while leaving its basic functionalities intact. It thus
allows rectifying the anomalies and bringing the suggested
improvements. There are several levels of maintenance,
like preventive maintenance, improving maintenance and
corrective maintenance.

3.3 Ubi-SO modelling approach

In this paper, Built Time environment of BPMN (White,
2004) and concepts of Uml Profile are used for modelling,
analysing and designing our process. The techniques and
methods of BPMN allow identifying and modifying existing
processes to align them with a desired future state.
Previously, we have seen that there is a possibility to
separate ubiquitous contextual specifications from logical
and technical ones. For analysing and designing these
specifications, we have opted to use the Uml profile which
is a generic extension mechanism for Uml. It can change the
representation of Uml concepts and can add constraints to
these concepts as well as constraints on the use of these
concepts. Figure 4 represents the global package of the
proposed Uml profile which is composed of two packages
and each of them represents Uml profile. This explains the
global package proposed for the analysis and design part
which is called UbiUml profile (Ubiquitous Uml profile). In
this article, we customised the sequence diagram and the
class diagram. The sequence diagram in the analysis part
means the study of the system behaviour. System behaviour
is the exchange of interaction and communication between
objects in the environment. The choice of the class diagram
in the design part is due to the fact that it is representative of
the different diagrams of the system.

Figure 4 Package of the proposed profile

<<Profile>>

UmlSequence

<<Profile>>

UmlClass

<<Profile>>

UbiUml

74 S. Aimene and I. Rassoul

Sequence Uml profile and Class Uml profile extend the notion
of sequence and class diagram to support ubiquitous
characteristics. Both profiles belong to the meta-class package
of Uml.

3.3.1 Analysis

The purpose of the analysis part is to follow the system’s
behaviour. In this article we have used the sequence diagram
which allows showing the interactions and scenarios between
the objects of the system. In order to make the sequence
diagram suitable for ubiquitous design, we have extended it
using the Uml profile. The goal is to build Uml profile
composed of stereotypes, constraints and attributes that can
adapt Uml concepts to ubiquitous concepts. A stereotype
allows defining new semantics by adding it to an existing
element of the Uml meta-class. Constraints define the
conditions applied to the new elements. Figure 5 shows the
proposed stereotype which is the extended sequence diagram
explained below:

 ‘UbiObject’ represents ubiquitous entity in interactive
system.

 ‘UbiLifeLine’ represents the period during which there
will be different interactions between ‘UbiObject’.

 ‘UbiMessage’ concerns messages exchanged in the
environment between two ‘UbiLifeLine’ corresponding
to two ‘UbiObject’.

In the following, we describe how we extend the Uml sequence
profile including package, constraints and attributes profiles.

A Package profile: Figure 6 shows the extension of the
‘Object’, ‘LifeLine’ and ‘Message’ metaclasses using the
‘UbiObject’, ‘UbiLifeLine’ and ‘UbiMessage’ stereotypes.

Each of these concepts will be able to model in the
ubiquitous domain, allowing accurate modelling of
ubiquitous specifications. The meta-class Object is an
instance of the meta-class Class and each stereotype is
inherited from its basic meta-class.

B Constraints profile: The proposed stereotype must
comply with the following conditions:

 ‘UbiObject’ can interact with another ‘UbiObject’
using ‘UbiMessage’.

 ‘UbiLifeLine’ highlights chronologically the sending
and receiving points of the stereotype ‘UbiMessage’.

 ‘UbiMessage’ must have the ‘UbiLifeLine’ of the source
‘UbiObject’ as the starting point and the ‘UbiLifeLine’ of
the target ‘UbiObject’ as the end point.

C Attributes profile: Attributes allow appearing the change in
using of context in the ubiquitous domain. ‘UbiObject’
can have a name, a role and a type. UbiMessage can be
asynchronous or synchronous, (see Figure 7). Figure 8
illustrates Graphical representation of exchanged
messages between objects in sequence diagram.

Figure 5 Extended sequence diagram

Figure 6 Proposed package profile

 Integration of ubiquitous specifications in the conception of objects system 75

Figure 7 Profile attributes

Figure 8 Graphical representation of exchanged messages between objects in sequence diagram

3.3.2 Design

In the design part, we have chosen to represent and extend
the class diagram.

A Package profile: Figure 9 shows the extended Uml
Class profile package. ‘UbiClass’ is an extension of the
Class element and ‘UbiAssociation’ is an extension of
the association element.

Figure 9 Proposed package

B Constraints profile: Each ubiquitous class will have
constraints and attributes like the base classes. Each class
is any entity of the system that we called ‘UbiEntity’
which defines the ubiquitous elements of the system.
These contextual elements can be the user, the

environment, the devices used in the environment and the
messages exchanged between entities. We have
represented the user entity by the stereotype ‘UbiUser’
that can receive and transmit information. The
‘UbiEnvironment’ stereotype represents the environment
of the system where contextual information circulates.
The ‘UbiDevice’ stereotype represents any device used
in the environment and it can also be applications.
The ‘UbiMessage’ stereotype concerns the messages
exchanged in the environment.

Figure 10 shows the proposed stereotypes for the ubiquitous
meta-class ‘UbiClass’. The extension of the Class meta-class is
the ‘UbiClass’ stereotype which extends ‘UbiEntity’
stereotype. ‘UbiEntity’ has as type ‘UbiType’ which has four
types of stereotypes. UbiUser, UbiEnvironment, UbiDevice
and UbiMessage have as constraint their association with
‘UbiType’ by generalised association. The ‘Sensor’ stereotype
is associated to the ‘UbiSource’ stereotype by simple
association. The two other stereotypes ‘UbiAttribute’ and
‘UbiMethod’ are attached to the ‘UbiEntity’ stereotype by
simple association.

C Attributes profile: Each stereotype must have its
own attributes and methods. Example for the case of
UbiUser can be static by having only attributes or dynamic
if it changes location and UbiMessage like text, videos,
etc.

In the next section, we evaluate our approach using case study
and in Section 5, we verify and validates it using LOTOS
specification with CADP tool.

76 S. Aimene and I. Rassoul

Figure 10 Proposed stereotypes for ‘UbiClass’

4 Case study: healthcare environment

The approach proposed in this paper is evaluated using
healthcare application as case study illustrated by scenario of
validation (see Figure 12) modelled by Bizagi modeler. Bizagi
Modeller is used as software for modelling processes,
especially in BPMN format. The application consists of
validating scenario to obtain results in the form of ubiquitous
requirements.

4.1 Scenario

Mary has a diabetic mother with a physical handicap which
led her to provide a PillBox, in order to take her medication
by herself when Mary is away. An application that interacts
with the surveillance cameras and the PillBox is installed on
Mary’s phone. During the installation of this last one we
will ask for the serial numbers of the two devices (PillBox
and Camera) for synchronisation and a connection to server.
The PillBox and the cameras are connected to the Wi-Fi
network of the house. In case the patient forgot to take her
medication, Mary will receive a negative message from the
PillBox on her Smartphone. She will then trigger the
PillBox alarm and if the PillBox still sends negative
messages, she will be forced to check on her mom with the
surveillance cameras. The video data from the cameras, the
PillBox data and the patient’s data are recorded on a server
with a network card that is also connected to the application.

4.2 Conceptualisation

Figure 11 shows technical ubiquitous specifications which
include all used materials in this project of validation. In this
case study, the Smartphone is used to control a patient
remotely, which allows to trigger a surveillance camera to
visualise the patient’s conditions. The Pillbox provides the
patient with medication. The Server contains patient’s
information and different data. Logical specifications used in
application are android application for Smartphone. We
conclude also that the ubiquitous needs have been clearly

separated during this application as contextual needs. For
example, the Pillbox alarm is a data that has the Pillbox as
resource. This data is considered as logical need. SMS sent by
Mary which is data that circulate through Wi-Fi and the video
images obtained from the surveillance camera triggered by the
Smartphone. All these data are considered as contextual
informations which circulate in healthcare environment.

Figure 11 Technical ubiquitous specifications in healthcare
environment

Saves data in

Connect to

Connects to

Patient

 Wifi

Monitor

Saves data in

PillBox

Uses

Connect to

Server
Data

Cameras

House

Connects to server via SSL

/
Retrieves the data from Smartphone

4.3 Analysis

The objective is to describe the simulation of different
scenarios of the process described in Figure 12. At the
beginning of the patient control, we check whether we have

 Integration of ubiquitous specifications in the conception of objects system 77

a negative or positive message. If it is positive, we go to the
final process and if not, we ask the PillBox to activate the
alarm. Activating the alarm allows to remind the patient to
take medication. Then, we check if the patient is taking his
medication. If we receive a positive message we complete
the process. If not, we activate the monitoring cameras to
check the patient’s conditions.

4.4 Design

In the design part of our case study, we have developed
the class diagram (see Figure 13) concerning the executed
scenario. This diagram uses the notation extensions

elaborated in Figures 9 and 10. The stereotypes represent
the specific classes of the case study and use the ubiquitous
classes. Healthcare is the ubiquitous class and the
classes ‘UbiUser’, ‘UbiEnvironment’, ‘UbiDevice’ and
‘UbiMessage’ are inherited from this class. ‘UbiSource’
which is the location class has as class ‘Home’ and ‘work’
which are user locations in the case study. After illustrating
our case study with BPMN model of sequence diagram in
analysis phase, we propose in the next section to verify it
with formal specification, because, sequence diagram with
BPMN format does not provide functionality for formal
verification and this is due to the lack of formalism. They
are used generally for graphical specification.

Figure 12 Sequence diagram of remote patient monitoring using BPMN format

78 S. Aimene and I. Rassoul

Figure 13 Case study class diagram

5 Formal verification using LOTOS

Formal verification is the systematic process of verifying
through algorithmic techniques that an implementation is in
accordance with the specification and all execution paths are
analysed mathematically. A lot of works have been done in
this domain like contribution presented in Dos Santos et al.
(2019).

The process algebra LOTOS is formal description language
for specifying competitive systems (Brinksma, 1988). A Lot of
authors have used it, e.g. Dumez (2010) used UML activity
diagram to model the composition of web services and they
transformed it into LOTOS specification.

Verification is an essential step in any development
approach and therefore in our approach also. We have chosen
the formal verification because we consider that it is more
reliable and requires less work from the developer since the
formal specification of the system is automatically generated.
The developer does not need to perform test sets or to proceed
to the simulation of the system execution.

5.1 An overview of LOTOS Language

LOTOS is based on temporal ordering of events and
process algebraic methods (Dumez, 2010) and uses various
behaviour operators. These are summarised in, Figure 14
where G refers to a gate (channel of communication),
x to variable, P to process, S to sort, v to value and B to
behaviour.

Figure 14 LOTOS behaviour operators

5.2 LOTOS specification for healthcare environment

To translate the BPMN environment depicted in Figure 12
into LOTOS, we have followed different steps.

1) Define a process for each step of the activity including
the start and the end node. In our case the processes are:

 To control the patient

 To interrogate the electronic box

 Integration of ubiquitous specifications in the conception of objects system 79

 To check patient’s conditions

 To monitor patient with camera

2) Assign an identifier to each process (id) of type integer
for a better follow-up.

3) Define the communication channels between processes.
A process is in between (SEND and REC). A service
can send or receive a message (event) via the SEND
and RECV channels.

4) Define operations between processes. In our case we
use the operator ||| which means that the processes are
independent and we also use the notation |[SENDi ,
RECVi]| to synchronise the processes of the service
with the BUSi where ‘i’ is between 0 and N. We
Identify control-flow patterns in the workflow in order
to define (implement) each process. In the beginning
we translate the sequence diagram into LOTOS.

Algorithm 1 represents the instantiation in LOTOS of this
process.

Algorithm 1: Processes instantiations in LOTOS

specification PatientRemoteControl [SEND, RECV]:
noexit
behaviour
(
Init [SEND, RECV](0)
|||
PatientControl [[SEND, RECV] (1)
|||
InterogatePillBox [SEND, RECV] (2)
|||
ActivateAlarm [SEND, RECV](3)
|||
CheckPatientCondition [SEND, RECV] (4)
|||
StartSurveillanceCamera [SEND, RECV](5)
|||
Final [SEND, RECV](6)
)
|[SEND, RECV]|
BUS [SEND, RECV] (<>)
where
(*Processes definition*)
 endspec

In the next stage, we will identify the control-flow in the
workflow in order to provide implementation for each
process. Init process (id: 0) starts the PatientControl process
(id: 1) as a consequence, it uses the sequence pattern as
defined in Algorithm 2.

Algorithm 2: LOTOS specification for Init process

process Init [SEND, RECV] (Id:Int): exit :=
 Sequence [SEND, RECV] (Id, 1)
 >> exit
 endproc

The PatientControl process waits for a run message from
Init process before starting. After that, it realises an
exclusive choice between InterogatePillBox process (id: 2)
and the Final process (id: 6) as defined in Algorithm 3.

Algorithm 3: LOTOS specification for PatientControl
process

process PatientControl [SEND, RECV] (Id:Int) : exit:=
 RECV !Id !0 !RUN ! void;
 ExclusiveChoice [SEND , RECV] (Id ,
 insert (6, insert (2, {})))
 >> exit
 endproc

The InterogatePillBox process waits for a run message from
the PatientControl process before starting the ActivateAlarm
(id: 3), this realises a sequence pattern. The corresponding
specification is provided in Algorithm 4.

Algorithm 4: LOTOS specification for InterogatePillBox
process

process InterogatePillBox [SEND, RECV] (Id:Int):
exit:=
RECV !Id !1 !RUN ! void;
Sequence [SEND, RECV] (Id, 3)
>> exit
 endproc

The ActivateAlarm process waits for a run message from
the InterogatePillBox process before starting. The
ChekPatientCondition (id: 4), this realises a sequence pattern,
as defined in Algorithm 5.

Algorithm 5: LOTOS specification for ActivateAlarm
process

process ActivateAlarm [SEND, RECV] (Id:Int):
exit :=
RECV !Id !2 !RUN ! void;
Sequence [SEND, RECV] (Id, 4)
>> exit
endproc

The CheckPatientCondition process waits for a run message
from the ActivateAlarm process before starting the exclusive
choice between the StartSurveillanceCamera process (id: 5)
and the Final process (id: 6), as defined in Algorithm 6.

80 S. Aimene and I. Rassoul

Algorithm 6: LOTOS specification for
ChekPatientCondition process

process ChekPatientCondition [SEND, RECV] (Id:Int)
:exit :=
RECV !Id !3 !RUN ! void;
ExclusiveChoice [SEND, RECV] (Id insert (6, insert (5, {}
)))
>> exit
endproc

The StartSurveillanceCamera process waits a run message
from the ChekPatientCondition process before executing
and finally starting the Final process. This realises sequence
pattern as defined in Algorithm 7.

Algorithm 7: LOTOS StartSurveillanceCamera process

process StartSurveillanceCamera [SEND, RECV] (Id:Int)
:
exit :=
RECV !Id !4 !RUN ! void;
Sequence [SEND, RECV] (Id, 6)
>> exit
endproc

Finally, the Final process which is corresponding to the final
node of sequence diagram will simply merge the three
processes (id: 1), (id: 4) and (id: 5).

Algorithm 8: LOTOS Final process

process Final [SEND, RECV] (Id:Int): exit :=
SimpleMerge [SEND, RECV] (insert (5, insert (4,
insert (1, {}))), id)
>> exit
endproc
endspec

We have translated the scenario model into formal LOTOS
specifications that is compliable into a mathematical
representation. Formal verification tools such as CADP can
then explore all possible execution branches on the
mathematical model and prove the validity of temporal
properties. We proceeded to the verification of these properties
with the CADP tool EVALUATOR. This tool allowed us to
perform verification and indicated that the properties were
evaluated as ‘true’ and this proves that the specification is well
compliant. As explained before, the considered scenario is
sufficient enough for the verified properties to be obviously
true. The development environment and case study presented
in this section prove the concept and demonstrate the
effectiveness of the approach proposed in this paper.

6 Conclusion

In this paper, we presented the Ubi-SO approach which
facilitates the engineering of pervasive applications by

integrating ubiquitous aspect that is context-awareness which is
an important aspect in pervasive computing. This will offer a
solution that it provides guidelines for studying and modelling
a ubiquitous process. Compared to more methods, only a few
approaches provide engineering methods based on a detailed
development process. The main advantage of Ubi-SO is that
provides ubiquitous process and helps developer to model his
process by pulling and separating the ubiquitous aspects. In
addition, the approach uses UML that allows an adaptation of
the situations to the contextual environment. Finally, using of
LOTOS performs verification and indicates that the properties
were evaluated as true. This proves that the specification is well
compliant, and so, the considered scenario is sufficient enough
for the verified properties to be obviously true. This proves the
validity of our approach. In our future work, first, we plan to
extend our study by considering other scenarios on healthcare
environment using all of the UML diagrams. Afterwards, we
aim to consider other more complex domains such as
Intelligent Transportation Systems (ITS) by validating their
consistency and reliability with LOTOS.

References

Abowd, G.D. (2016) ‘Beyond weiser: from ubiquitous to collective
computing’, Computer, Vol. 49, No. 1, pp.17–23.

Ahmed, B., Gherbi, A. and Kazar, O. (2017) ‘Semantic-based
approach to context management in ubiquitous environment’,
Procedia Computer Science, Vol. 109, pp.592–599.

Ameyed, D. (2017) Modeling and formal specification of context and
its prediction in diffuse systems: an approach based on temporal
logic and the stochastic model, MONTREAL.

Batarseh, F.A. and Gonzalez, A.J. (2018) ‘Predicting failures in agile
software development through data analytics’, Software Quality
Journal, Vol. 26, No. 1, pp.49–66.

Booch, G. (1995) Object Solutions: Managing the Object-Oriented
Project, Addison Wesley Longman Publishing Co., Inc.

Brinksma, E. (1988) Information Processing Systems – Open Systems
Interconnection – LOTOS – A Formal Description Technique
based on the Temporal Ordering of Observational Behaviour,
International Standard, ISO, Technical Report.

Bruneliere, H., Burger, E. and Cabot, J. et al. (2019) ‘A feature-based
survey of model view approaches’, Software and Systems
Modeling, Vol. 18, No. 3, pp.1931–1952.

Cipriani, N., Wieland, M. and Grossmann, M. et al. (2011) ‘Tool
support for the design and management of context models’,
Information Systems, Vol. 36, No. 1, pp.99–114.

Dos Santos, L.B.R., De Santiago Júnior, V.A., Povoa, L.V., Freitas,
A.V. and De Castro Mario, C. (2019) ‘Software inspections:
comparing a formal method based with a classical reading
technique’, International Journal of Computer Applications in
Technology, Vol. 59, No. 4, pp.296–317.

Dumez, C. (2010) Approche Dirigee Par Les Modeles Pour La
Specification, La Verification Formelle Et La Mise En Oeuvre
De Services Web Composes, Thèse de doctorat, Université de
Technologie de Belfort-Montbeliard.

Escobar, G.J., Baker, J.M. and Kipnis, P. et al. (2017) ‘Prediction of
recurrent clostridium difficult infection using comprehensive
electronic medical records in an integrated healthcare delivery
system’, Infection Control and Hospital Epidemiology, Vol. 38,
No. 10, pp.1196–1203.

 Integration of ubiquitous specifications in the conception of objects system 81

Ferscha, A. (2011) Pervasive Adaptation: Next Generation Pervasive
Computing Research Agenda, Institute for Pervasive Computing,
Johannes Kepler University Linz. Available online at:
http://www.perada.eu/research-agenda/

Henricksen, K. and Indulska, J. (2006) ‘Developing context-aware
pervasive computing applications: models and approach’,
Pervasive and Mobile Computing, Vol. 2, No. 1, pp.37–64.

Shahzad, K., Jianqiu, Z., Zubedi, A., Xin, W., Wang, L. and Hashim,
M. (2020) ‘DANP-based method for determining the adoption of
hospital information system’, International Journal of Computer
Applications in Technology, Vol. 62, No. 1, pp.57–70.

Vieira, V., Tedesco, P. and Salgado, A.C. (2011) ‘Designing context-
sensitive systems: an integrated approach’, Expert Systems with
Applications, Vol. 38, No. 2, pp.1119–1138.

Wang, X., Ong, S.K. and Nee, A.Y.C.A. (2018) ‘Comprehensive
survey of ubiquitous manufacturing research’, International
Journal of Production Research, Vol. 56, Nos. 1/2,
pp.604–628.

Weiser, M. (1991) ‘The computer for the 21st century’, Scientific
American, Vol. 265, No. 3, pp.94–104.

White, S.A. (2004) Introduction to BPMN, IBM Cooperation,
Vol. 2, p.1.

