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Abstract: This paper mainly focuses on the non-uniqueness of solution to the
initial value problem (IVP) of impulsive fractional differential equations
(IFrDE) with Caputo-Katugampola derivative (of order g € (1, 2)). The system
of impulsive higher order fractional differential equations may involve two
different kinds of impulses, and the obtained result shows that its equivalent
integral equations include two arbitrary constants, which means that its
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1 Introduction

Since fractional calculus has been put forward, there appeared several fractional
derivatives: Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov etc., see
Podlubny (1999), Kilbas et al. (2006). And for fractional differential systems, some
progresses were obtained in Mellin transformation, numerical calculation, controllability,
existence of solution, Chaos synchronisation, stability etc. see Butzer et al. (2002a,
2002b), He (2016), Wu and Baleanu (2014), Kailasavalli et al. (2016), Suganya et al.
(2016), Wu and Baleanu (2014), Wu et al. (2016), Ben Makhlouf (2018), Naifar et al.
(2019). To unify these fractional derivatives, some generalised fractional operators were
presented in Kilbas et al. (2006), Kiryakova (1994). Recently, a new type of fractional
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operators was defined by generalising both the Riemann-Liouville and Hadamard
fractional operators in Katugampola (2011, 2014). Then a Caputo-type fractional
derivative was presented for this new fractional operator in Jarad et al. (2017), and some
basic properties of the Caputo-type fractional differential systems were studied in Zeng et
al. (2017), Almeida et al. (2016), Ben Makhlouf and Nagy (2018), Boucenna et al.
(2018).

On the other hand, as a key tool to characterising impulsive effects, the subject of
impulsive (fractional) differential equations is getting an enormous amount of attention,
see Lakshmikantham et al. (1989), Agarwal et al. (2016), Wang et al. (2016), Zhang et al.
(2014), Zhang (2015a, 2015b, 2016), Stamova and Stamov (2014), Abbas and Benchohra
(2010), Guo and Zhang (2015) and Fan (2014). Moreover, the impulsive differential
equations with Caputo-Katugampola fractional derivative of order ge (0,1) were

recently researched in Zhang (2019). Therefore, we will further consider the initial value
problem (IVP) for the system of impulsive fractional differential equations (IFrDE) with
Caputo-Katugampola derivative of order ¢ € (1,2) :

ED,‘i,ﬂx(t) =g(t,x(1)), te (a,T],t #¢, (i=1,---,m)

andt#7, (j=1,---,n),
AxX(D)|,_, = x(t]) = x(() = [(x(1), i=1,,m, D
A0, =¥ @) =¥ () =, &E ) j=1wm,

x(a)=x,,x(a)=X,, x,,x, € R.

where D/ (where a,p >0 and ge (1,2)) denotes the left-sided Caputo-Katugampola
fractional derivative of order ¢, g:[a,T]xR—>R, [,:R—>R (i=12,---,m) and
J,:R—>R(j=L2,-,n) are some appropriate continuous functions, impulsive points

satisfy a=t,<t, <---<t, <t

=T and a=¢<f<--<t <i,=T. Moreover,
x(t) = lim . x(;+&) and x(¢7)=lim__ x(¢ +¢€) represent the right and left limits
of x(t) at t=1,, respectively, and x'(Z,") and x'(Z,") have similar meaning for x'(¢) at
t=t.

Suppose that impulsive points ¢,z,,--+,¢, ,4,6,,¢, satisfy {t,---,¢ &, }=
{t,t,,-,t,,} with a=t, <t/ <---<t;, <t;,, =T . For each [a,t;] (k=1,2,---,M),

assume [a,t, 1 C[a,t;]C[a,t, ] (Where k € {1,2,---,m} ) and [a,% 1 [a,t;]1C[a.f, ]

+1

(where k, € {1,2,---,n}), respectively.

In particular, (1.1) can be simplified into the following system:
D x(t) = g(t,x(1)), te (a,Tlandt #¢, (i =1,2,---,m),
AX(@)|,_, =x(6) =) = L,(x()), i=1,2,,m,

(1.2)
Ax,(t)L:t = x’(t:r) - x’(t;) = Ji (x(t;))a i= 19 29' s, m,

x(a)=x,,x(a)=%,, x,x,€R.
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Furthermore, letting J; (x(ﬁ' ) —0 for all je{l,2,---,n} and I,(x(¢7))—0 for all
ie{l,2,---,m} in (1.1), we get three simple systems as
D2 x(t) = g(t,x(1)), te (a,Tlandt #¢t, (i =1,2,---,m),

Ax(0)|,_, =x() = x(t]) = L(x(1)), i =1,2,--,m, (1.3)
x(a)=x,,x(a)=%,, x,,x, € R.

;:,qu,px(t) = g(tsx(t))a te (d,T] andt # t_] (] = 1923" -,I’l),

AX'(t)|,:7/ =x'(t")-x'({7)=J,(x(1 ), j=12,.n, (1.4)

x(a)=x,,x'(a)=%X,, x,,x, € R.
and

{fDﬁﬂx(t) = g(t,x(1)), t€ (a,T], s

x(a)=x,,x(a)=%X,, x,,x, € R.

For the solution of (1.1) and (1.3)-(1.5), there exist some hidden conditions:

i)  lim {the solution of (1.1)} ={the solution of (1.3)}.
J;(x(1;))>0forall je{l,--,n}
(i) lim {the solution of (1.1)} ={the solution of (1.4)}.
I; (x(#; ))—=0forallie {1,---,m}
(iii) lim {the solution of (1.1)} ={the solution of (1.5)}

I (x(#7 )0 for allie {1,---,m}
J; (x( ))—0forall je{l,,n}

= lim {the solution of (1.4)}

J; (x(7; )—0forall je{l,--,n}

= lim {the solution of (1.3)}
)

I; (x(t; ))—>0forallie{l,--,m

p T p T’

To seek the equivalent integral equation of (1.1), we will firstly consider the transformed
impulsive system:

p_ P 1 oft?—1° -1
ex)=x, +a%, 4 4 j[ TJ 84T vt laT)

DrPx(t) = g(t,x(1)), te (a,Tht#t, (i=1,--,m)

and1#7, (j=1,---,n),
Ax(l)L:,i =x(t)=x(t)=1,(x(t)), i=1,-,m, (16)
A7x(t)|,:7] =yx(@)—yx(t7)=J,(x(17), j=1-.n,

x(@)=x,,yx(a)=%,, x,,x,€ R.

I-p d

where differential operator y=¢"" 7.
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Remark  1.1:  Because of  yx(a)=a"x(a) and  yx(z,")-yx(1 )=
@) [¥@H-x(@)], (1.6) is identical to (1.1) under £, =a'’x, and
T, @) = (5) 7, (x(z))) forall je {1,2,+n}

Similarly, letting jj (x(ﬁ‘)) —0 for all je{l,2,---,n} and I,(x(¢ ))—0 for all
i€ {l,2,---,m} in (1.6), three simple systems are gotten as

D x(t) = g(t,x(t)), te (a,Tlandt #t, (i=1,2,---,m),

Ax(0)],_, =x(t)) = x()) = L,(x(t))), i=1,2,-,m, (1.7)

x(a)=x,,yx(a)=%x,, x,,%, € R.
DI x(1) = g, ¥(1)), 1€ (@, Tland 17, (j=1,2,+-,m),

Ay, =736 = yx(E) = T, (), =120, (1.8)

x(a)=x,,yx(a)=%,, x,,Xx,€ R.

and

{f@f“’x(r) = g(t,x(1)), t€ (a,T], 19

x(a)=x,,yx(a)=%,, x,,x,€ R.

Thus, some hidden conditions for the solution of systems (1.6)—(1.9) are given as:

Giv) _ lim {the solution of (1.6)} ={the solution of (1.7)}.
J; (x(lf ))—0forall je{l,---,n}
) lim {the solution of (1.6)} ={the solution of (1.8)}.
I; (x(t;))—0 forallie{l,--,m}
(vi) lim {the solution of (1.6)} ={the solution of (1.9)}
I;(x(#; ))—>0forallie{l,--,m
.7’]-(()((({‘7/’))))—)0 for allj{e{l,---,fl)
= lim {the solution of (1.7)}
I; (x(t; ))—>O0forallie{l,.--,m}
= lim {the solution of (1.8)}
J; (x(tj’ )—0 forall je{l,---,n}
-1
P —a 1 o2 =27\ od
o x(t)=x,+%, a4 j [ ‘ j gl—:’ forte [a,T].
P L(g)*«\ p T

The remainder of this paper is organised as follows: some definitions and conclusions
will be introduced on the left-sided Caputo-Katugampola fractional derivative in
Section 2, and the equivalent integral equations are presented for the IVP of I[FrDE with
the Caputo-Katugampola derivative in Section 3. Finally, two numerical examples are
provided to show the main results in Section 4.
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2 Preliminaries
First we will introduce the definition of left-sided generalised fractional calculus in

Katugampola (2011) and Katugampola (2014) (in the sense of Katugampola).
Let [a,b] (—o < a < b <) be a finite interval. Define the function space

X;’(a,b)z{f:[a,b] SC:||f

o <oo} (a<b,ce R,1< p<oo),

v = (ﬂtf @ ?)l/p (1<p<e)  and

endowed  with  the  norm (Va

A1, =esssupg [ /0]

Definition 2.1 (Katugampola, 2011): The generalised left fractional integral (in the sense
of Katugampola) of order e C (R(ex) >0) of function f € X’ (a,b) are defined by

(,z f)(t)=$ ’(%J f(s)s% (t>a).

Definition 2.2 (Katugampola, 2014): The generalised left fractional derivative (in the
sense of Katugampola) of order o€ C (R(ex) > 0) of function f'e X’ (a,b) are defined
by

(.22 s) 0=y (2 1))

_ 7 o P — g
" T-a)%| p

is (p>0,t>a).
s P

] S (s)

Next, in order to give the definition of the Caputo-type generalised fractional derivative
in Jarad et al. (2017), we introduce some correlative notations. Let C[a,b] and AC[a,b]

denote the space of continuous functions and absolutely continuous functions on [a,b],
respectively. Two spaces are given as

AC![a,b] ={f:[a,b] —Candy' fe AC[a,b],y=1"" %}

with ACi[a,b] = A(C[a,b],
and

C)la,b] ={f:[a,b] —Candy""'fe Cla,bl,y" f e Cla,bl,y=t"" %}

Definition 2.3 (Jarad et al., 2017): Let Re(2)>0 and n=Re(@)+1.If fe AC[a,b],

where 0<a <b <, the left generalised Caputo fractional derivative of f of order « are
defined as
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ED“’Pfa):an’{ (5)- EW (")[spp ”m.

In case 0 <Re(a) <1, we have ‘D™’ f(x)= , D™’ [ f(s)— f(a)](®).

Theorem 2.4 (Jarad et al., 2017): Let Re(a)>0, n=Re(x)+1 and fe AC}[a,b],

where 0 < a<b<oo. Then,

o ifaeN,,

Des (=" O
0= _a)j( > j = L ()@,

o ifaeN,

D =y

Theorem 2.5 (Jarad et al, 2017): Let fe ACJ[a,b] or Cjla,b] and
ae C(Re(x)>0). Then

Iaﬂ C»Dapf(t) f(t) Z(J/{f)(a)(t _pa J )

In particular, if 0< & <1, we have ,Z*” D™’ f(t) = f(t)— f(a) .

Theorem 2.6 (Zhang, 2019): Let ge (0,1) and a,p>0. The IVP of IFrDE with

Caputo-Katugampola derivative

CDTP (1) = g(t,2(t)), te (a,T]andt #¢, (i=1,2,---,m),
Az(t)L:t’ =z(t ) -z(t)=J.(z2(t ) eR, i=1,2,-,m, (2.1)
z(a)=z,e R.

is equivalent with the integral equation

1P — 7P
1 (l ‘ ] ng , forte[a,t],
.

z, +
L@\ p

p_ -\
Z, +ZJ(z<r ))+F( ) (t T j gt
- | L 2.2)
0= ng(Z(t ) J‘n ) -7 ng+J~r =77\ gdr
= T |\ »p T p [

P

1P P
—L(f T] gdp] forte (i1, 1k =12,,m,
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provided that the integral in (2.2) exists, where & is an arbitrary constant and
g=8(7,2(7)).

3 The equivalent integral equation of the VIP of IFrDE

For brevity let g=g(r,x(z)) and Y. z=0, f,=[a,] and £, =(,z,,]
(i=1,2,~~~,m), ?Oz[a’Z] and Z/:(ZaZH](j:laz:"'an); f:):[a’tll] and
0, =(t;,t;,,]1(k=1,2,...,M) in this section.
For the IVP of the IFtDE (1.1) (or (1.6)), we define function space:
IC([a,T],R) :={x:[a,T] —>R:xe C;(Z'k)(herek =0,1,---M),
x(t)=x(¢7) =lim x(¢) < oo, x(¢]) = limx(¢) < oo
T, tly;

(i =1e,m), (1) = X' (57) = limx'(1) < o=
and x'(2,") = liirfn x'(t) < oo (here j = 1,2,-~-,n)}.
Thus, we give the definition of the solution for the IVP of the IFtDE (1.1) as follows:

Definition 3.1: A function x(t)€ IC([a,T],R) be a solution of (1.1) if x(a)=x, and
x'(a)=%,, the equation condition SD?’x(t)=g(t,x(t)) for each te(, (where
k=0,1,2,---,M ) is verified, the impulsive conditions Ax|t:t‘ =1(x(t)) (i=12,---,m)
and Ax'(t)L:?/ =J, (x(t_j’)) (j=12,---,n) are satisfied, and the hidden conditions (i)-(ii1)
hold.

Remark 3.2: Just as Definition 3.1, the definition of solution can be presented for the
others VIP of IFrDE in the section of introduction.

To seek the equivalent integral equations for all IFrDEs in the section of introduction, we
will first consider the simplest IFTDE (1.7) and define a piecewise integral function as

p_ P NOTI A
xa+7x(a)t a +F(1 )I (t ¢ ) gif, forte (,,
a T
(1) = P ) pq P [ G.1)
x(t,f)+7/x(t,:')t (%) +F(1 )J‘t(t —7 J gfif, forte (,,
P q)°n P T

with x(¢,) = x(¢,)+1,(x(¢;)) and yx(¢]) = yx(¢,) (where k=12,...,m).
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It is sure that (3.1) satisfies three kinds of conditions (initial value,
impulses and fractional derivative conditions) in the impulsive system (1.7). However,
(3.1) dissatisfies the condition (vi), which means that (3.1) is not a solution of (1.7).
Thus, (3.1) will be only considered as the approximate solution to seek the exact solution

of (1.7).

Lemma 3.3: Let g€ (1,2) and a,p>0. Let g:[a,T]xR — R be a function such that
g((),x(-))e AC(L,) for any x(-)e AC(L,) (where i=0,1,---,m ). If x(t)e IC([a,T],R)
is a solution of (1.7) if and only if x(t) satisfies the integral equations

p_ Pk NOTI A
(O =x, 45, e () j(r TJ gdz
P = I'(g)7« P T’

pes LG { ﬂ((m” _ij gdz ﬂ(”’ —f”J gdt

= T(g) P T’ P (2 (3.2)
_If =\ gdr _(¢-DI" —(t[)”]r @) -\ gdr
P 7 p P 7y

forte {,,k=0,1,---,m,
where & is an arbitrary constant.

Proof. First we prove the sufficiency by mathematical induction. By applying
Theorem 2.5, the solution of (1.7) as t € ¢, satisfies

p_ P p_p\I!
xoy=x, +3, ¢ Jrr(1 )j’(f ¢ J gff, forte €, (3.3)
p D\ p 7

Then by (3.3) we have
xX(67) = x(6) + 1, (x(t))

p_ P . p_ !
=, 45, 2 iy e J‘((’l) Tj T
P I'(g) "« P T

and

yx(t') = yx(t)

I I @y -\ gdr
“TTg-n " p 7

Therefore the approximate solution X(¢) as ¢€ ¢, can be calculated as
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50 = 2+ ey =W j’(fp—f”Jng

@il p ) 77
p_ P
=x 43 Y L)
' 4
_ _ 3.
i 1 ‘[tl (tl)p—’l'p qlng+J~t R qlgd’l' ( )
T p e ) A
P _(+V° ot p_p\I72
1 4) I' &) -7 giT’ forte (.
PL(g=1)" P (2

Define e, () =x(¢t)—x(¢) for te !, (where k=12,...,m), which denote the error
between the approximate solution X(#) and the exact solution of (1.7) as te ¢, .
By (3.3), the exact solution of (1.7) as te ¢, satisfies

—a 1 ot gdr
lim  x(7)=x, + yx(a) + j — forte (). (3.5)
L(()—0 P I'(g)’« p 7
By (3.4) and (3.5) we get
lim ()= lim {x()—x()}
1(:(6 )=0 1 (x( =0
1P 7P q-1 . p_p\I!
_ 1 _[ t’ -7 gfr_J-l @) -t gir (3.6)
L(g)| "« p T e Y (208
(12— gdr (q-DI” =) ][ @) -0\ gdr
_ _ 1 J‘ 1
Wop 7'r P a P I

Because ¢ (f) is connected with 7,(x(#;)) and lim e (¢) from (3.6), we make an

1 (x(4)—0

assumption that

o) =x(,(x()) lim &)

L (x(17 )0
_ KU (x())) { If[rﬂ -7’ J gdt _ [ [(a ) =7’ j gdz 3.7)
T |\ p ) 77 J p 7
_ " —1” " gdt _ (g-D[t* _(t1)p] J'" (t1)p -7° " gdt
4 P Tr P a P o

where x(-) is an undetermined function with x(0)=1. According to (3.4) and (3.7), we
get
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xX(t) = %(t) +e,(¢)

p_ P N7
N ey P P j[’ TJ gdz
p a

L)'\ p ) 7
RS [ i ((n ) —7° j gdr | i (r” 7 j gdr
T'(q) P T S p T’
~ Jz(ﬁ' —7° j‘” gdt , (¢-Dlt" =()’] I [(q)p —7° j“ gdt
a p TI*P p a p Tl—p >
forte /.

Then by (3.8) we obtain
x(ty) =x(6;)+ L (x(t;))

=x, +% —(’2)pp_ap+22‘,l,-(x(z,-))+ : I:((tz)p_fpj o

e () p 7
ARG (o ((a y -7 ] T, [ (w 7 j gdr
I'(q) a P T p T’

[ ((r2 Y —1° j‘“ gdr_(q=DIt) ~(1)’] I ((q)ﬂ —7” j‘” gdr

7'

P L P P

and
yx(t;) = yx(t;)

gL jtz[(tz)ﬂ —7* I_z gdr | 1=K (x(4))
lg=D »p "7 Tg-)

>

. J-n @y -\ ng+J-tz )y -7\ ng_J'tz t,) -7\~
a p ,Z-I*ﬂ t p 2-1*/7 a p

Thus the approximate solution X(¢) as € ¢, is given as

vy 1 i v~ gdr
I'(9) P T’

p_,p 2 . p_ o\
=x,+x, r-a + Y L (x(1)+ ! [j‘[(tZ) ¢ J gde
p pay a

X(1) = x(1;)+ yx(ty)

[}

I'(q) p T

o (rﬂ -7° J gd7  (¢=DIt’ ~(1,)"] " ((tz)f’ ~7° J gﬂ

e P P e

}.

(3.8)
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REACIS)) I ((tl Y —1° J"“ gldz' N I ((zz)P _z* ]q’l adt
I'(q) a Y Tr

p L

o[- gdr -Vl ) i @Y -7 ) gdr
L 0 e f (3.9

85

p P (2

L G el Y i " gar
Prq=1) e )

, p_ o \72 . p_ o \7?
+IZ[(t2) r J gldz-—.'.‘[(tz) ‘ J gdll’ forte /,.
4 p T a

p L

On the other hand, by (3.8) the exact solution x(¢#) of (1.7) as te ¢, satisfies two
conditions:

lim  x(t)
I (x(4 ))—0

P —a’

1P _ 7P -1
N Ly S T j[f TJ gd7
P @\ p ) ¢

1= KU, () Itz{az)”—r"j g, If(t”-fp J gdt (3.10)
I() “Lop T

P T’

(L e G ) () | e
a p /Z']p ’

p a p (4

forte (,,

and

lim  x(¢)
1, (x(t; ))—0

lp

P T

L 1=K G)) I"{W —r"] Cedr, Iz[f” -7 j g G.11)
I'(g) e o7 Al p v’

_j( r’”j NI jﬁ[@)ﬂ-rﬂrgﬂ

(10— gdt
@ L R )J[ j -

p p |
forte ¢,.

Thus, applying (3.9)—(3.11), the error e, (¢) satisfies the following two conditions
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lim e,()= lim {x(t)-%0)
L (x(17 )—0 L (x(17)—0

_ KLG0)) [ jzz£<t2)" ~7 J sdz 1 [t” 7 j gdt (3.12)
I(9) p et elop )T

_J.t(tp _,z.p qu ng+ (q—l)[tp _(tz)ﬂ] J.tz [(tZ)p _Tp jqz ng]

P T’ P P T’
and

lim e, ()= lim {x(t)-%®)

L (x()—0 L (x()—0

A UTCIUD)) J"z[(tz)p -7’ qu gdz'+J-z (ﬂ’ —7” j‘“ edr
(9 P 7 P 7’

_Lf[t” —z° J"_l gdz  (q-D[t"~(1,)] [ [(tz ) -7 Jq_z g‘”] (3.13)

P T’ P P T’

I G)| (=) gl () =0 " gar
T'(q) op [ p (2

_'[’l [uqu ﬂ-‘r (Q—l)[t” _(f2)/’] J"tz [(tz)p —z° ]‘72 ng]'

P (2 p p T’
Therefore, by (3.12)-(3.13), we have

1—x(1,(x(t,))) — (1, (x(£;)))
I'(g)

e st ()
a p T t p T P
B r(f” i j sd7 (G0 ~@)] (w -7 ] gdr

A op L p P T’ (3.14)
LGOI (rp 7 j 8t [ [(e y -~ j gdt

[(q) P [ P

B N O Sy N T

6 P r P 4 P o
forte ¢,.

ez(t) =

Thus, using (3.9) and (3.14) we obtain
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X(6) = (1) + €, (1)
- t?—7°\" gdr
=x,+%, +Z[(x(t ))+1_,( )j[ P J e
REACI0Y)) { Izl((rl)” —r”] s, y(f” -7 ] gdr
T'(q) a P T A p (2
. j(ﬂ’ il ) sde (gD )] (W -7 j gfﬂ (3.15)
¢ P T P “ P T
RENACE)) { " E t) -1 j‘“ gdr i (tp _7* j‘“ gdr
I'(9) “ p T ” el p (2
_ jf(t”—r”j gdr_ (q=DI = ()] Irz((m"—r" j gdt
a P Tl 4 P a P Tl—p >
forte (,.

To determine function x(-) in (3.8) and (3.15), consider a special case of (1.7)

DI x(t) = g(t,x(1)), te (a,T],1 #

lim Ax(t)| =1(x(t)), i=12,
x(a)=x,,yx(a)=X,.
(@) a'7() (3.16)

DrPx(t) = g(t,x(1)), te (a,T),t #t,,
Ax(t)],_, =1, (x(5) ) + L (x(r)),
x(a)=x,,yx(a)=%,.

Using (3.8) and (3.15) to both sides of (3.16), respectively, we have
1=k L () + L (et ) | = 1= 5 1, ) |+ 1= 5[ 1, (x5 ) | (3.17)

Then x(-) satisfies 1—x(z) =&z for Vze R, where &is an arbitrary constant. Thus we
rewrite (3.8) and (3.15) into

tp p
x(t)=x,+%,

¢~ " adr
1,
HLG) R )j( j

p T’

+ EI(x(2))) J"n[(tl)p —z'pj - gldz-_'_‘r(tp P Jql adr
I'(¢9) a o -’ 4

p L

(3.18)
_J( rpj gdr | (=Dl ~(1)’] ja[(av—rﬂ}“gdr}
1P

p A\ p |
forte t,,

and
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tp
x(t)=x,+x,

T qu gdr

+Zl<x<t ))+F( )j[ |

P ELGE)) <t>"—r" Cadr, (0o s
I'(q) PR o 77

_J(fp—rp] gdr (gDl - (r)p]r{(rr—r"} gdz
p P T’ (3.19)

I'(q) 7 7

N [t'”—r”

forte ¢,.

L ELGw)) " (r )”—T” gd1+jt(t”—rqul edt
sop

- 5
TP

gdr (q-D[" —(1,)’] I”((t )”—r"j gdr]

p p

Next, for t€ ¢, we suppose that the solution of (1.7) satisfies

x(t)=x,+x,

*—7° " gdr
p T’

+Z[(x(t ))+1“( )j (

521 () { Lt'{(t")p —rﬂj N

i=1 F(q) p Tl ’

1
¥ -1 gdt I gdt
+ p—
I’(pjf j(p]f”

+(q_1)[;/’—(t,)”]r((f[)”—ij ng], forte d,.

(3.20)

P P [
Then applying (3.20) we get

+ - -\ L () —a’
Xt ) = x() + 1 (x(5,) = x, +X,

k+1

+Zl(x(t )+ ()J. ((t"“)p_rpj ga_’l'

P L
-1
L)) o[ @)y =7\ gdr
52 J.a( 1-p
= 1(q) P T
il ) =7\ gdr (L)~ ) gdr
+J‘t, p Tl—p _J‘a p fz'l*p

gDl = (@)7] [ ((t,-)p -7 qu gdt
p ¢ p Tl—p >
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and

. . 1 () -7\ gdr
yx(t,,)=yx(t,,) =X, + ) L

I'(g-1 P 7'
L) oo @y -2\ gdr
o [J[ p J o7
il ) =7\ gdr ()~ gdr
of (] st =)

Thus the approximate solution X(¢) as t€ ¢,,, can be gotten as

= + " tr - t, P 1 P q-1 ar
X(0)=x(t),) +rx(t),) )™ | J‘ [ j gl_p
P L(g)*w p T

—x 42 Y p +kZH‘,I(x(t )+ ()[ft“[(tk“)p_rpj g7

p T’
+ff [fp—fpj gflf (g-D[** = (4,,)] Ia{(tkﬂ)"—rﬂJ"'z gldfl
[ p T p a p T
LGN g ) =77\ gdr puaf (1) — 17
5; 1"() |:If [ Yol ] '’ J‘a [ j
o (8) =1° ng (q=D[(t,) = @) T ¢uf (1) =77
o[ (2] st el s e st

=) 5 L0 "[Q,-)p—f” j gdt
+ P ,Z:; T'(g-1) D P =

st (tk+1)p_Tp o gdf gt (tk+1)p_Tp o gdf
+J‘r‘ o TI*P _J-a Yo TI*P :

Moreover, using (3.20), we know that the exact solution of (1.7) as te /,,, satisfies

lim x(t)
1, (x(£; ) >0 for all re {1+ k+1}

p_ P P\
:xa+5€‘at a . ! j(t ¢ ] gff, forte ?
p L@\ p T

k+1°

and
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im x(2)
1, (x(t; ))—0for re {1,2,--- k+1}

P —af A 1P 7P -1
48, T Y L) — J[’ d j ald
P 1<i<k+l I'(q)*« P T’

and i#r

L(x(t)) i [(tl. Y —17° ]‘“ gdr I’[tp _zr j"'] gdt (323)
isicks I'(q) “ P (A P T’

_J.’[tp -7 Jq_] ng+ (q_l)[tp _(ti)p]J't‘((ti)p -7° jqz gdl']

p 7 P A\ p L
forte (,,,.

Using (3.21)—(3.23), the error e,,,(¢) satisfies the following conditions:

lim e, ()= lim {x(6)-%0)}

1, (x(t; ))>0 for I, (x(t; ))—0 for

allre{l,2,---,k+1} allre{l,2,---,k+1}
1 -\ gdr pa( () -7 )
— jt 7 gl_T_jt ( k+1) T gir (324)
L(g)| -\ p T e P 20
r ﬂ—ﬂqlgn_m—MW—mJﬂﬁ“amv—ﬂngw
et p z_lfp p a p /z.lfﬂ >

and

lim e, ()= lim {x()-%0)}

1, (x(£;))—0 for 1, (x(t; ))—0 for
re{l,2,.-- k+1} re{l,2,---,k+1}
) [ ()~ gt [ ) -7\ gdr
g Tlg) | p T p L
-1 -2
_1’”‘ﬂq gﬁ+w—m¢—myﬂﬁ“awr—ﬂq gdr
P T’ p “ p (ad
-1 -2 3.25
+Iz -7 galz'_(q—l)[t'”’—(tkﬂ)p]jzM ) —7* ! gdrt (3.25)
2 P TI—P P ‘ P ,Z.l—p

1 & .y -7 gdr i 7~ gdr
M| »p 77 T ) T

B jt(zp —7’ jq" gdt  (q=Dl" = (t,,)’] f [(%1 Y —1° j"'z gdz}.

P T’ P P 7'’

By (3.24) and (3.25), we have
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ek+] (t)
= S Ii (x(t’_) fen (tkﬂ )p -7’ - ng [ (tk+1)p -7° a ng
2w D" ( p J ol [ p ] o
+(q_1)[tp_(tkﬂ)p]j’“l((fkﬂ)p—TPJ gdr_J- (t”—r”) gf:
P ‘ P 7' P z
+J-t tP -7 q-1 ng 3 (q—])[tp _(tk+1 )/J] J‘t“' (tkﬂ )p . q-2 gdz' (3'26)
t p ,Z-l—p p , p Tl_p

_ 1 J-tk+1 (tk+1)p -7° ! ng—{—J.t P —1° ! ng
r@l T » 7 T ) T

N -7 gdz' (=D (t,.,)] > .Y -7\ gdr
“\ p 7 p “ p |

Therefore by (3.21) and (3.26), we obtain

X(f)=5€(f)+€k+1(t)

_ k+1 P —rP g-1 ﬂ
=x,+% +Zl(x(t )+ F( 1 [ 5 j >
(1)) @) -7* ng oft” - gdz'
"2 T D[ p j +I,[ j
(-0 gdr (q- 1)[t” @)1 o[ & )”—T” ng
_L Yo z’l P + J- 1 P
forte (,,,.

Thus the solution of (1.7) satisfies (3.2) as te ¢
Now we prove the necessity. Letting /,(x(¢;)) — 0 forall ie {1,2,---,m} in (3.2), we

++1 » and the sufficiency is proved.

get

lim {equations (3.2)}

1;(x(t7 )0 forallie{1,2,--,m}
P —a” 1 i P —1P
@x(l):xa-l,-)eat o+ J‘(t i J gd: forte[a,T].
P I'(g)’« p T
1= lim {system (1.7)}.

1, (x(t; )0 forall ie {1,2,--,m}

Next, for (3.2) as t€ (¢,,t,,,], we have
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Cyap L= -\ edr
D) {xa p +Zl<x<r ))+F()j( > j =

L) o ) =22 gdr -7\ gdr
segeli(er ) ) 2

i=1 p p

_r[w—fﬂJ gdr  (@-D[1" ()] I,,[(t,.)ﬂ—er"‘z gdt
¢ p Tlp p “ p Tlip tely

c 1 oft" -1 ng I(x(1)))
=] Cper

{‘” {F@L( p j ] "tlzl I'(q)

{fD,w { j'(’” il ] gf”]— cpr [ j{t" il ] gf”]}

i 4 p T 14 a p T P

tely

Thus, (3.2) satisfies the fractional derivative condition in system (1.7).
Finally, we have x(¢/)—x(¢7) = lim . x(t)—x(t)=1,(x(t,)) for Vie {1,2,-,m} in
(3.2). Thus, (3.2) satisfies all conditions of (1.7). As a result, the system (1.7) is

equivalent to the integral equations (3.2). The proof is completed.
Similarly, we define the approximate solution of (1.8) as follows:

P _ P p_ o\ _
xa+}/x(a)t a + ! jf(t T J gfif, forte {,,

2 p o T(@ p 7

x@) = - (3.27)

— "= o tP —1° _
x(t[+)+}/x(t/+) (l) + 1 J[t T j gfz‘) forte g/’
P L(g) "\ p T
with yx(t) = yx(t; )+ J,(x(t;)) and x(4*)=x(3"), where [ =1,2,--,n
Also, using the thought of Lemma 3.3, we can draw the following conclusion about

the equivalent integral equations of (1.8).

- {g(t,x(r)) ra HED L) 23D, (. x()

=g(t,x(1))

tely "

Lemma 3.4: Let g€ (1,2) and a,p>0. Let g:[a,T]XR = R be a function such that
g((),x()e AC(?/.) for any x(-)e AC(ZJ.) (where j=0,1,---,n). If x(t)e IC([a,T],R)
is a solution of (1.8) if and only if x(t) satisfies the integral equations
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P_gp L P () NOTI A
0=, 04, T T 0 ) j(’ ’] ald
PR p Tl p ) 7

LT G| (@Y -7 gde z[t”—r”qu gdt
+
JZ; I'(g) {I( p j (2 J‘?f P (2 (3.28)

0 v -o " gdr (gD~ @) [ @) -\ gdr
a P TIP P a P ,z.l—p >

forte Z,le,l,---,n,

where 1 is an arbitrary constant.
Next applying Lemmas 3.3 and 3.4, we can draw the following two conclusions
(Corollaries 3.5 and 3.6).

Corollary 3.5: Let g€ (1,2) and a,p>0. Let g:[a,TIXR >R be a function such
that  g((),x())e AC({,) for any x()e AC({,) (where i=0,l,---,m). If
x(t)e IC([a,T],R) is a solution of (1.7), then

NOTI A
yx(t)=x, + ! j r-c giz'
Lg-D7 p [

ety e f;(’”"”J' £ om

T(q - p T’ P L

1P 1P
_I [t_’rj ng] forte ¢,,k=0,1,-
a 7

Yo

where & is an arbitrary constant.

Corollary 3.6: Let g€ (1,2) and a,p>0. Let g:[a,TIXR —>R be a function such
that  g((),x()e AC(ZJ.) for any x()e AC(Z/) (where  j=0,1,...,n). If
x(t)e IC([a,T],R) is a solution of (1.8), then

=o' gde
yx(t) = x+ZJ(x( N+ Iq 1)J.( - ] =

F(q p (2 p g

P _ P
—j(t ¢ J il ] forte 0,0=0,1,--,n,
a T

P

where 77 is an arbitrary constant.
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Remark 3.7: Corollaries 3.5 and 3.6 show that two inhomogeneous impulses AxL:,

(i=1,2,...,m) and A}/x(t)L=7 = .7j (x(?f)) (j=L2,...,n) have similar effect on yx(¢)

of (1.6).

Lemma 3.8: Let g€ (1,2) and a,p>0. Let g:[a,TIXR —> R be a function such that

g((),x()) e AC(L) for any x(-)e AC(L}) (where i=0,1,---,M ). If x(t)e IC([a,T],R)
is a solution of (1.6), then

I jq_z gdt
- -

521@@)){! ((t)p—r”j gdr ( —T”J gdr

I'(q oy

(5] et ml o) e
¢ P T =1 1q

e gdt t? —Tp gdr
+.[7] p »z-l*p ja

forte 0 ,k=0,1,---,M

yx(t) = %, +ZJ(x(t )+ T 1)1(

where & and 1) are two arbitrary constants.

Proof. For te (), by Corollaries 3.4 and 3.5, we have

1 (-0 gdr
yx(t) =%, + I 1)_[ i forte 0.
g-D\ p T

By Theorem 2.4, we have
system (1.6)
DI y(x(0))] = gt x(0), te (@, Tht#t (i=1,,m)
andt # tj (j=1--,n),
=LA, =x() =) = LK), i=1,2,000,m
A, =13 = yx(@) = T, (@), =120,

x(@)=x,,yx(a)=%,, x,,x,€R.

(3.32)

In addition, impulses Ax|t:t‘ (i=1,2,---,m) are considered as a special impulses of
impulses  Ayx(r)|_. =J,(x(57)) (j=12,---,n) on yx(t) of (1.6) by Remark 3.7.
Thus, using Lemma 2.6 to (3.32) as t€ ¢}, (where k=0,1,2,---,M ), we have
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yx(t) = %, +ZJ(x(t s 1)I(tp_TpJ &dr

p T’

Zélfl((x(t )) |:J'ti((ti)p _ij " ng_l_J't(tp —7* jq2 gé{z_
q a .|

1 1
pacy p (2 p T’

) J-t(t” v J gdr} GO [ ((r‘,)ﬂ 7’ ] gdr

p 77| S T(g-) P (2

+J-r -7 gdz'_J- =77 gdr
i\op T Yol 7

forre 0/, k=0,1,--,M,

where & and 77 . are some undetermined constants. Letting J ; (x(t_j_ ))=0(for all
je{l,2,---,n}) and I,(x(¢;))=0 (for all ie {1,2,---,m}) in (1.6), respectively, we get

& =& (forall ie{l,2,---,m})and 5, =n (forall je {1,2,---,n}) by Corollaries 3.5 and
3.6. Thus

yx(t) =%, +ZJ (x(@ N+ T 1)I¢l(tp;rpj f’dr

le(x(r ))[f ((z)”—rﬂj“

(g - p [

z[f”—r” ] gt | 5 10 )) o (@ )f’—rp " gdr
_J- 1- +77 1

¢ P T’ = T(g- r

+J~;(t”;)r”j fdr_j [t”—r” gdr

forte 0/, k=0,1,--,M

>

—ij gdr

The proof is completed.

Using the inverse operation of yx(¢) and Lemmas 3.3-3.4 for the integral equations
(3.31), we can draw the following conclusion on the solution of (1.6).

Theorem 3.9: Let g (1,2) and a,p>0. Let g:[a,TIXR =R be a function such that
g((),x()) e AC(L)) for any x(-)e AC(L}) (where i=0,1,---,M ). If x(¢)e IC([a,T],R)
is a solution of (1.6) if and only if x(t) satisfies the integral equations
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-

x(t)=x,+x,

+ZI(X(I ))+ZJ (x(t;” ))

L) | ¢of @) =77\ gdr ¢ t"—1") gdr
ey I'(q) D( ] r“”%‘( ) 7

i=1 p p
e R r
‘P o P . P >
b J (x(7) @Y -7\ od ooV g (3.33)
5 J X o &) — gdt (=1 gdt
T [L[ P J f”+L{ p j 7
_If{t”—r"j gdz @-D[" —@y’]r[(t—j)p_ﬂmgdr
¢ P Tlp o) a D R

o P — 1P -1
+r(1 ).[ (t i j gfif, forte ¢/, k=0,1,---,M,
q)°° P T

where &and 1 are two arbitrary constants.
Using Theorem 3.9 and Remark 1.1, we come to the following conclusion on (1.1).

Corollary 3.10: Let ge (1,2) and a,p>0. Let g:[a,T]XR — R be a function such
that  g((),x())e AC(¢;) for any x()e AC({}) (where i=0,1,---,M). If
x(t)e IC([a,T],R) is a solution of (1.1) if and only if x(¢) satisfies the integral
equations

x(t)=xa+a1”’x p +Zl(x(t ))+Z(t)l 7T (x(T ))

L ot ))[K{(mp—rﬂj gdnmf”—f”] gdr

-
o

= T(g) p (2 P T’

_j'[f”—r”J gdt (gDl =(t)'] Jz,[(mp—rpj“gﬂ
a ,z.lp a B

p p p T’

kz t)"’J,<x(r‘;>)[j:(<?,>”—rﬂJ gdr+j;[ﬂ’—rﬂj " gdr

- I(q) p T’ P T’

q -0\ gdr (g=DI" - (5] (i " gdr
a P TIP a Tl—p ’

(3.34)

p p

P _ 4P -1
+r(1 )It(t i j gff, forte £/, k=01,---,M
q)° o T

where & and 1) are two arbitrary constants.
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Finally, letting J,(x(t,))—0 for all je{1,2,---,n} and I(x(t7))—0 for all
ie{l,2,---,m} in the system (1.1) and the integral equations (3.34), respectively, we

draw the following conclusions.
Corollary 3.11: Let g (1,2) and a,p>0. Let g:[a,T][XR — R be a function such

that  g((),x())e AC({,) for any x()e AC({,) (where i=0,l---,m). If
x(t)e IC([a,T],R) is a solution of (1.3) if and only if x(¢) satisfies the integral

equations
-~ R
= ¥ I
x(t)=x,+a" "X, +z (x(7 )+ ()J.( - J pn
L) o @) =7\ gdr r(t”—z’” j gdt
52‘ T'(q) [IE P J r”ﬁ" P [ (3.35)
- tr —77 Y’ gdf (@-DIt* —(1)"] I )y -\ gdr
a Yol Tl P P a P Tl—p ’

forte {,,k=0,1,---,m,
where & is an arbitrary constant.
Corollary 3.12: Let ge (1,2) and a,p>0. Let g:[a,T]XR —- R be a function such

that g((-),x())e AC({,) for any x()e AC({,) (where j=0,1---,n). If x(t)e
IC([a,T],R) is a solution of (1.4) if and only if x(¢) satisfies the integral equations

s ~@Y
+Z(r) J @y .

x(t)=x,+d" "X,

@) J,(x(@) | oo (1) =77 gdr i1 =1" -1 edt
+1), T'(q) [I[ P ] TIP+L.[ ; j 2

!
J=1

) j’[tp 7 J gdr  (@-DI" ~(@)] Iz,-((t‘,)” —7? j edt
P T’ P “ P T’

PP
- j(t ¢ j ST forre Tl =0,1,m,
L(g)*\ p 7"

where 1 is an arbitrary constant.

(3.36)

Corollary 3.13: Let ge (1,2) and a,p>0. Let g:[a,T][XR —- R be a function such
that  g((),x())e AC({,) for any x()e AC({,) (where i=0,1---,m). If
x(t)e IC([a,T],R) is a solution of (1.2) if and only if x(¢#) satisfies the integral

equations



98 X-M. Zhang

x(t)=x,+ al’px

+Z{1<x(r W+ () () /ﬁ ) }
1

. I[ﬂ’—rﬂj i gcfr+ifL-(x(t:))+n(r‘,-)1‘*’Ji<x(?,-‘»
L)« p

7'

i=1 r(q)
.{ri[(g)P il Jql ng+J' [fp —T”j gdr J- (t” -7 Jq l gdt (3:37)
“ 14 ° 4 1-p

+<q—1)[ﬂ’—(r,-)"]ja[@,-)”—T”] g‘”} forte £,,k=0,1,
p A i

where & and 1 are two arbitrary constants

4 Applications

Example 4.1: Consider the following impulsive fractional differential equation
Dx(t)=1, te(L,4],t%2 and 1 #3,
Ax(n)| _, = x(2")-x(2) =1, )
AY()|_, =¥ (3)-x(3) =1,
x()=0,x"1)=1.

According to Corollary 3.10, (4.1) is equivalent to the following integral equations

p_ 1P P 3
wy=te [ g 9T orte[L2],
p IO p )77°

(4.2a)
P _ P — o\
x(t):t 1+1+ 15 J.(t ‘ j £+ {
P e P T’ r(x)
P _ P g 1P _ 7P 1P — 7P 3
.J~2 27 —1 ﬁ"‘j t’ -7 dz' t’ -1 ﬁ (4.2b)
1 p Tp 2 p Tp 1 p z'p

P _p P _ P
=2 jz(z TJ d’} forze (2,3],
4p P T
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P _2pr p_p%
N PEALES P L j(’ Tjﬂ

p TEHL p [

P

s £ {J, [2/)_711] [tp_z-pj
') P P
—f(tp_pr T 2pflz(zpp ] } (420)
n3'* ¥ —r?\dr ftP 7"
+r(z>{I( , JT”L( E ]

P _ P t’ -3 AN
_r(t 4 j dr r 3" -7 ] _} for e (3,4],
1 P T’ ! ’

ol

where &and 7 are two arbitrary constants.

From (4.2a—c), we find that there are many solutions for (4.1) due to taking some
different values of £ and 77. Next we will apply the integral equations (4.2a—c) and the
numerical simulation method to show some solution trajectories of (4.1) with some
different values of p.

Figures 1-4 denote some solution trajectories of (4.1) with p -0+, 0=0.5, p=1

and p=15, respectively. In each figure, these curves
xi=0,elta=0;xi=0,elta=1;xi=Lelta=0 and xi=1lelta=1 denote four solution
trajectories of (4.1) with the corresponding p (p =0,0.5,1,1.5), which are drawn by the
numerical simulation of (4.2a-c) with the corresponding p (p=0,0.51,1.5) and
E=0,n=0; £=0,n=1;&=1,7=0 and £=1,77 =1, respectively.

Figure 1 The solution trajectory of (4.1) with p — 0+ (see online version for colours)

g T ; T T T
xi=0elta=0
7L xi=0,elta=1
xi=1,elta=0
6 xi=1,elta=1
5L
= 4
bt
K
2_
'I - 4
O 1 I I 1 I

1 1.5 2 25 3 3.5 4
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Figure 2 The solution trajectory of (4.1) with p = 0.5 (see online version for colours)

12 T T T T T
¥i=0 elta=0
¥i=0,elta=1

10k ¥i=1,elta=0 A
¥i=1,elta=1

Figure 3 The solution trajectory of (4.1) with p = 1 (see online version for colours)

18 T T T T
xi=0,elta=0
8- xi=0,elta=1 i
xi=1,elta=0
4 %=1 elta=1 -
12+ -
0 E
=
ar —
[N 4
ERs .
2L 4
0 1 L 1 L r
1 15 2 25 3 35 4

Example 4.2: Consider the fractional order linear system with an impulse
D x(t)=x(t), te(1,3]and#2,
Ax(n)]_, =x(2")-x(27) =1, 4.3)
x()=1,x1)=1.
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Using Corollary 3.11, (4.3) is equivalent to the following integral equations

-1 1 w2 x(0)dr
+ 5 Jl[ j l-p °
') P 4

x(t)=1+ forre[1,2], (4.4a)

P _ P P\
x(t) = 2+t l+ 1 J- t’ -1 x(zzdr
p TEHL p (208

£ Iz(zp —z” ]* x(?errr[;P _zr T K@)z
r@ L p 2 p (288 (4.4b)

i t" —1f %x(r)dr [tF =2°] 2 2° =17 4 x(7)dt
_.[1 P 4p .[1 P 7 [

P
forte (2,3],

where £1is an arbitrary constants.

Figure 4 The solution trajectory of (4.1) with p = 1.5 (see online version for colours)

30 T T T T T
®i=0,elta=0
¥i=0,elta=1
250 ®i=1,elta=0 -
x¥i=1,elta=1
20 B
=15 s
=
10+ E
5 L -
O r 1 L r L
1 15 2 25 3 35 4

From (4.4a-b), the solutions of (4.3) are non-unique owing to taking some different
values of & which will be shown by using the numerical simulation of (4.4a-b).
Figures 5-8 denote some solution trajectories of (4.3) with p=0.1, p=0.5, p=1

and p=1.5, respectively. Moreover, in each figure, these curves xi=0,xi=—-1 and
xi=1 represent three solution trajectories of (4.3) with the corresponding p
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(p=0.1,0.5,1,1.5), which are drawn by the numerical simulation of (4.4a-b) with the
corresponding pand £ =0,£=-1 and £ =1, respectively.

Figure 5 The solution trajectory of (4.3) with p = 0.1 (see online version for colours)

8 T T T T T T T T

Tk

Figure 6 The solution trajectory of (4.3) with p = 0.5 (see online version for colours)
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Figure 7 The solution trajectory of (4.3) with p = 1 (see online version for colours)

8 T T T T T T
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Figure 8 The solution trajectory of (4.3) with p = 1.5 (see online version for colours)
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5 Conclusions

Because impulsive higher order fractional differential equations may involve some
inhomogeneous impulses (such as two types of impulses 7,(x(#7)) and J,(x(z,)) of
(1.1)), their equivalent integral equations could involve two arbitrary constants, which

show that the solutions of impulsive higher order fractional differential equations are
non-unique.
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