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1 Introduction

During last decades, many efforts have been made for mathematical modelling and analysis
of viral infections. A proper model of virus dynamics could provide insights of a better
understanding of the disease and clinical treatments used to fight against it. The basic
virus dynamics model focused on exploring the relation between three main compartments,
uninfected cells (s), infected cells producing viruses (y), and free viruses (p) and is given
by Nowak and Bangham (1996):

ṡ = ϱ− ξs− δsp, (1)
ẏ = δsp− ϵy, (2)
ṗ = κy − ϑp. (3)

The generation and death rate constants of compartments (s, y, p) are give by (ϱ, δ,κ) and
(ξ, ϵ, ϑ), respectively. The term δsp represents the incidence rate of infection. The parameters
ϱ, δ,κ, ξ, ϵ andϑ are positive. The model has been developed in order to describe within-host
dynamics of many human viruses such as human immunodeficiency virus (HIV) (Nowak
and Bangham, 1996; Perelson et al., 1997; Perelson and Nelson, 1999; Elaiw et al., 2014,
2018a, 2018b, 2019b; Zhao et al., 2013; Gibelli et al., 2017; Elaiw and Elnahary, 2019;
Elaiw and Alshaikh, 2019; Elaiw and AlShamrani, 2018, 2019; Elaiw and Almuallem,
2015, 2016, 2019; Li and Wang, 2014; Prakash et al., 2019; Liu and Zhang, 2019; Bellomo
and Tao, 2020; Wang et al., 2019), hepatitis B virus (HBV) (Wang et al., 2010; Yousfi et al.,
2011; Chenar et al., 2018), hepatitis C virus (HCV) (Neumann et al., 1998; Zhang and Xu,
2017; Pan and Chakrabarty, 2018; Kitagawa et al., 2019), human T-cell leukemia virus
(HTLV) (Li and Shu, 2012; Wang et al., 2018) and chikungunya virus (CHIKV) (Wang and
Liu, 2017; Elaiw et al., 2018c, 2019a) etc.
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Manna and Chakrabarty have formulated and analysed the following HBV infection
model with HBV DNA-containing capsids (Manna and Chakrabarty, 2015):

ṡ = ϱ− ξs− δsp, (4)
ẏ = δsp− ϵy, (5)
ż = κy − (α+ γ)z, (6)
ṗ = αz − ϑp, (7)

where z is the concentration of the capsids. The capsids are produced at rate κy, die at
rate γz and cause viral replication at rate αz, where γ and α are positive constants. Model
(4)–(7) has been extended in Manna and Chakrabarty (2017), Manna (2017), Xu and Geng
(2019) and Guo et al. (2018).

In Manna and Chakrabarty (2015, 2017), Manna (2017), Xu and Geng (2019) and
Guo et al. (2018), it has been assumed that the uninfected cells become infected due to its
contact with the virus (viral infection). The uninfected cells can be infected via two ways of
transmissions, namely, the diffusion-limited virus-to-cell transmission and the direct cell-
to-cell transfer using virological synapses (Shu et al., 2018). The cell-to-cell transmission
has been recognised in several works (see e.g., Jolly and Sattentau (2004), Lehmann et al.
(2011) and Sato et al. (1992)). Recent studies have reported that over 50% of viral infection
is due to the cell-to-cell transmission (Iwami et al., 2015) and even with an antiretroviral
therapy, the cell-to-cell spread of the virus can still permit ongoing replication (Sigal et al.,
2011). Therefore, for some viruses, cell-to-cell transmission seems to be a more powerful
and efficient means of virus propagation than the virus-to-cell transmission (Komarova
et al., 2012). Several mathematical models of virus dynamics with two ways of infection
have been developed by many researchers (see e.g., Culshaw et al. (2003), Lai and Zou
(2014), Elaiw et al. (2019c), Hobiny et al. (2018), Elaiw and Raezah (2017) and Yang et al.
(2015)). However, in these papers the virus DNA-containing capsids was not included.

In the present paper we formulated a viral infection model with virus DNA-containing
capsids and with both virus-to-cell and cell-to-cell transmissions. The nonnegativity and
boundedness of the solutions of the model were proven. We established the global stability
of the equilibria by using Lyapunov method and applying LaSalle’s invariance principle.

2 The model

In this section we extend model (4)–(7) by incorporating

• both virus-to-cell and cell-to-cell transmissions

• saturated incidence rate

• antibody immune response

ṡ = ϱ− ξs− δ1sp

1 + ω1p
− δ2sy

1 + ω2y
, (8)

ẏ =
δ1sp

1 + ω1p
+

δ2sy

1 + ω2y
− ϵy, (9)

ż = κy − (α+ γ)z, (10)
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ṗ = αz − ϑp− µup, (11)
u̇ = β + ρup− τu, (12)

where u is the concentration of the antibodies. Antibodies attack the viruses at rate µup.
The antibodies are generated at a constant rate β, proliferate at rate ρup and die at rate τu.
Parameters ω1 ≥ 0 and ω2 ≥ 0 are the saturation constants. All the other parameters of the
model are positive.

2.1 Basic properties

Lemma 1: There exist such positive numbers ∆1,∆2 and ∆3 that the compact set

Γ = {(s, y, z, p, u) ∈ R5
≥0 : 0 ≤ s, y ≤ ∆1, 0 ≤ z, p ≤ ∆2, 0 ≤ u ≤ ∆3}

is positively invariant.

Proof: Since

ṡ |s=0 = ϱ > 0,

ẏ |y=0 =
δ1sp

1 + ω1p
≥ 0, ∀s, p ≥ 0,

ż |z=0 = κy ≥ 0, ∀y ≥ 0,

ṗ |p=0 = αz ≥ 0, ∀z ≥ 0,

u̇ |u=0 = β > 0,

then (u(t), y(t), z(t), p(t), u(t)) ∈ R5
≥0 with (u(0), y(0), z(0), p(0), u(0)) ∈ R5

≥0. Define

Θ1(t) = s(t) + y(t),

Θ2(t) = z(t) + p(t) +
µ

ρ
u(t). (13)

Then from equations (8)–(12) we get

Θ̇1(t) = ϱ− ξs(t)− ϵy(t) ≤ ϱ− υ1(s(t) + y(t)) = ϱ− υ1Θ1(t),

where, υ1 = min{ξ, ϵ}. Hence Θ1(t) ≤ ∆1, if Θ1(0) ≤ ∆1, where ∆1 = ϱ
υ1
. It follows

that 0 ≤ s(t), y(t) ≤ ∆1 if 0 ≤ s(0) + y(0) ≤ ∆1. Moreover, we have

Θ̇2(t) = κy(t)− γz(t)− ϑp(t) +
µ

ρ
β − τµ

ρ
u(t)

≤ κ∆1 +
µ

ρ
β − υ2

(
z(t) + p(t) +

µ

ρ
u(t)

)
= κ∆1 +

µ

ρ
β − υ2Θ2(t),

where, υ2 = min{γ, ϑ, τ}. Hence Θ2(t) ≤ ∆2, if Θ2(0) ≤ ∆2, where ∆2 =
κ∆1+

µ
ρ β

υ2
.

Since z(t), p(t) and u(t) are all non-negative, then 0 ≤ z(t), p(t) ≤ ∆2 and u(t) ≤ ∆3 if
0 ≤ z(0) + p(0) + µ

ρu(0) ≤ ∆2, where ∆3 = ρ∆2

µ . �
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2.2 Equilibria

We define the basic reproduction number of equations (8)–(12) as:

R0 =
ϱ[δ1κτα+ δ2(α+ γ)(ϑτ + µβ)]

ϵξ(ϑτ + µβ)(α+ γ)
, (14)

which represents the average number of secondary infections and it can be written as:
R0 = R01 +R02, where

R01 =
ϱδ1κτα

ϵξ(ϑτ + µβ)(α+ γ)
,

R02 =
ϱδ2
ϵξ

.

In fact, R01 is the average number of secondary viruses caused by a virus, that is the
basic reproduction number corresponding to virus-to-cell infection mode, while R02 is the
average number of secondary infected cells that caused by an infected cell, that is the basic
reproduction number corresponding to cell-to-cell infection mode.

Lemma 2: If R0 ≤ 1, then system (8)–(12) has only one equilibrium Ω0, and if R0 > 1,
then the system has two equilibria Ω0 and Ω1.

Proof: Let Ω(s, y, z, p, u) be any equilibrium satisfying:

0 = ϱ− ξs− δ1sp

1 + ω1p
− δ2sy

1 + ω2y
, (15)

0 =
δ1sp

1 + ω1p
+

δ2sy

1 + ω2y
− ϵy, (16)

0 = κy − (α+ γ)z, (17)
0 = αz − ϑp− µup, (18)
0 = β + ρup− τu. (19)

From equation (19) we get

u =
β

τ − ρp
. (20)

Substituting from equation (20) into equation (18) we get

z =
p(ϑ+ µu)

α
=

p(βµ− pϑρ+ ϑτ)

α(τ − pρ)
. (21)

From equation (21) into equation (17) we get

y =
z(α+ γ)

κ
=

p(α+ γ)(βµ− pϑρ+ ϑτ)

κα(τ − pρ)
. (22)

Now if p = 0, then from equations (20)–(22) we have u = β
τ and z = y = 0. Substituting

in equation (15) we get s = ϱ
ξ . In this case, we have only one possible equilibrium, that is

the healthy equilibrium Ω0 = (s0, 0, 0, 0, u0), where s0 = ϱ
ξ and u0 = β

τ .
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If p ̸= 0, then from equations (20)–(22) into equation (16) we get

s =
ϵy(1 + ω1p)(1 + ω2y)

pδ1 + yδ2 + py(δ2ω1 + δ1ω2)
. (23)

Finally, from equations (20)–(23) into equation (15) we get

D1p
4 +D2p

3 +D3p
2 +D4p+D5

C1p2 + C2p+ C3
= 0,

where

D1 = −ϑ2ϵρ2(α+ γ)2[δ2ω1 + (δ1ω2 + ξω1ω2)],

D2 = D21 +D22 +D23 +D24 +D25,

D3 = D31 +D32 +D33 +D34 +D35 +D36 +D37 +D38 +D39 +D310,

D4 = D41 +D42 +D43 +D44 +D45 +D46 +D47 +D48 +D49 +D410,

D5 = D51 +D52,

C1 = C11 + C12 + C13,

C2 = C21 + C22 + C23 + C24,

C3 = C31 + C32,

and

D21 = −ϑρκαρϵ(α+ γ) (δ1 + ξω1),

D22 = ϑρκαρϱ(α+ γ)(δ2 ω1 + δ1ω2),

D23 = 2ϑρϵµβ(α+ γ)2[δ2ω1 + (δ1ω2 + ξω1ω2)],

D24 = −ϑ2ρϵδ2(α+ γ)2(ρ− 2τω1),

D25 = −ϑ2ρϵ(α+ γ)2[ξρω2 − 2τω2(δ1 + ξω1)],

D31 = κ2α2ϱδ1ρ
2,

D32 = −ϑ2τϵ(α+ γ)2(τδ2ω1 − 2δ2ρ+ τδ1ω2 − 2ξρω2 + τξω1ω2),

D33 = −µ2ϵβ2(α+ γ)2(δ2ω1 + δ1ω2 + ξω1ω2),

D34 = κµαβρϵ(α+ γ)(δ1 + ξω1),

D35 = −κµαβρϱ(α+ γ)(δ2ω1 + δ1ω2),

D36 = ϑρ2κα(α+ γ)(ϱδ2 − ξ ϵ),

D37 = 2ϑµρϵβ(α+ γ)2 (δ2 + ξω2),

D38 = −2ϑτµϵβ(α+ γ)2[δ2 ω1 + (δ1ω2 + ξω1ω2)],

D39 = 2ϑτκαρϵ(α+ γ)( δ1 + ξω1),

D310 = −2τϑκαρϱ(α+ γ)(δ2ω1 + δ1ω2),

D41 = −ϑ2τ2ϵ(α+ γ)2(δ2 + ξω2),

D42 = −µβκαρ(α+ γ)(ϱδ2 − ξϵ),

D43 = −µ2ϵβ2(α+ γ)2(δ2 + ξω2),
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D44 = −2καϑτρ(α+ γ)(ϱδ2 − ξϵ),

D45 = −2ϑτµϵβ(α+ γ)2(δ2 + ξω2),

D46 = −ϑτ2καϵ(α+ γ)(δ1 + ξω1),

D47 = ϑτ2καϱ(α+ γ)(δ2ω1 + δ1ω2),

D48 = −2τκ2α2ϱδ1ρ,

D49 = −τκαµβϵ(α+ γ) (δ1 + ξω1),

D410 = τκαµβϱ(α+ γ)(δ2ω1 + δ1ω2),

D51 = τκα[τκαϱδ1 − ϑτ(α+ γ)(ξϵ− ϱδ2)],

D52 = −µτκαβ(α+ γ)(ξϵ− ϱδ2),

C11 = ακρ(αδ2ϑρ+ γδ2ϑρ+ αδ1κρ),
C12 = −ακρ(αβδ2µω1 + βγδ2µω1 + 2αδ2ϑτω1 + 2γδ2ϑτω1),

C13 = −ω2ακρδ1(α+ γ)(βµ+ 2ϑτ),

C21 = ακγϑτ(−2δ2ρ+ δ2τω1 + δ1τω2),

C22 = α2κβµ(−δ2ρ+ δ2τω1 + δ1τω2),

C23 = ακβγµ(−δ2ρ+ δ2τω1 + δ1τω2),

C24 = α2τκ(−2δ2ϑρ− 2δ1κρ+ δ2ϑτω1 + δ1ϑτω2),

C31 = ακτβδ2µ(α+ γ),

C32 = ακτ((α+ γ)δ2ϑτ + αδ1κτ).

Let us define a function Λ(p) as:

Λ(p) =
D1p

4 +D2p
3 +D3p

2 +D4p+D5

C1p2 + C2p+ C3
= 0.

Then, we obtain

Λ(0) =
ϵξ(α+ γ)(βµ+ ϑτ)(R0 − 1)

βδ2µ(α+ γ) + δ2ϑτ(α+ γ) + αδ1κτ
,

lim
p→ τ

ρ
+
Λ(p) = −βϵµτ(α+ γ){δ2(ρ+ τω1) + δ1τω2 + ξω2(ρ+ τω1)}

ρ2ακ(δ2ρ+ δ2τω1 + δ1τω2)
< 0.

Therefore, if R0 > 1 then Λ(0) > 0 and ∃p1 ∈ (0, τ
ρ ) such that Λ(p1) = 0. It follows from

equations (20)–(23) that

u1 =
β

τ − ρp1
> 0, z1 =

p1(ϑ+ µu1)

α
> 0,

y1 =
z1(α+ γ)

κ
> 0, s1 =

y1ϵ(1 + ω1p1)(1 + ω2y1)

p1δ1 + y1δ2 + p1y1(δ2ω1 + δ1ω2)
> 0.

Therefore, if R0 > 1, then the system has an infected equilibrium Ω1 = (s1, w1, y1, p1,
u1). �
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2.3 Global properties

The global stability of the equilibria will be established by constructing Lyapunov functions
following the method presented in Korobeinikov (2004) and followed by Huang et al. (2010),
Shu et al. (2013), Elaiw (2010), Elaiw and AlShamrani (2015a), Elaiw (2012), Elaiw and
Azoz (2013), Elaiw and AlShamrani (2015b) and Elaiw and AlShamrani (2017). Define a
function G(θ) = θ − 1− ln θ.

Theorem 1: IfR0 ≤ 1, then the equilibriumΩ0 of system (8)–(12) is globally asymptotically
stable.

Proof: Define L0(s, y, z, p, u) as:

L0(s, y, z, p, u) = s0G

(
s

s0

)
+ y +

δ1s0α

(ϑ+ µu0)(α+ γ)
z +

δ1s0
ϑ+ µu0

p

+
µδ1s0

ρ(ϑ+ µu0)
u0G

(
u

u0

)
.

Calculating dL0

dt along system (8)–(12) we obtain

dL0

dt
=

(
1− s0

s

)(
ϱ− ξs− δ1sp

1 + ω1p
− δ2sy

1 + ω2y

)
+

δ1sp

1 + ω1p
+

δ2sy

1 + ω2y
− ϵy

+
δ1s0α

(ϑ+ µu0)(α+ γ)

(
κy − (α+ γ)z

)
+

δ1s0
ϑ+ µu0

(
αz − ϑp− µup

)
+

µδ1s0
ρ(ϑ+ µu0)

(
1− u0

u

)(
β + ρup− τu

)
=

(
1− s0

s

)(
ϱ− ξs

)
− δ1s0ω1p

2

1 + ω1p
− δ2s0ω2y

2

1 + ω2y
+ δ2s0y − ϵy

+
δ1s0α

(ϑ+ µu0)(α+ γ)
κy +

µδ1s0
ρ(ϑ+ µu0)

(
1− u0

u

)(
β − τu

)
Substituting ϱ = ξs0 and β = τu0 we get

dL0

dt
= −ξ

(s− s0)
2

s
− δ1s0ω1p

2

1 + ω1p
− δ2s0ω2y

2

1 + ω2y

+ ϵ

(
δ2s0
ϵ

+
δ1s0κα

ϵ(ϑ+ µu0)(α+ γ)
− 1

)
y − µδ1s0τ

ρ(ϑ+ µu0)

(u− u0)
2

u

= −ξ
(s− s0)

2

s
− δ1s0ω1p

2

1 + ω1p
− δ2s0ω2y

2

1 + ω2y
− µδ1s0τ

ρ(ϑ+ µu0)

(u− u0)
2

u
+ ϵ(R0 − 1)y.

(24)

If R0 ≤ 1, then for all s, y, z, p, u > 0 we have dL0

dt ≤ 0. It can be easily shown that dL0

dt =
0 at Ω0. Applying LaSalle’s invariance principle we get Ω0 is globally asymptotically
stable. �
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Theorem 2: IfR0 > 1, then the equilibriumΩ1 of system (8)–(12) is globally asymptotically
stable.

Proof: Let

L1(s, y, z, p, u) = s1G

(
s

s1

)
+ y1G

(
y

y1

)
+

δ1s1p1
κy1(1 + ω1p1)

z1G

(
z

z1

)
+

δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
p1G

(
p

p1

)
+

µδ1s1p1(α+ γ)

ρκy1α(1 + ω1p1)
u1G

(
u

u1

)
.

Then

dL1

dt
=

(
1− s1

s

)(
ϱ− ξs− δ1sp

1 + ω1p
− δ2sy

1 + ω2y

)
+

(
1− y1

y

)(
δ1sp

1 + ω1p
+

δ2sy

1 + ω2y
− ϵy

)
+

δ1s1p1
κy1(1 + ω1p1)

(
1− z1

z

)(
κy − (α+ γ)z

)
+

δ1s1p1(α+ γ)

κy1α(1 + ω1p1)

(
1− p1

p

)(
αz − ϑp− µup

)
+

µδ1s1p1(α+ γ)

ρκy1α(1 + ω1p1)

(
1− u1

u

)(
β + ρup− τu

)
=

(
1− s1

s

)(
ϱ− ξs

)
+

δ1s1p

1 + ω1p
+

δ2s1y

1 + ω2y

− δ1sp

1 + ω1p

y1
y

− δ2sy1
1 + ω2y

− ϵy + ϵy1 +
δ1s1p1
1 + ω1p1

y

y1

− δ1s1p1
1 + ω1p1

yz1
y1z

+
δ1s1p1

κy1(1 + ω1p1)
(α+ γ)z1

− δ1s1p1(α+ γ)

κy1(1 + ω1p1)

zp1
p

− δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
ϑp

+
δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
ϑp1 +

δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
µup1 −

µδ1s1p1(α+ γ)

κy1α(1 + ω1p1)
u1p

+
µδ1s1p1(α+ γ)

ρκy1α(1 + ω1p1)

(
1− u1

u

)(
β − τu

)
.

We have

ϱ = ξs1 +
δ1s1p1
1 + ω1p1

+
δ2s1y1
1 + ω1p1

, ϵy1 =
δ1s1p1
1 + ω1p1

+
δ2s1y1
1 + ω1p1

,

κy1 = (α+ γ)z1, ϑp1 = αz1 − µu1p1, β = τu1 − ρu1p1,
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we get

dL1

dt
= −ξ

(s− s1)
2

s
+

(
1− s1

s

)(
δ1s1p1
1 + ω1p1

+
δ2s1y1
1 + ω2y1

)
+

δ1s1p1
1 + ω1p1

(
(1 + ω1p1)p

(1 + ω1p)p1
− p

p1

)
+

δ2s1y1
1 + ω2y1

(
(1 + ω2y1)y

(1 + ω2y)y1
− y

y1

)
− δ1s1p1

1 + ω1p1

spy1(1 + ω1p1)

s1p1y(1 + ω1p)

− δ2s1y1
1 + ω2y1

s(1 + ω2y1)

s1(1 + ω2y)
+

δ1s1p1
1 + ω1p1

+
δ2s1y1
1 + ω2y1

− δ1s1p1
1 + ω1p1

z1y

zy1

+
δ1s1p1
1 + ω1p1

− δ1s1p1
1 + ω1p1

zp1
z1p

+
δ1s1p1
1 + ω1p1

− 2
δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
µu1p1

+
δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
µup1 +

δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
µu1p1

u1

u

− µδ1s1p1τ(α+ γ)

ρκy1α(1 + ω1p1)

(u− u1)
2

u
. (25)

Equation (25) can be simplified as:

dL1

dt
= −ξ

(s− s1)
2

s
+

δ1s1p1
1 + ω1p1

[
−1 +

(1 + ω1p1)p

(1 + ω1p)p1
− p

p1
+

1 + ω1p

1 + ω1p1

]
+

δ2s1y1
1 + ω2y1

[
−1 +

(1 + ω2y1)y

(1 + ω2y)y1
− y

y1
+

1 + ω2y

1 + ω2y1

]
+

δ1s1p1
1 + ω1p1

[
5− s1

s
− spy1(1 + ω1p1)

s1p1y(1 + ω1p)
− z1y

zy1
− zp1

z1p
− 1 + ω1p

1 + ω1p1

]
+

δ2s1y1
1 + ω2y1

[
3− s1

s
− s(1 + ω2y1)

s1(1 + ω2y)
− 1 + ω2y

1 + ω2y1

]
− δ1s1p1(α+ γ)

κy1α(1 + ω1p1)
µu1p1

[
2− u

u1
− u1

u

]
− µδ1s1p1τ(α+ γ)

ρκy1α(1 + ω1p1)

(u− u1)
2

u
,

and then,

dL1

dt
= −ξ

(s− s1)
2

s
− δ1s1p1

1 + ω1p1

(
ω1(p− p1)

2

(1 + ω1p)(1 + ω1p1)p1

)
− δ2s1y1

1 + ω2y1

(
ω2(y − y1)

2

(1 + ω2y)(1 + ω2y1)y1

)
− δ1s1p1(α+ γ)

κy1α(1 + ω1p1)

µβ

ρu1

(u− u1)
2

u

+
δ1s1p1
1 + ω1p1

[
5− s1

s
− spy1(1 + ω1p1)

s1p1y(1 + ω1p)
− z1y

zy1
− zp1

z1p
− 1 + ω1p

1 + ω1p1

]
+

δ2s1y1
1 + ω2y1

[
3− s1

s
− s(1 + ω2y1)

s1(1 + ω2y)
− 1 + ω2y

1 + ω2y1

]
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Using the rule

1

k

k∑
j=1

λj ≥ k

√√√√ k∏
j=1

λj , where, λj ≥ 0, j = 1, 2, . . . , k,

we get

s1
s

+
spy1(1 + ω1p1)

s1p1y(1 + ω1p)
+

z1y

zy1
+

zp1
z1p

+
1 + ω1p

1 + ω1p1
≥ 5,

s1
s

+
s(1 + ω2y1)

s1(1 + ω2y)
+

1 + ω2y

1 + ω2y1
≥ 5.

It follows that dL1

dt ≤ 0 and dL1

dt = 0 at Ω1. The global stability of Ω1 is induced from
LaSalle’s invariance principle. �

3 Special cases

In this section we outline two special cases of model (8)–(12):

Case (I): If ω1 = ω2 = 0, then model (8)–(12) will reduce to the following model:

ṡ = ϱ− ξs− δ1sp− δ2sy, (26)
ẏ = δ1sp+ δ2sy − ϵy, (27)
ż = κy − (α+ γ)z, (28)
ṗ = αz − ϑp− µup, (29)
u̇ = β + ρup− τu. (30)

and the basic reproduction number is the same as given by equation (14). Therefore, applying
Theorems 1 and 2 to (26)–(30) immediately gives us the following results:

Corallary 1: (i) If R0 ≤ 1, then the equilibrium Ω0 of system (26)–(30) is globally
asymptotically stable,

(ii) IfR0 > 1, then the equilibriumΩ1 of system (26)–(30) is globally asymptotically stable.

Case (II): If we neglect the capsids in the virus dynamics, then model (8)–(12) becomes

ṡ = ϱ− ξs− δ1sp

1 + ω1p
− δ2sy

1 + ω2y
, (31)

ẏ =
δ1sp

1 + ω1p
+

δ2sy

1 + ω2y
− ϵy, (32)

ṗ = κy − ϑp− µup, (33)
u̇ = β + ρup− τu. (34)
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The basic reproduction number model (31)–(34) is given by R̃0 = R̃01 + R̃02, where

R̃01 =
ϱδ1κτ

ϵξ(ϑτ + µβ)
, R̃02 =

ϱδ2
ϵξ

.

Clearly

R0 =
α

α+ γ
R̃01 + R̃02 < R̃01 + R̃02 = R̃0.

It means that, the presence of capsids in the virus dynamics enhances the stability of the
healthy equilibrium Ω0.

Corallary 2 (Elaiw et al., 2019a): (i) If R̃0 ≤ 1, then the equilibriumΩ0 of system (31)–(34)
is globally asymptotically stable,

(ii) If R̃0 > 1, then the equilibriumΩ1 of system (31)–(34) is globally asymptotically stable.

4 Numerical simulations

In this section, we solve system (8)–(12) numerically with different initial conditions. We
simulate the system with values of the parameters given as: ϱ = 2, κ = 4, µ = 0.5, τ = 1,
α = 0.5, ξ = 0.1, ϵ = 0.5, ϑ = 0.1, β = 1.4, ρ = 0.2, γ = 0.2. We assume that ω = ω1 =
ω2. The parameters δ1, δ2 and ω will be selected.

4.1 Stability of equilibria

System (8)–(12) will be solved with different initial values as:

IV1: (s(0), y(0), z(0), p(0), u(0)) = (14.0, 1.0, 1.0, 1.0, 1.5),

IV2: (s(0), y(0), z(0), p(0), u(0)) = (8.0, 2.0, 3.0, 3.0, 2.0),

IV3: (s(0), y(0), z(0), p(0), u(0)) = (4.0, 3.5, 5.0, 6.0, 2.5).

In Figure 1 we want to confirm our global stability results given in Theorems 1 and 2,
by showing that from any initial points (any disease stage) taken from a feasible set, the
trajectory of the system will tend to one of the two equilibria of the system.

We fix ω = 0 and choose the parameters δ1 and δ2 as follows:

Set (I): δ1 = δ2 = 0.001. With these data we get R0 = 0.1829 < 1. Figure 1 shows that,
the solutions of the system with initials IV1-IV3 goes to Ω0 = (20.0, 0, 0, 0, 1.4). This
shows that, Ω0 is globally asymptotically stable which supports Theorem 1.

Set (II): δ1 = δ2 = 0.05. Then, we calculate R0 = 9.1429 > 1. We found that the system
has two equilibria Ω0 = (20.0, 0, 0, 0, 1.4) and Ω1 = (4.65, 3.06, 17.54, 3.53, 4.76).
Figure 1 shows that in case of R0 > 1, the solutions converge to Ω1 for all IV1-IV3. Thus
the result Theorem 2 is numerically checked.
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4.2 Effect of saturation on the virus dynamics

We consider the values of the parameters given above and take δ1 = δ2 = 0.05. We choose
the following initial:

IV4: (s(0), y(0), z(0), p(0), u(0)) = (12, 2.0, 10, 3.0, 3.4).

The variation of the states of the system with different values of ω is shown in Figure 2. It
is clear that as the saturation parameter ω is increased, the number of uninfected cells are
increased while the number of virus, infected cells, and antibodies are decreased.

Figure 1 The simulation of trajectories of system (8)–(12) with initial conditions IV1–IV3: (a)
uninfected cells; (b) infected cells; (c) capsids; (d) free virus particles and (e) antibodies
(see online version for colours)
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Figure 2 The simulation of trajectories of system (8)–(12) with different values of ω: (a)
uninfected cells; (b) infected cells; (c) capsids; (d) free virus particles and (e) antibodies
(see online version for colours)
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