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Abstract: In this work, we have discussed the dynamical behaviours of a
three species food chain model where the prey species exhibits herd behaviour
and sexually reproductive top predator are of generalist type. Positivity and
uniform boundedness of the system are studied to verify its well-posedness. Some
conditions for extinction of prey and predators are derived. Feasibility criteria and
stability analysis of all the equilibrium points are discussed here. Hopf-bifurcation
condition for interior equilibrium point is carried out analytically. Mathematical
conditions for finite time blow-up of top predator are established. Numerical
simulations are carried out to validate our analytical findings.
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1 Introduction

In order to survive in a better way, every population must eat in different strategic ways.
For certain predator species this necessarily implies to pursue and bring down a sufficient
amount of prey. Prey population must be on the alert when predator population always on
the lookout for food. Scattering and zigzagging of prey to confuse the predator is a popular
strategy of herd prey to escape from predator (Chen and Kolokolnikov, 2014; Olson et al.,
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2013). Several anti-predator protocols of animal aggregations have been proposed and one
potential method among them is by which fish schools or bird flocks may thwart predators
is the ‘predator confusion effect’ (Milinski and Heller, 1978; Jeschke and Tollrian, 2007;
Ioannou et al., 2008; Krakauer, 1995; Olson et al., 2013; Demsar et al., 2015). This theory
is based on the idea that it becomes difficult for predators to pick out individual prey from
groups because the many moving targets create a sensory overload of the predator’s visual
channel. Other potential anti-predator effects of animal aggregations are the ‘many eyes’
hypothesis where the size of the group increases, the task of scanning the environment
for predators can be spread out over many individuals and ‘encounter dilution’. Predation
by large fields accounted for more than 50% of mortality of adult white-coatis (Hass and
Valenzuela, 2002). Predation rates were higher on solitary coatis than on group coatis where
the predation rate was inversely related to group size. Herd formation can decrease individual
predation risk for several reasons (Cressman and Garay, 2011). In summary, we can claim
that the individual prey’s survival probability is dependent on whether the individual in
question is solitary or in the herd. It is a ‘group defense’ strategy of prey population, such
that when the predators make contact with the prey population, they cannot reach the inside
of the prey group which means that the predators hunt only on the boundary of prey herd. It
is the reason of defining this dynamics of prey by the square root of the prey population in the
functional response term (Tang and Song, 2015; Cagliero and Venturino, 2016; Venturino,
2011, 2013; Lv et al., 2016; Tanner, 1975; Ajraldi et al., 2011; Venturino and Petrovskii,
2013; Yuan et al., 2013; Maiti et al., 2016).

In ecology, predation provides a biological relationship where a predator feeds the
prey. In multi species food chain model, energy flow from lower trophic level to higher
trophic level is very interesting and these individual steps from one energy level to the
next constitute the ecological community structure. Specialist predators are supposed to
feed only on its preferable prey species where generalist predator can survive without its
preferred prey. Specialist predator are considered to be limited to the regular habitat as their
prey; subsequently loss of the habitat is, therefore, also loss of predator habitat. Whereas
generalist predator are assumed to be live mainly in the focal prey species (Cronin, 2003;
Prakash and Ross, 2002; Swihart et al., 2001). In general the generalist predators are sexually
reproducing (Priyadarshi and Gakkhar, 2013; Jana et al., 2015; Parshad et al., 2016b). It
is predictable that the growth of sexually reproducing population will be proportional to
densities of the two species, because sexual selection is based on the success of definite
individuals over others of the same sex and contains behavioural habits such as choosiness
and species recognition (Jana and Tripathi, 2016).

In the ecological perspective, it is very difficult to derive the particular conditions
of population explosion/blow-up for any ecological model system. Parshad et al. (2002)
establishes the solution to a three species model studied by Aziz-Alaoui (Aziz-Alaoui,
2002), can blow-up in finite time even under the restriction derived in Aziz-Alaoui (2002).
It is also useful then to study ecological mechanisms that can prevent such explosive
phenomenon (Parshad et al., 2016c). Recently, many researchers culture the blow-up
behaviour of different dynamical systems. Zhang and Yang (2010) obtained the conditions
under which the solutions may exist globally or blow up in a finite time for a nonlinear
parabolic equation subject to mixed boundary conditions. Ling and Wang (2013) studied
blow-up criteria and global boundedness of non-negative solutions using super/sub solution
method techniques. The exact conditions of blow-up and global existence of a nonlinear
wave equation are studied by Jiang and Zhang (2014). Also, the sufficient conditions for the
blow-up and global solutions are presented for nonlinear parabolic equation with different
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kinds of boundary conditions studied by Zhang and He (2010). Zhou et al. (2016) illustrated
that the blow-up behaviours of differential equations with piecewise constant arguments are
quite different from those of the corresponding ordinary differential equations.

In this paper, we have proposed a tri-trophic food chain model with one prey that
shows herd behaviour, one intermediate specialist predator and a sexually reproductive
generalist top predator which shows finite time blow-up. The paper is organised as follows.
In Section 2, we have presented the mathematical model with basic consideration. Positivity
and uniform boundedness are studied in Section 3. In Section 4, the extinction criteria
of all the populations are discussed. Stability behaviours of the equilibrium points and
Hopf-bifurcation analysis of the interior equilibrium point are discussed in the Section 5.
In Section 6, finite time blow-up analysis is there. To illustrate our analytical findings,
numerical simulations results are presented in Section 7. Section 8 contains the general
discussion on the results of our mathematical findings.

2 The mathematical model

In this work, we have introduced and discussed a three-species food chain model: one
prey (X) with logistic growth rate (with growth rate constant r and environmental carrying
capacity K), intermediate specialist predator (Y ) and sexually reproductive generalist
(governed by the modified Holling-Tanner/Leslie-Grower model) top predator (Z) (Jana
and Tripathi, 2016). We have assumed that the prey population (X) lives in herds. As the
population exhibits herd behaviour, here we have used the modified square root functional
response mentioned earlier (Braza, 2012). The top predator (Z) has preferred food source
(Y ) and their interaction is assumed to be governed by the usual Holling type-II functional
response. The model under investigation is as follows:

dX

dT
= rX

(
1− X

K

)
− α1

√
XY

1 + T1α1

√
X

,

dY

dT
=

C1α1

√
XY

1 + T1α1

√
X

− d1Y − α2Y Z

1 + T2α2Y
,

dZ

dT
= C2Z

2 − α3Z
2

m+ T2Y
,

(1)

with initial conditions X(0) > 0, Y (0) > 0, Z(0) > 0. Here the parameters α1, α2 are
the search efficiencies and T1, T2 are the handling times of the intermediate predator and
top predator respectively. The parameter C1 denotes the biomass conversion factor for prey
population to intermediate predator and it dies with mortality rate d1. The residual loss in Z
population due to severe scarcity of its preferred food Y is denoted by α3. The top predator
Z is a sexually reproducing species. For most sexual species over most population densities,
reproduction is determined primarily by female densities; however, the growth of a sexually
reproducing population is proportional to the square of the biomass of individual’s present
in situation when the population is at very low densities. The square term Z2 signifies the
fact that mating frequency is directly proportional to the biomass of males as well as that
of females present at any instant of time T and because of severe scarcity of its preferred
food Y , C2 is the top predator’s sexual reproduction rate and m normalises the residual
reduction in the top predator Z.
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To reduce the number of parameters and to simplify system (1) a little bit, we non-
dimensionalise the system with the following scaling:

x =
X

K
, y =

Y

K
, z =

Zα2

γ
and t = rT.

Then the system (1) takes the form (after some simplifications):

dx

dt
= x(1− x)− a1

√
xy

1 + b1
√
x
, (2)

dy

dt
=

c
√
xy

1 + b1
√
x
− dy − yz

1 + b2y
, (3)

dz

dt
= ez2 − a2z

2

b3 + y
, (4)

where

a1 =
α1

√
K

r
, b1 = T1α1

√
K, c =

C1α1

√
K

r
, d =

d1
r
, b2 = T2α2K, e =

C2

α2
,

a2 =
α3

α2T2K
, b3 =

m

T2K
,

with initial conditions x(0) > 0, y(0) > 0, z(0) > 0.

3 Positivity and uniform boundedness

Positivity and uniform boundedness of a model guarantee that the model is biologically
well behaved or well posed. For positivity of the system (2)–(4), we have the following
lemma.

Lemma 3.1: (x(t), y(t), z(t))T ∈ R3 : x(t0) > 0, y(t0) > 0, z(t0) > 0 for some t0 ∈ R is
positively invariant for the model system (2)–(4).

Proof: For x(t0) > 0, y(t0) > 0, z(t0) > 0, we have

x(t) = x(t0) exp

(∫ t

0

{
1− x(s)− a1y(s)√

x(s) + b1x(s)

}
ds

)
> 0,

y(t) = y(t0) exp

(∫ t

0

{
c
√
x(s)

1 + b1
√
x(s)

− d− z(s)

1 + b2y(s)

}
ds

)
> 0,

z(t) = z(t0) exp

(∫ t

0

{
ez(s)− a2z(s)

b3 + y(s)

}
ds

)
> 0,

which complete the proof.
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Theorem 3.1: All the solutions of the three species food chain model system (2)–(4) are
uniformly bounded, provided

c

4da1
+

c

a1
+ b3 <

a2
e
,

and finally entering the region

Ω =

{
(x, y, z) ∈ R3

+ : 0 < x ≤ 1, 0 < x+
a1
c
y ≤ 1

4d
+ 1,

0 < x+
a1
c
y + z <

1

4d
+ 1 +

d
4a2

c
4da1

+ c
a1

+b3
− 4e

 .

Proof: First, we prove that x(t) is bounded for all t ≥ 0. From equation (2) we can write

dx

dt
≤ x(1− x) ⇒ lim

t→+∞
supx(t) ≤ 1

Now, we show that both x(t) and y(t) are bounded for all t ≥ 0. Let W1(t) = x+
a1
c
y,

then

dW1

dt
= x(1− x)− a1

c
dy − a1

c

yz

1 + b2y

⇒ dW1

dt
≤ 1

4
− a1

c
dy − dx+ dx

⇒ dW1

dt
+ dW1 ≤ 1

4
+ d (for large t)

⇒ 0 < W1(t) ≤
1

4d
+ 1 as t → ∞.

Finally, let us prove that x(t), y(t) and z(t) are all bounded for all t ≥ 0.
Suppose W2 = x+ a1

c y + z.

∴ dW2

dt
= x(1− x)− a1

c
dy + z2

(
e− a2

b3 + y

)
⇒ dW2

dt
≤ 1

4
− a1

c
dy − dx+ dx− dz + dz + z2

(
e− a2

b3 + y

)
⇒ dW2

dt
+ dW2 ≤ 1

4
+ d+ dz + z2

(
e− a2

b3 + y

)
<

1

4
+ d+ z

{
d− z

(
a2

c
4da1

+ c
a1

+ b3
− e

)}

Now, let us find the maximum value of the function z
{
d− z

(
a2

c
4da1

+ c
a1

+b3
− e
)}

.
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Let, f(z) = zd− βz2, where β =
(

a2
c

4da1
+ c

a1
+b3

− e
)

Then, the maximum value of f(z) is
d2

4β
, provided β > 0, i.e

a2
e

>
c

4da1
+

c

a1
+ b3.

∴ dW2

dt
+ dW2 <

1

4
+ d+

d2

4β
⇒ 0 < W2(t) <

1

4d
+ 1 +

d

4β
as t → ∞

⇒ 0 < x+
a1
c
y + z <

1

4d
+ 1 +

d
4a2

c
4da1

+ c
a1

+b3
− 4e

as t → ∞.

Hence, the theorem is proved.

4 Extinction scenarios

In this section, some conditions for extinction of the prey or predators are noticed. The
symbols x, y and y represent lim sup

t→∞
x(t), lim sup

t→∞
y(t) and lim inf

t→∞
y(t), respectively. Here,

we use the fact that 0 < x̄ ≤ 1, which is proved in Theorem 3.1.

Theorem 4.1: If y >

√
2(1 + b1

√
2)

a1
, then lim

t→∞
x(t) = 0.

Proof: If possible, let lim
t→∞

x(t) = µ > 0. Since x ≤ 1 then for any 0 < ϵ < 1, there exists

tϵ > 0 such that x(t) < 1 + ϵ for t > tϵ.

From the definition of y, it follows that, for any 0 < ϵ′ < y −
√
2(1+b1

√
2)

α , there exists
tϵ′ > 0 such that y(t) > y − ϵ′ for t > tϵ′ .

Then, for t > max{tϵ, tϵ′}, the equation (2) can be written as

dx

dt
< x− a1

√
xy

1 + b1
√
x
,

< x− a1xy√
1 + ϵ(1 + b1

√
1 + ϵ)

,

< x

{
1−

a1(y − ϵ′)
√
2(1 + b1

√
2)

}
,

<− a1x√
2(1 + b1

√
2)

(
y − ϵ′ −

√
2(1 + b1

√
2)

a1

)
< 0

which implies that lim
t→∞

x(t) = 0, a contradiction. Hence the theorem is established.



Explosive tritrophic food chain model with herd behaviour of prey 43

Theorem 4.2: If d > c, then lim
t→∞

y(t) = 0.

Proof: Since x ≤ 1, for any 0 < ϵ < d2

c2 − 1, there exists tϵ > 0 such that x(t) < 1 + ϵ
for t > tϵ. For t > tϵ, we have from equation (3):

dy

dt
<

(
−d+

c
√
x

1 + b1
√
x

)
y,

< y
(
−d+ c

√
x
)
,

<−cy

(
d

c
−
√
1 + ϵ

)
< 0.

Therefore, lim
t→∞

y(t) = 0.

Theorem 4.3: If ȳ < a2

e − b3, then lim
t→∞

z(t) = 0.

Proof. Let 0 < ϵ < a2

e − b3 − ȳ, which is possible due to Theorem 3.1. Then there exists
tϵ > 0 such that y(t) < ȳ + ϵ for t > tϵ. For t > tϵ, from equation (4):

dz

dt
< z2

{
e− a2

ȳ + b3

}
,

< z2
{
e− a2

ȳ + ϵ+ b3

}
< 0.

Therefore, lim
t→∞

z(t) = 0.

5 Stability analysis

The system (2)–(4) has five different boundary equilibrium points: (i)E0(0, 0, 0), (ii)
E1(1, 0, 0), (iii) E2(0, 0, z̃) (where z̃ represents nonzero positive value, provided e =
a2

b3
), (iv) E3(x̂, ŷ, 0) and (v) E4(1, 0, z̄). It is noted that the system (2)–(4) can not be

linearised about the equilibrium points E0(0, 0, 0) and E2(0, 0, z̃). But if the conditions
of the Theorems (4.1), (4.2) and (4.3) hold simultaneously, then E0(0, 0, 0) is globally
asymptotically stable. Let us establish a theorem to study the nature of the equilibrium point
E0.

Theorem 5.1: If a2

e − b3 < 0, then E0(0, 0, 0) is an unstable equilibrium point.

Proof: From equation (4) we have

dz

dt
= ez2 − a2z

2

y + b3

∴ dz
dt > 0, when a2

e − b3 < 0. So, E0 is unstable equilibrium point. �
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Table 1 Stability analysis of boundary equilibria of model system (2)–(4)

Equilibrium and Feasibility Jacobian matrix Stability
coordinate condition and eigenvalues status

(i) E1 = (1, 0, 0) Always

−1 − a1
1+b1

0

0 c
1+b1

− d 0

0 0 0

 Neutral

λ1 = −1, λ2 = c
1+b1

− d,

λ3 = 0

(ii) E3 = (x̂, ŷ, 0)

p1 −a1d
c

0

p2 0 − ŷ
1+b2ŷ

0 0 0

 Neutral

x̂ = d2

(c−b1d)2
, (c− b1d)2 > d2 λ1 = 0, λ2,3 =

p1±
√

p21−
4a1dp2

c
2

ŷ = cd
(

(c−b1d)
2−d2

a1(c−b1d)4

) [
p1 = 1− 2x̂− a1ŷ

2
√

x̂(1+b1
√

x̂)2
,

p2 = cŷ

2
√

x̂(1+b1
√

x̂)2

]

(iii) E4(1, 0, z̄) e = a2
b3


−1 −a1

1+b1
0

0 c
1+b1

− d− z̄ 0

0 a2z̄
2

b23
2z̄(e− a2

b3
)

 Neutral

z̄ is any +ve constant
λ1 = −1, λ2 = c

1+b1
− d− z̄,

λ3 = 2z̄(e− a2
b3

) = 0

Feasibility and stability of the other boundary equilibrium points are given in Table 1.

Feasibility conditions and dynamical behaviour of the interior equilibrium point: Interior
equilibrium point is E∗(x∗, y∗, z∗), where y∗ = a2−eb3

e (provided a2 > eb3), z∗ =(
c
√
x∗

1+b1
√
x∗ − d

)
(1 + b2y

∗) (provided
(

c
√
x∗

1+b1
√
x∗ − d

)
> 0) and x∗ is the real positive

root of the equation: b1x2 + x
3
2 − b1x− x

1
2 +

a1(a2 − eb3)

e
= 0. The variational matrix

V (E∗) of system (2)-(4) at E∗ is given by

V (E∗) =

a11 a12 0a21 a22 a23
0 a32 0

 ,

where

a11 = 1− 2x∗ − a1y
∗

2
√
x∗(1 + b1

√
x∗)2

, a12 = − a1
√
x∗

1 + b1
√
x∗

,

a13 = 0, a21 =
cy∗

2
√
x∗(1 + b1

√
x∗)2

,

a22 =
b2y

∗z∗

(1 + b2y∗)2
, a23 = − y∗

1 + b2y∗
, a31 = 0, a32 =

a2z
∗2

(b3 + y∗)2
and a33 = 0.

The characteristic equation of V (E∗) is

λ3 +A1λ
2 +A2λ+A3 = 0,
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where A1 = −(a11 + a22), A2 = (a11a22 − a12a21 − a23a32) and A3 = a11a23a32. By
Routh-Hurwitz criterion, the coexistence equilibrium point E∗(x∗, y∗, z∗) is locally
asymptotically stable if A1 > 0, A3 > 0 and A1A2 −A3 > 0.

5.1 Hopf bifurcation at E∗(x∗, y∗, z∗)

The characteristic equation of system (2)–(4) at E∗(x∗, y∗, z∗) is given by

λ3 +A1(b2)λ
2 +A2(b2)λ+A3(b2) = 0, (5)

where

A1(b2) = −
[
1− 2x∗ − a1y

∗

2
√
x∗(1 + b1

√
x∗)2

+
b2y

∗z∗

(1 + b2y∗)2

]
,

A2(b2) =

{
1− 2x∗ − a1y

∗

2
√
x∗(1 + b1

√
x∗)2

}
b2y

∗z∗

(1 + b2y∗)2

+
a1cy

∗√x∗

2
√
x∗(1 + b1

√
x∗)3

+
a2y

∗z∗2

(1 + b2y∗)(b3 + y∗)2
,

A3(b2) = −
{
1− 2x∗ − a1y

∗

2
√
x∗(1 + b1

√
x∗)2

}
a2y

∗z∗2

(1 + b2y∗)(b3 + y∗)2
.

In order to see the instability of system (2)-(4), let us consider b2 as bifurcation parameter.
For this purpose let us state and prove the following theorem:

Theorem 5.2 (Hopf Bifurcation Theorem (Murray, 1993)): If Ai(b2), i = 1, 2, 3 are
smooth functions of b2 in an open interval about b∗2 ∈ R such that the characteristic equation
(5) has

• a pair of complex eigen values λ = p1(b2)± ip2(b2) (with p1(b2), p2(b2) ∈ R) so
that they become purely imaginary at b2 = b∗2 and

dp1
db2

∣∣∣∣
b2=b∗2

̸= 0,

• the other eigen value is negative at b2 = b∗2, then a Hopf bifurcation occurs around
E∗ at b2 = b∗2 (i.e., a stability change of E∗ accompanied by the creation of a limit
cycle at b2 = b∗2).

Theorem 5.3: The system (2)–(4) possesses a Hopf-bifurcation aroundE∗ when b2 passes
through b∗2 provided A1(b

∗
2), A3(b

∗
2) > 0 and A1(b

∗
2)A2(b

∗
2) = A3(b

∗
2).

Proof: For b2 = b∗2, the characteristic equation of the system (2)-(4) at E∗ becomes

(λ2 +A2)(λ+A1) = 0,

providing roots λ1 = i
√
A2, λ2 = −i

√
A2, and λ3 = −A1. Thus there exists a pair of

purely imaginary eigenvalues and a strictly negative real eigenvalue. Also Ai(i = 1, 2, 3)
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are smooth functions of b2. So, for b2 in a neighbourhood of b∗2, the roots have the form
λ1(b2) = p1(b2) + ip2(b2), λ2(b2) = p1(b2)− ip2(b2), λ3 = −p3(b2),where pi(b2), i =
1, 2, 3 are real.

Next, we shall verify the transversality condition:

d

db2
(Re(λi(b2)))

∣∣∣∣
b2=b∗2

̸= 0, i = 1, 2.

Substituting λ(b2) = p1(b2) + ip2(b2) into the characteristic equation (5), we get

(p1 + ip2)
3 +A1(p1 + ip2)

2 +A2(p1 + ip2) +A3 = 0. (6)

Now, taking derivative of both sides of equation (6) with respect to b2, we get

3(p1 + ip2)
2(ṗ1 + iṗ2) + 2A1(p1 + ip2)(ṗ1 + iṗ2) + Ȧ1(p1 + ip2)

2

+A2(ṗ1 + iṗ2) + Ȧ2(p1 + ip2) + Ȧ3 = 0.
(7)

Comparing real and imaginary parts from both sides of equation (7)), we get

D1ṗ1 −D2ṗ2 +D3 = 0 (8)

and

D2ṗ1 +D1ṗ2 +D4 = 0, (9)

where

D1 = 3(p21 − p22) + 2A1p1 +A2,

D2 = 6p1p2 + 2A1p2,

D3 = Ȧ1(p
2
1 − p22) + Ȧ2p1 + Ȧ3,

D4 = 2Ȧ1p1p2 + Ȧ2p2.

From equations (8) and (9), we get

ṗ1 = −D2D4 +D1D3

D2
1 +D2

2

. (10)

Now,

D3 = Ȧ1(p
2
1 − p22) + Ȧ2p1 + Ȧ3 ̸= Ȧ1(p

2
1 − p22) + Ȧ2p1 + Ȧ1A2 + Ȧ2A1.

At b2 = b∗2

Case-I : p1 = 0, p2 =
√
A2

D1 = −2A2, D2 = 2A1

√
A2, D3 ̸= A1Ȧ2, D4 = Ȧ2

√
A2.

∴ D2D4 +D1D3 ̸= 2A1A2Ȧ2 − 2A1A2Ȧ2 = 0.
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So, D2D4 +D1D3 ̸= 0 at b2 = b∗2, when p1 = 0, p2 =
√
A2.

Case-II : p1 = 0, p2 = −
√
A2

D1 = −2A2, D2 = −2A1

√
A2, D3 ̸= A1Ȧ2, D4 = −Ȧ2

√
A2.

∴ D2D4 +D1D3 ̸= 2A1A2Ȧ2 − 2A1A2Ȧ2 = 0.

So, D2D4 +D1D3 ̸= 0 at b2 = b∗2, when p1 = 0, p2 = −
√
A2.

Therefore,

d

db2
(Re(λi(b2)))

∣∣∣∣
b2=b∗2

= −D2D4 +D1D3

D2
1 +D2

2

∣∣∣∣
b2=b∗2

̸= 0

and

−p3(b
∗
2) = −A1(b

∗
2) < 0.

Hence by Theorem 5.2, the result follows. �

6 Finite time blow-up

In this section, we present results on finite time blow-up of the system (2)–(4). We first
provide some background to this approach. We are motivated primarily to control non-native
species, which is a cental problem in spatial ecology. Data on species such as the invasive
Burmese python (Python bivittatus) in the Florida everglades, show an exponential increase
in python population, which have resulted in local prey populations reducing severely
(Dorcas et al., 2012). An invasive species is formally defined as any species capable of
propagating itself in a nonnative environment and thus establish a self-sustained population.
The environment may turn favourable for a certain species while becoming unfavourable
for its competitors or natural enemies. This can result in the favoured species to outbreak
(Berryman, 1987). For example, in the European Alps certain seasonal environmental
conditions enable the population of the larch budmoth to become large enough to defoliate
entire forests (Ludwig et al., 1978). In United States alone damages caused by invasive
species to agriculture, forests, fisheries and businesses, have been estimated to be $120
billion a year (Pimentel et al., 2005).

Biological control is an adopted strategy to limit harmful populations (Van Driesche
and Bellows, 1996). The objective of a biological control is to establish a management
strategy that best controls and decreases the harmful population to healthy levels as opposed
to high and risky levels. Naturally, how does one define high level, and further, how well
does the biological control actually work, at various high levels We have recently started
investigating this question via the mathematical property of finite time blow-up (Parshad
et al., 2016c, 2013, 2016a).

Definition 6.1: A given ODE model of a nonlinear system say,

du

dt
= f(u), (11)
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we say finite time blow-up occurs if,

lim
t→T∗<∞

∥u∥ → ∞, (12)

where ∥ · ∥ is the standard sup norm on Rn, u is the state variable in question that depends
on time (t) and T ∗ is the blow-up time.

In the context of population biology, finite time blow-up has also been well investigated
(Kim and Lin, 2004; Lou et al., 2001; Lou and Munther, 2012; Hillen and Painter, 2009).
Note, we have now introduced an alternate viewpoint: finite time blow-up, can be viewed
as mimicing the explosive growth of an invasive species. This is formalised by equating:

finite time blow-up = uncontrollable and unmanageable population level. (13)

Here, the blow-up time T ∗ is viewed as the disaster time, for the ecosystem.

Remark 6.2: Although populations cannot reach infinite values in finite time, they can
grow rapidly (Berryman, 1987). For example, experimental evidence suggest that the human
population may be growing hyperbolically, rather than logistically (Grinn et al., 2010).
Data on the Burmese python suggests, that its population is growing at least exponentially
(Dorcas et al., 2012).

Our approach investigates biological control mechanisms, that attempt to lower and control
the targeted population before time T ∗. This approach has distinct advantages:

• there is no ambiguity as to what is a disastrous high level of population

• there is a clear demarcation between when or if the disaster occurs

• our controls focus on avoiding classical chemical and biological controls

• this method provides a predictive modelling tool for various ecological settings.

6.1 Finite time blow-up for large initial data

Here, we show that the model system (2)–(4) blow-up in finite time with suitable positive
initial condition (x0, y0, z0).

Theorem 6.3: Consider the three species food chain model (2)− (4). Even if

e <
a2
b3

,

z(t) the solution to (4) blows up in finite time, that is

lim
t→T∗∗<∞

∥z∥ → ∞

as long as the initial data (y0, z0) are large enough.

Proof: Consider (2)–(4) with positive initial conditions.
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Integrating (4), we obtain

−1

z
+

1

z0
= et− a2

∫ t

0

ds

y + b3

which gives

z =
1

1
z0

− et+ a2
∫ t

0
ds

y+b3

Let

ϕ(t) =
1

z0
− et+ a2

∫ t

0

ds

y + b3

Our mission is to show that the function ϕ(t) → 0, t → T ∗∗ > 0. Essentially, for y0 chosen
sufficiently large, there exists a δ > 0 such that

1

z0
− et+ a2

∫ t

0

ds

y + b3
<

1

z0
− et

2
,∀t ∈ (0, δ)

Now if we take a sufficient large value of z0, then we can find a finite value T ∗ ∈ (0, δ)
such that

1

z0
− e

2
T ∗ = 0

thus, ϕ(T ∗) ≤ 0whileϕ(0) = 1
z0

> 0. So, by using Intermediate value theorem there exists
a T ∗∗ < T ∗, where ϕ(T ∗∗) = 0. So, z blows up at finite time T ∗∗.

Hence, the theorem is proved. �

6.2 Finite time blow-up for small initial data

Theorem 6.4: Consider the three species food chain model (2)–(4). Even if

e >
a2
b3

,

z(t) the solution to (4) blows up in finite time, that is

lim
t→T∗∗<∞

∥z∥ → ∞

for possibly small initial data (x0, y0, z0), that is, x0 << x∗, z0 << z∗ and y0 ≈ y∗, as
long as the following relation holds:

d

e
< z0 log

 y0∫ t

0
exp(d(s−t))

ϕ(y,s) ds+ y∗

 , provided b2 ≥ 1.

Here (x∗, y∗, z∗) represents the interior equilibrium point for the given parameter set.
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Proof: By simple comparison of the equation (3), we get

dy

dt
> −dy − z. (14)

It is obtained by integrating (4), z =
1

1
z0

− et+ a2
∫ t

0
ds

y+b3

Now we set, ϕ(y, t) =
1

z0
− et+ a2

∫ t

0

ds

y + b3

Thus, integrating equation (14), we have

y > −
∫ t

0

exp(d(s− t))

ϕ(y, s)
ds+ y0 exp(−dt) (15)

In order for blow up: y > a2

e − b3, for as long as it takes

dz

dt
= ez2 (16)

to blow up. This follows by a simple comparison. Here blow-up occurs at T ∗ = 1
ez0

.
From equation (16), we get

t <
1

d
log

 y0∫ t

0
exp(d(s−t))

ϕ(y,s) ds+ y∗

 . (17)

Let t = T ∗∗, then blow up is certain if T ∗ < T ∗∗ ⇒ d
e < z0 log

(
y0∫ t

0
exp(d(s−t))

ϕ(y,s)
ds+y∗

)
.

Hence, the theorem is proved. �

7 Numerical simulations

For the purpose of visualisation of the dynamical aspects of the system of equations (2)–(4),
we choose the parameter set as: a1 = 0.7, b1 = 0.3, c = 0.55, d = 0.3, e = 1.4, a2 = 0.5
and b3 = 0.13. But keep the parameter b2 aside because we’ll see stability switching w.r.t
this parameter. If we consider b2 ∈ (0, 2.5), then we see that the system experiences stable
focus to unstable focus dynamics at the coexistence equilibrium point E∗ with increasing
b2 via Hopf-bifurcation at b2 = b∗2 = 1.27 (Fig.1(iv)). So, if we choose b2 = 1.02 from
its stable range (0, 1.27), then we see E∗ equilibrium point is stable focus, we represent
it by time series in Figure 1(i) and phase-space diagram in Figure 1(iii), black trajectory
in xyz-space which starts at initial point marked by blue bullet and with increasing time
converges to E∗ which is marked by green bullet. Also, if we choose b2 = 2.02 from its
stable range b2 > 1.27, then we see E∗ equilibrium point is unstable focus, we represent
it by time series in Figure 1(ii) and phase-space diagram in Figure 1(iii), red trajectory
in xyz-space which starts at initial point marked by blue bullet and with increasing time
converges to stable limit cycle around E∗ which is marked by blue closed loop. Now if we
choose parameter set as: a1 = 0.7, b1 = 0.3, c = 0.55, d = 0.3, b2 = 1.02, a2 = 0.05 and
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b3 = 0.13, by this parameter set a2

b3
= 0.3846. Now if we consider e = 3.4 > a2

b3
, then we

see z population blows-up obviously (Figure 2(i) and its enlarged form in Figure 2(ii) for
comparison of z value with x and y). Also, if we consider e = 0.2 < a2

b3
, then w.r.t very

high initial data (0.9, 0.08, 50) we see z population blows-up (Figure 2(iii) and its enlarged
form in Figure 2(iv) for comparison of z value with x and y). For the rest of the figures
we’ve considered initial data as (0.9, 0.08, 0.01).

Figure 1 Time series (i)–(ii), phase-space (iii) and Hopf-bifurcation diagram w.r.t parameter b2 (iv)
of system (2)–(4). Parameter values and description are in the text (see online version
for colours)

Figure 2 System (2)–(4) blow-up in finite time, (i) for e > a2
b3

and (ii) for e < a2
b3

. Parameter
values and description are in the text (see online version for colours)
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8 General discussion

Recently, the research of the significance of herd behaviour when two or more populations
are in same ecological relationship has drawn the attention of the scientists for its own virtue.
In this work, we have considered a tri-trophic food chain model in which prey population
exhibits herd behaviour and also the influence of generalist type top predator which grows by
sexual reproduction. The main feature of group-living of prey population has been accented
using square root of prey density (biomass) in the functional response. The predation process
of specialist middle predator and generalist top predator is assumed to be governed by
Holling type -II functional response where the generalist predator’s equation is governed
by the modified Holling-Tanner/Leslie-Grower model. The number of parameters of the
model has been reduced by proper scaling. The dynamical behaviours of the model system
(2)–(4) is studied. It is observed that the solution of the system is positively invariant and
uniformly bounded which indicates its wellposedness. This actually shows that the system
is well-behaved. We have also studied the extinction criteria of both prey and predator. We
have discussed the feasibility criteria and stability behaviour of all the boundary equilibrium
points. Interestingly due to the model formulation, x∗, the prey abundance solutions at
coexistence equilibrium E∗ is the unique positive solution of the algebric equation. Local
stability by using Routh-Hurwitz criteria of coexistence equilibrium E∗ and switching of
the stability of the system at E∗ via Hopf bifurcation are also investigated analytically.
Blow-up phenomena of top predator z in finite time has been observed for the system.
Numerical simulations are presented to verify the analytical predictions.

Acknowledgement

The authors are grateful to the anonymous referees and Editor in Chief Prof. Agnieszka
Malinowska for their careful reading, valuable comments and helpful suggestions, which
have helped them to improve the presentation of this work significantly.

References

Ajraldi, V., Pittavino, M. and Venturino, E. (2011) ‘Modelling hard behaviour in population systems’,
Nonlinear Analysis Real World Application, Vol. 12, pp.2319–2338.

Arditi, R. and Saiah, H. (1992) ‘Empirical evidence of the role of heterogeneity in ratio-dependent
consumption’, Ecology, Vol. 73, pp.1544–1551.

Aziz-Alaoui, M. A. (2002) ‘Study of a Leslie–Gower type tri-trophic population model’, Chaos
Solitons and Fractals, Vol. 14, No. 8, pp.1275–1293.

Bera, S.P., Maiti, A. and Samanta, G.P. (2015a) ‘Modelling herd behavior of prey: analysis of a
prey-predator model’, World J. Modell. Simul., Vol. 11, No. 1, pp.3–14.

Bera, S.P., Maiti, A. and Samanta, G.P. (2015b) ‘Stochastic analysis of a prey-predator model with
herd behaviour of prey’, Nonlinear Analysis Modeling and Control, Vol. 21, No. 3, pp.345–361.

Bera, S.P., Maiti, A. and Samanta, G.P. (2016) ‘Dynamics of a food chain model with herd behaviour
of the prey’, Modeling Earth System and Environment, Vol. 2, p.131, DOI: 10.1007/s40808-016-
0189-4.

Berryman, A. (1987) ‘The theory and classification of outbreaks’, Insect Outbreaks, Academic Press,
San Diego, CA, , pp.3–30.



Explosive tritrophic food chain model with herd behaviour of prey 53

Braza, A. P. (2003) ‘The bifurcation structure of the Holling-Tanner model for predator-prey
interactions using two-timing’, SIAM Journal of Applied Mathematics, Vol. 63, No. 3,
pp.889–904.

Braza, A.P. (2012) ‘Predator–prey dynamics with square root functional responses’, Nonlinear
Analysis Real World Application, Vol. 13, pp.1837–1843.

Brehmer, P., Gerlotto, F., Laurent, C., Cotel, P., Achury, A. and Samb, B. (2007) ‘Schooling behaviour
of small pelagic fish: phenotypic expression of independent stimuli’, Marine Ecology Progress
Series, Vol. 334, pp.263–272.

Brikhoff, G. and Rota, G. C. (1982) Ordinary Differential Equations, Ginn, Boston.
Butler, G., Freedman, H.I. and Waltman, P. (1986) ‘Uniformly persistent systems’, Proceedings of

American Mathematical Society, Vol 96, No. 3, pp.425–430.
Cagliero, E. and Venturino, E. (2016) ‘Ecoepidemics with infected prey in herd defense: the harmless

and toxic cases’, International Journal of Computer Mathematics, Vol. 93, pp.108–127.
Chen, Y. and Kolokolnikov, T. (2014) ‘A minimal model of predator-swarm interactions’, Journal of

The Royal Society Interface, Vol. 11, p.20131208.
Cressman, R. and Garay, J. (2011) ‘The effects of opportunistic and intentional predators on the

herding behavior of prey’, Ecology, Vol. 92, No. 2, pp.432–440.
Cronin, J.T. (2003) ‘Matrix heterogeneity and host-parasite interactions in space’, Ecology, Vol. 84,

pp.1506–1516.
DeAngelis, D.L., Goldstein, R.A. and O’Neill, R.V. (1975) ‘A model for trophic interaction’, Ecology,

Vol. 56, pp.881–892.
Demsar, J., Hemelrijk. C.K., Hildenbrandt, H. and Bajec, I.L. (2015) ‘Simulating predator attacks on

schools: evolving composite tactics’, Ecological Modelling, Vol. 304, pp.22–33.
Dorcas, M.E., Willson, J.D., Reed, R.N., Snow, R.W., Rochford, M.R., Miller, M.A.,

Mehsaka Jr., W.E., Andreadis, P.T., Mazzotti, F.J., Romagosa, C.M. and Hart. K.M. (2012)
‘Severe mammal declines coincide with proliferation of invasive Burmese Pythons in Everglades
National Park’, Proceedings of the National Academy of Sciences, Vol. 109, pp.2418–2422.

Freedman, H.I. and Waltman, P. (1977) ‘Mathematical analysis of some three-species food-chain
models’, Mathematical Biosciences, Vol. 33, pp.257–267.

Freedman, H.I. and Waltman, P. (1984) ‘Persistence in models of three interacting predator–prey
populations’, Mathematical Biosciences, Vol. 68, pp.213–231.

Gard, T.C. and Hallam, T.G. (1979) ‘Persistence in food web-1, Lotka-Voltterra food chains’, Bulletin
of Mathematical Biology, Vol. 41, pp.302–315.

Grinn, L., Hermann, P., Korotayev, A. and Tausch, A. (2010) History & Mathematics: Processes and
Models of Global Dynamics, Volgograd ’Uchitel’ Publishing House.

Hale, J. (1977)Theory of Functional Differential Equations, Springer-Verlag, Berlin.
Hass, C.C. and Valenzuela, D. (2002) ‘Anti-predator benefits of group living in white-nosed coatis

(Nasua nirica)’, Behavioral Ecology and Sociobiology, Vol. 51, pp.570–578.
Hillen, T. and Painter, K. (2009) ‘A users guide to PDE models for chemotaxis’, Journal of

Mathematical Biology, Vol. 57, pp.183–217.
Holling, C.S. (1959) ‘Some characteristics of simple types of predation and parsitsm’, Canadian

Entomology, Vol. 91, pp.385–398.
Ioannou, C.C., Tosh, C.R., Neville, L. and Krause, J. (2008) ‘The confusion effect from neural

networks to reduced predation risk’, Behavioral Ecology, Vol. 19, No. 1, pp.126–130.
Jana, D. and Tripathi, J.P. (2016) ‘Impact of generalist type sexually reproductive top predator

interference on the dynamics of a food chain model’, International Journal of Dynamics and
Control, DOI 10.1007/s40435-016-0255-9.



54 D. Jana et al.

Jana, D., Agrawal, R. and Upadhyay, R.K. (2015) ‘Dynamics of generalist predator in a stochastic
environment: effect of delayed growth and prey refuge’, Applied Mathematics and Computation,
Vol. 268, pp.1072–1094.

Jeschke, J.M. and Tollrian, R. (2007) ‘Prey swarming: which predators become confused and why?’,
Animal Behaviour, Vol. 74, No. 3, pp.387–393.

Jiang, Y. and Zhang, Y. (2014) ‘Exact conditions of blow-up and global existence for the nonlinear
wave equation with damping and source terms’, Nonlinear Dynamics, Vol. 76, No. 1, pp.139–146.

Kim, K. and Lin, Z. (2004) ‘Blowup in a three species cooperating model’, Applied Mathematics
Letters, Vol. 17, pp.89–94.

Krakauer, D.C. (1995) ‘Groups confuse predators by exploiting perceptual bottlenecks: a connectionist
model of the confusion effect’, Behavioral Ecology and Sociobiology, Vol. 36, No. 6,
pp.421–429.

Kumar, R. and Freedman, H.I. (2002) ‘Mathematica analysis in a model of obligate mutualism with
food chain populations’, Nonl. Dynm. Syst. Theo., Vol. 2, No. 1, pp.25–44.

Ling, Z. and Wang, Z. (2013) ‘Global boundedness and blow-up for a parabolic system with
positive Dirichlet boundary value’, Journal of Applied Mathematics and Computation, DOI
10.1007/s12190-013-0741-6.

Lotka, A. (1925) Elements of Physical Biology, Williams and Wilkins, Baltimore.
Lou, Y. and Munther, D. (2012) ‘Dynamics of a three species competition model’, Discrete and

Continuous Dynamical Systems-A, Vol. 32, pp.3099–3131.
Lou, Y., Nagylaki, T. and Ni, W. (2001) ‘On diffusion induced blowups in a mutualistic model’,

Nonlinear Analysis, Vol. 45, pp.329–342.
Ludwig, D., Jones, D. and Holling, C. S. (1978) ‘Qualitative analysis of insect outbreak systems: The

spruce budworm and forest’, The Journal of Animal Ecology, Vol. 47, No. 1, pp.315–332.
Lv, Y., Pei, Y. and Yuan, R. (2016) ‘Hopf bifurcation and global stability of a diffusive Gause-

type predator–prey models’, Computers and Mathematics with Applications, Vol. 72, No. 10,
pp.2620–2635.

Maiti, A., Patra, B. and Samanta, G.P. (2006) ‘Persistence and stability of a food chain model with
mixed selection of functional responses’, Nonlinear Analysis Modeling and Control, Vol. 11,
pp.171–185.

Maiti, A., Pal, A.K. and Samanta, G.P. (2008) ‘Effect of time-delay on a food chain model’, Applied
Mathematics and Computation, Vol. 200, pp.189–203.

Maiti, A., Sen, P., Manna, D. and Samanta, G.P. (2016) ‘A predator-prey system with herd behaviour
and strong Allee effect’, Nonl. Dynam. Syst. Theo., Vol. 16, pp.86–101.

Maiti, A., Sen, P. and Samanta, G.P. (2016) ‘Deterministic and stochastic analysis of a prey-
predator model with herd behaviour in both’, Systems Science and Control Engineering, Vol. 4,
pp.259–269.

May, R.M. (1974) Stability and Complexity in Model Ecosystems, Princeton University Press,
Princeton.

Milinski, H. and Heller, R. (1978) ‘Influence of a predator on the optimal foraging behavior of
sticklebacks’, Nature, Vol. 275, pp.642–644.

Murray, J.D. (1993) Mathematical Biology, Springer-Verleg, New York.
Nakagiri, N. and Tainaka, K. (2004) ‘Indirect effects of habitat destruction in model ecosystem’,

Ecological Modelling, Vol. 174, pp.103–114.
Nakagiri, N., Tainaka, K. and Tao, T. (2001) ‘Indirect relation between species extinction and habitat

destruction’, Ecological Modelling, Vol. 137, pp.109–118.
Olson, R.S., Hintze, A., Dyer, F.C., Knoester, D.B. and Adami, C. (2013) ‘Predator confusion is

sufficient to evolve swarming behaviour’, J. R. Soc. Interface, Vol. 10, p.20130305.



Explosive tritrophic food chain model with herd behaviour of prey 55

Parshad, R.D., Kumari, N. and Kouachi, S. (2002) ‘A remark on "Study of a Leslie–Gower-type
tritrophic population model"’, Chaos, Solitons and Fractals, Vol. 14, pp.1275–1293.

Parshad, R.D., Abderrahmanne, H., Upadhyay, R.K. and Kumari, N. (2013) ‘Finite time blowup in a
realistic food chain model’, ISRN Biomathematics, Article ID 424062.

Parshad, R.D., Bhowmick, S., Quansah, E., Basheer, A. and Upadhyay, R.K. (2016a) ‘Predator
interference effects on biological control: the   ‘paradox’ of the generalist predator revisited’,
Communications in Nonlinear Science and Numerical Simulation, Vol. 39, pp.169–184.

Parshad, R.D., Bhowmick, S., Quansah, E., Basheer, A. and Upadhyay, R.K. (2016b) ‘Predator
interference effects on biological control: the ‘paradox’ of the generalist predator revisited’,
Communication in Nonlinear Science and Numerical Simulation, Vol. 39, pp.169–184.

Parshad, R.D., Qansah, E., Black, K. and Beauregard, M. (2016c) ‘Biological control via "ecological"
damping: An approach that attenuates non-target effects’, Mathematical Biosciences, Vol. 273,
pp.23–44.

Pathak, S., Maiti, A. and Samanta, G.P. (2009) ‘Rich dynamics of a food chain model with Hassell–
Varley type functional responses’, Applied Mathematics and Computation, Vol. 208, pp.303–317.

Pimentel, D., Zuniga, R. and Morrison, D. (2005) ‘Update on the environmental and economic costs
associated with alien-invasive species in the United States’, Ecological Economics, Vol. 52,
No. 3, pp.273–288.

Prakash, S. and Ross, A.M.D. (2002) ‘Habitat destruction in a simple predator-prey patch model: How
predators enhance prey persistence and abundance’, Theoretical Population Biology, Vol. 62,
pp.231–249.

Priyadarshi, A. and Gakkhar, S. (2013) ‘Dynamics of Leslie–Gower type generalist predator in a
tri-trophic food web system’, Communications in Nonlinear Science and Numerical Simulation,
Vol. 18, No. 11, pp.3202–3218.

Ruan, S. and Xiao, D. (2001) ‘Global analysis in a predator-prey system with nonmono- tonic
functional response’, SIAM Journal of Applied Mathematics, Vol. 61, pp.1445–1472.

Schneider, M.F. (2001) ‘Habitat loss, fragmrntation and predator impact: spatial implications for prey
conservations’, Journal of Applied Ecology, Vol. 38, pp.720–735.

Swihart, R.K., Feng, Z., Slade, N.A., Mason, D.M. and Gehring, T.M. (2001) ‘Effects of habitat
destruction and resource supplementation in a predator-prey metapopulation model’, Journal of
Theoretical Biology, Vol. 210, pp.287–303.

Tang, X. and Song, Y. (2015) ‘Bifurcation analysis and Turing instability in a diffusive predator–
prey model with herd behavior and hyperbolic mortality’, Chaos Solitons and Fractals, Vol. 81,
pp.303–314.

Tanner, J.T. (1975) ‘The stability and the intrinsic growth rates of prey and predator populations’,
Ecology, Vol. 56, pp.855–867.

Van Driesche, R. and Bellows, T. (1996) Biological Control, Kluwer Academic Publishers,
Massachusetts.

Venturino, E. and Petrovskii, S. (2013) ‘Spatiotemporal behavior of a prey–predator system with a
group defense for prey’, Ecological Complexity, Vol. 14, pp.37–47.

Venturino, E. (2011) ‘A minimal model for ecoepidemics with group defense’, J. Biol. Syst., Vol. 19,
pp.763–785.

Venturino, E. (2013) ‘Modeling herd behavior in population systems’, Nonlinear Anal. Real World
Appl., Vol. 12, No. 4, pp.2319–2338.

Volterra, V. (1926) ‘Variazioni e fluttuazioni del numero di individui in specie animali conviventi’,
Mem. Accd. Linc., Vol. 2, pp.31–113.

Yuan, S., Xu, C. and Zhang, T. (2013) ‘Spatial dynamics in a predator–prey model with herd behavior’,
Chaos, Interdisciplinary Journal of Nonlinear Science, Vol. 23, No. 3, DOI:10.1063/1.4812724



56 D. Jana et al.

Zhang, T. and He, Y. (2010) ‘Blow-up and global solutions for a class of nonlinear parabolic equations
with different kinds of boundary conditions’, Applied Mathematics and Computation, Vol. 217,
pp.801–810.

Zhang, R. and Yang, Z. (2010) ‘Uniform blow-up rates and asymptotic estimates of solutions for
diffusion systems with weighted localized sources’, J. Appl. Math. Comput., Vol. 32, pp.429–441.

Zhou, Y.C., Yang, Z.W., Zhang, H.Y. and Wang, Y. (2016) ‘Theoretical analysis for blow-up
behaviors of differential equations with piecewise constant arguments’, Applied Mathematics
and Computation, Vol. 274, pp.353–361.




