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Abstract: Model-based testing (MBT) is an activity that allows designing and 
generating test cases from the initial specification of the system under test 
(SUT). Unified modelling language (UML) is a standard for model-based 
specifications, while UML-ADs (UML activity diagrams) are usually used for 
modelling the overall behaviour of systems. This paper presents a graph 
transformation-based approach to generate automatically scenario-oriented test 
cases from UML-ADs. To facilitate the test scenario generation process, an 
intermediate model called extended activity dependency graph (EADG) is 
proposed. The approach consists of generating EADG models from UML-ADs. 
Then, test scenarios are generated from the obtained EADG models. This 
approach also allows testers to validate their proposed test scenarios by 
applying them on UML-ADs using a graphical simulation. All ideas presented 
above are implemented using the graph transformation tool AToM3. To this 
end, two meta-models and three graph grammars are proposed for presenting 
and generating EADG and test scenarios models, and for performing the 
graphical simulation. The approach is applied on a case study and experimental 
results show that our approach has a high rate of fault-detection capability. This 
approach can detect more defects in complex structures of concurrency and 
nested loops. 

Keywords: automatic test case generation; graph transformation; UML activity 
diagram; model-based testing; test coverage criteria; AToM3. 
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1 Introduction 

The software testing (Everett and McLeod, 2007) is an important activity for verifying 
the correctness of a systems implementation and several test case generation tools are 
developed (https://www.stickyminds.com/). Tests are performed and observations made. 
The correctness criteria to be tested must be given in the specifications. 

Model-based testing (MBT) (Binder, 1979; Utting and Legeard, 2007) is a test 
strategy that depends on the extraction of test cases from different models. It has many 
advantages compared with traditional software testing strategies (e.g., manual test case 
generation). Firstly, the generation of test cases may be provided early in the life cycle of 
software development. Secondly, the software testers may understand better the system 
and find all test information by a simple comparison between models and code. Thirdly, 
by using different test coverage criteria, various test suites can be generated from the 
same model and the quality of them can be also improved. Furthermore, in the testing 
process, the test case generation is still the most error-prone, tedious and labour-intensive 
task, so its automation avoids human errors and reduces significantly the development 
effort. 

Unified modelling language (UML) is a standard of modelling language (Unified 
Modeling Language Specification version 1.5; http://www.omg.org/spec/UML/2.5/ 
Beta1/) and its diagrams are widely used for modelling the specification and the 
conception of the future system. UML diagrams model both static and dynamic aspects 
and represent different points of view of systems. UML activity diagram (UML-AD) is 
one of the important diagrams and it models the overall behaviour of systems. It is used 
to represent the control and the data flow of actions and activities in the application. It 
can be specified sequential treatments and offer a very similar vision of the programming 
languages (Boghdady et al., 2011). To this end, the description of a use case by an  
UML-AD corresponds to its algorithmic translation. UML-AD diagrams the global 
control flow between activities and its relationships between different objects. 
Furthermore, it can describe, step by step, an operation in the system. Thus, UML-AD is 
suitable for generating test cases and several works (Arora et al., 2017; Boghdady et al., 
2011; Chen et al., 2006, 2008, 2009; Chouhan et al., 2012, 2013; Kundu and Samanta, 
2009; Li et al., 2013; Linzhang et al., 2004; Mahali and Acharya, 2013; Malhotra and 
Bharadwaj, 2012; Ray et al., 2009; Sun, 2008; Sun et al., 2016; Swain et al., 2010; Swain 
et al., 2010) have used it. 

This paper proposes an automatic approach for generating scenario-based test cases 
from UML-ADs. Furthermore, in order to improve the test quality this approach also 
gives testers the possibility of validating their proposed test scenarios by applying them 
on UML-AD using a graphical simulation. In this approach, an intermediate model called 
extended activity dependency graph (EADG) is proposed in order to facilitate the test 
scenario generation process. EADG is an extension of activity graphs presented in 
Boghdady et al. (2011) and Kundu and Samanta (2009). It is considered as an 
intermediate step in the test scenario generation process and captures all information 
needed to generate test scenarios. The approach consists of generating EADG model 
from UML-AD first. Then, test scenarios are generated from the obtained EADG 
according to an extended version of the basic path coverage criterion presented in Chen  
et al. (2008) and Linzhang et al. (2004) for non-concurrent activities and the simple path 
coverage criterion presented in Chen et al. (2006) for concurrent activities. Furthermore, 
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in order to increase the effectiveness of the generated test scenarios, test scenarios 
proposed by testers can be validated by applying them on the original UML-AD using a 
graphical simulation. All ideas presented above are implemented using the graph 
transformation tool AToM3 (A Tool for Multi-formalism and Meta-Modelling) 
(http://atom3.cs.mcgill.ca/). To this end, two meta-models and three graph grammars are 
proposed. The first meta-model is used for modelling UML-AD whereas the second one 
is used for modelling EADG and test scenarios model. Consequently, modelling tool is 
generated for each meta-model. The graph grammars are used for generating EADG and 
test scenarios, and for making the graphical simulation. After that, test data can be 
generated manually from the test scenarios using the category partition method (CPM) 
(Ostrand and Blacer, 1988) and then executed on the source code. Finally, the  
fault-detection capability of our approach is evaluated using the mutation analysis 
techniques (Jatana et al., 2017). 

The rest of the paper is organised as follows. Section 2 introduces the context and the 
background of this work. Section 3 explains our contribution and its implementation. 
Section 4 describes a case study. Section 5 represents some similar works while Section 6 
concludes the paper and gives some perspectives. 

2 Background and context 

2.1 UML activity diagram 

UML-AD is one of the behavioural UML diagrams. It can be used for modelling the 
global behaviour of a system and also for describing an operation step by step.  
UML-ADs are used to model both control and data flows of activities. The control flow 
represents a sequence of actions with branches and loops. However, the data flow models 
the movement of data from an action to another. An activity is the implementation of a 
part of: a use case, a workflow or an algorithm. It has one or several activity nodes. There 
are three types of activity nodes namely: action nodes (executable nodes), control nodes 
and object nodes. Action nodes represent a production step in the overall behaviour of the 
activity. They can consume and produce data through a special kind of object nodes 
called pins (http://www.omg.org/spec/UML/2.5/Beta1/). Control nodes are usually used 
to manage the control flow in UML-AD including decision, merge, fork, join, initial and 
final nodes. Object nodes are used to model data flow in UML-AD including object 
nodes, input pins and output pins. Edges are used to model the sequence of activities 
including control flow, data flow and signal flow. Figure 1 shows an illustrate example of 
UML-AD. In this paper, UML-AD activities correspond to the execution of particular 
action or control nodes, and each swimming lane corresponds to one object. 

2.2 Simple and basic path coverage criteria 

A path in an UML-AD is an instance of its behaviour. It starts from the initial state to 
reach the final state passing by a set of nodes. All paths should be generated for testing an 
UML-AD, but the existence of loops and concurrency can result in a path explosion 
(Chen et al., 2006). To avoid such problem, the two concepts of basic path and simple 
path coverage criteria are introduced. The basic path is used to avoid the problem of the 
path explosion caused by loops and the simple path is used to avoid the problem of the 
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path explosion caused by concurrency (Chen et al., 2006). A basic path is a path through 
UML-AD where each activity occurs either zero or one time. This definition ensures that 
iterations are exercised at most once. However, the problem of path explosion has not 
been completely avoided by using the concept of basic path because of the existence of 
competition. Thus, the concept of simple path is introduced to avoid this problem. The 
simple path is a basic path selected randomly from several basic paths which have the 
same activities and the same partial order relation is defined between them. Notice that, 
The partial order relation is reflexive, anti-symmetric and transitive relation between 
activities. It is denoted by the symbol   (e.g., a – i   b – j means that the activities a – i 
are happen before the activities b – j) [see Figure 1(b)]. The definition of the simple path 
ensures the execution of all activities in UML-AD and avoids the repetition of several 
activities for several times caused by the concurrency. For example there are 33,600 basic 
paths (Chen et al., 2006) for testing the UML-AD shown in Figure 1(a), such as: 

1 2 ,start a b c d d d j f k h i l end→ → → → → → → → → → → → →  

1 2 ,start a b c d d d j f k i h l end→ → → → → → → → → → → → →  

1 2 ,start c b a d d d j f k h i l end→ → → → → → → → → → → → →  

1 2 ,start a b c d d e j g k h i l end→ → → → → → → → → → → → →  

However, only two simple paths (Chen et al., 2006) are needed for testing it such as: 

1 2 ,start a b c d d d f j k i h l end→ → → → → → → → → → → → →  

1 2 ,start a b c d d e g j k i h l end→ → → → → → → → → → → → →  

Figure 1 (a) A UML activity diagram (b) Its partial order relation 

 
 (a) (b) 
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2.3 Model-based testing 

Model-based testing (MBT) (Utting and Legeard, 2007; Binder, 1979) is an activity for 
designing and generating (automatically or not) test cases from an abstract model of the 
system under test (SUT). The model often offers a partial and discrete view of the 
expected behaviour of the system and captures its important aspects. The generated test 
cases from abstract models cannot be executed directly on the executable code because of 
the different abstraction between models and code. This distinction requires often manual 
intervention by a test engineer who makes a design adaptation to pass from a series of 
abstract tests to executable tests. This step is usually called concretisation. Finally, during 
the test cases execution, a comparison is made between the actual behaviour of the 
software (the executable code) and the expected behaviour which is described in models. 

2.4 Graph transformation and AToM3 tool 

Graph transformation techniques are used to create a graph from another one using graph 
rewriting rules (Rosenberg, 1997). Each rule contains two parts namely left hand side 
(LHS) and right hand side (RHS). The application of a rule involves substituting LHS by 
RHS if a matching is found between the LHS and a part of the model under 
transformation. This process is repeated until no rule can be applied. Each rule contains 
an execution condition and an order number to indicate its priority. A rule is executed if 
the execution condition is true and all its higher priority rules have been executed. 

AToM3 (http://atom3.cs.mcgill.ca/), which is an acronym for a tool for  
multi-formalism meta-modelling, is a tool for multi-paradigm modelling. It is developed 
and written using the Python programming language (htpp://www.python.org). The two 
main concepts of AToM3 are meta-modelling and model transformation. Meta-models 
are created using a modified entity-relationship model and model transformations are 
produced by graph rewriting rules. The advantage of AToM3 is that formalisms and 
models are described as graphs. Furthermore, the model transformations themselves can 
be declaratively expressed as graph-grammar models. For each proposed meta-model, 
AToM3 generates a modelling tool for drawing and modelling its elements. 

In AToM3, there is a relationship between the elements of the source and the target 
models which is established using traceability links marked by numbers. The matching is 
not only based on the graphic disposition of the elements of models, but also on the 
attributes values which can take different values fixed on the graph or any value 
‘ANY’. If an item’s label appears in LHS of a rule, and it does not occur in its RHS, 
then after applying the rule, the item will be removed. However, if an element has a label 
on RHS, and this label does not appear on LHS then it will be created. The last case is 
that where the same item is found in both sides of the rule, in such case, that item will be 
maintain by the rewriting system, and its attributes are manipulated either by a simply 
copying from LHS (Directive COPIED), or they will be specified by using a Python 
code fragment (SPECIFIED). 
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3 Our approach 

This section presents our approach based on Graph transformation for generating test 
scenarios from UML-ADs. The approach consists of two parts as shown in Figure 2. The 
first one consists of generating test scenarios from UML-ADs according to the simple 
path coverage criterion for concurrent UML-AD activities, and an extended basic path 
coverage criterion for non-concurrent activities. 

The first part includes the following two steps: 

• generating the intermediate model EADG from UML-AD. 

• generating test scenarios from the EADG obtained in the previous step  
according to the simple path and the extended basic path coverage criteria  
(see Subsection 3.1.2.1). 

The second part of this approach consists of validating test scenarios proposed by testers 
using a graphical simulation. To this end, two properties are verified. The coverage 
property verifies that all test scenarios elements are presented in UML-AD, while the 
order property verifies that the order of activities is the same in the test scenarios model 
and UML-AD (see Section 3.2). 

Notice that, test data can be generated from test scenarios generated by the first part 
or proposed by testers using the second part of our approach. These test data are 
generated manually using the category partition method (CPM) (Ostrand and Blacer, 
1988). 

3.1 The first part of our approach 

The first part of our approach consists of generating test scenarios from UML-ADs 
according to the simple and the extended basic path coverage criteria. It includes two 
steps. The first one consists of generating EADG model from UML-AD, and the second 
step consists of generating test scenarios from the EADG obtained. The previous steps 
are implemented using the graph transformation tool AToM3. Thus, two meta-models and 
two graph grammars are defined in this part. The two meta-models are used to specify 
UML-AD and EADG concepts. Consequently, a modelling tool is generated for each 
meta-model. Noting that the concepts of test scenarios are specified using the meta-model 
of EADG model. Two graph grammars are used for generating EADG and test scenarios; 
the first graph grammar is used for generating EADG from UML-AD, while the second 
graph grammar is used for generating test scenarios from the obtained EADG according 
to the simple path and the extended basic path coverage criteria. After that, test data are 
generated manually from the test scenarios using the CPM. 
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Figure 2 The architecture of our approach (see online version for colours) 

 

3.1.1 Transforming UML-ADs into EADG models 
This subsection presents the first step of the first part of our approach. 

3.1.1.1 Extended activity dependency graph 
The generation of test scenarios from UML-ADs is a difficult task especially with the 
existence of concurrent activities. So, in order to facilitate the test scenario generation 
process, an intermediate model called extended activity dependency graph (EADG) is 
proposed. EADG is an extension of the activity graphs presented in Boghdady et al. 
(2011) and Kundu and Samanta (2009). It captures all UML-AD features needed to 
generate test scenarios according to the simple path and the extended basic path coverage 
criteria (see Subsection 3.1.2.1). It is used to manage both control flow and data flow of 
activities. EADG model is composed of nodes interconnected by edges. Each node 
contains one or several activities. The EADG node which contains only one activity is 
non-concurrent, otherwise the EADG node which contains several activities is concurrent 
and its activities can be executed simultaneously. The elements of EADG nodes are 
modelled using dynamic lists. 

Each EADG node consists of three parts: the first one is used for representing input 
aspects of UML-AD nodes such as incoming data, input pins and/or input guard 
conditions. The second part is used for representing UML-AD activities. The third part is 
used for showing output aspects of UML-AD nodes such as outgoing data, output Pins 
and/or output guard conditions (see Figure 3). There is a relationship between these three 
parts. If the second part of the EADG node contains one or several activities and each one 
occupies a position in its associated list, then the input and output aspects of each activity 
occupy the same positions in the lists associated to the first and the third part of the 
EADG node. Furthermore, if an UML-AD node has several input and/or output aspects 
then they are put in the same position of the list separated by the symbol ‘|’. For example 
in Figure 3 the condition d1 and its associated guard condition c11 occupy the first 
position in their lists. The condition d2 and its associated guard condition c21 occupy the 
second position in their lists. The EADG nodes are generated from UML-AD nodes by 
grouping together the nodes which have the same order in the partial order relation (see 
Figure 1) because they are in concurrency. Although, some or all nodes in the group can 
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be in concurrency with other nodes which are not belonging to the group, only these 
nodes are grouped together. The reason is that in our approach, which uses the simple 
path coverage criterion, only some paths are selected from several basic paths and the 
others are not considered. 

The EADG edge connects two EADG nodes (the source node and the target node). 
The activities of the target node cannot be executed until the execution of all activities of 
the source node. Figure 3 shows our proposed EADG for UML-AD shown in Figure 1(a). 
The activities a, b and c are grouped together in the same EADG node because they are in 
concurrency and they have the same order in the partial order relation. In a similar way, 
the two decision nodes d1 and d2 are grouped together in the same EADG node. The 
EADG node which has the activities d1 and d2 follows the EADG node which has the 
activities a, b and c because a d1  (i.e., the activity a occurs before the activity d1) and 

,b d2  consequently, ( , , ) ( , ).a b c d1 d2  The activities h and i can be grouped 
respectively with the two groups of activities (d, f) and (e, g) for building the two EADG 
nodes having respectively the two groups of activities (d, f, h, i) and (e, g, h, i). Noting 
that, this example illustrates our way for grouping the UML-AD activities in the EADG 
model in order to generate some simple paths from several basic paths during the test 
scenarios generation process. 

Figure 3 The EADG generated from the UML-AD of Figure 1 (see online version  
for colours) 

 

3.1.1.2 Activity diagram meta-model 
Our proposed meta-model for UML-AD consists of seven classes and 12 associations 
(see Figure 4). The classes are: ActivityPartition, ActivityNode, ActionNode, 
ControlNode, ObjectNode, PinIn and PinOut. To clarify our meta-model we chose and 
explain the class ActionNode which represents an action node in the UML 2.5 notation. It 
has two attributes. The first one called Name is used to identify the name of the action 
node. The second attribute called isValidate is used to validate this action node with 
EADG elements during the process of test scenarios validation (see Subsection 3.2.4). 
The class ActionNode is related with itself by the association TransitionAcToAc. It is also 
related with the class ControlNode by the associations TransitionAcToCt and 
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TransitionCtToAc, and related with the class ObjectNode by the associations 
TransitionAcToObj and TransitionObjToAc. 

Figure 4 Meta-model of activity diagram and its graphical appearances (see online version  
for colours) 

 

3.1.1.3 EADG meta-model 

Our proposed meta-model for the EADG model consists of a class and an association (see 
Figure 5). The class contains the attributes: nameAcEADG, InputsEADG and 
OutputEADG which indicate the list of activities and their input and output aspects 
respectively. The attribute nbrElement of type integer is used to indicate the number of 
elements of the lists. The EADG node contains also the attributes isValidate, 
isInputValidate and isOutputValidate of type integer which are used to validate the 
generated test scenarios (see Subsection 3.2.4). The class EADGNode is related with 
itself by the association EADGEdge. The EADG node is represented graphically by a 
white circle with a yellow rectangle inside. Each EADG node is divided into three parts: 
The first and the third parts (the two parts of the white circle) are used to represent the set 
of input and output aspects respectively. The second part (the yellow rectangle) is used to 
represent UML-AD activities. 
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Figure 5 Meta-model of EADG and its graphical appearances (see online version for colours) 

 

3.1.1.4 First graph grammar which transforms UML-AD into EADG 
This subsection presents the first graph grammar that transforms any UML-AD into an 
EADG model. There is an initial Action associated to this graph grammar. It decorates all 
nodes and transitions of UML-AD with temporary attributes which are used in the 
conditions specified in the rules. In the following, some local temporary attributes are 
presented: 

• Visited: it is used to count the number of times that an UML-AD node has been 
processed. 

• Concurrent: it is used to indicate if a given ULM-AD node is concurrent or not. 

• nbrSucc: it is used for counting the number of nodes which follow an UML-AD 
node. 

• ListPinIn, ListPinOut: they are used for collecting information of inputs and outputs 
aspects for UML-AD Action nodes. 

• ListFork, listActInFork, listActOutFork: they are associated to UML-AD fork nodes 
for constructing lists of UML-AD nodes, which follow the fork node, and their input 
and output aspects respectively. 

• ListActInDesMrg, listActOutDesMrg: they are used for building lists of guard 
conditions that follow and precede UML-AD decision and merge nodes, 
respectively. 

The temporary attributes with type integer (Visited, Concurrent, nbrSucc) are initialised 
to 0 and the temporary attributes with type list are initialised to [] (empty list). 

The first graph grammar contains 50 rules divided into five categories. Some rules 
among them are shown in Figure 6. 

The rules of the first category consist of collecting all information about input and 
output data, guard conditions and partitions names of UML-AD elements. Rule 1 is used 
for collecting all information about output pins for each action node. Rule 2 is used for 
collecting all information (e.g., the name of activities, input and output aspects) about 
UML-AD nodes which follow the fork nodes. Rules 3 and 4 are used for designating all 
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concurrent UML-AD nodes. The value of the temporary attribute concurrent becomes 1 
for all concurrent nodes. 

Figure 6 Some rules for the first graph grammar that generates EADG models from the activity 
diagrams (see online version for colours) 

 

The rules of the second category consist of preparing and facilitating the next steps of the 
EADG generation process by making some modification on UML-AD. Rule 6 is used to 
keep guard information about conditions of UML-AD decision and merge nodes during 
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the EADG generation process. So, each decision node and merge node is decomposed 
into two identical nodes, each one will be followed by one node and one guard condition. 
Rules 5, 7, 8 and 9 are used for making some modifications on UML-AD to facilitate the 
selection of one or more simple paths from several basic paths. Notice that, with the 
presence of branches between the fork and the join nodes, the number of simple paths 
corresponds to the number of branches. Otherwise, one simple path can be chosen from 
several basic paths when there are no branches between the fork and the join nodes.  
Rule 5 is used to create new fork nodes if there are conditional or unconditional branches 
between a fork node and a join node. For each branch, a new fork node will be created 
and its local variables will be initialised. Rule 7 is executed if there are one or several 
UML-AD nodes which follow a fork node and having more than followed nodes. In this 
case, new followed nodes will be created from UML-AD nodes which follow the fork 
node and having only one followed node. Rule 8 is used for connecting each two  
UML-AD nodes belonging to two different branches with two different join nodes. These 
two nodes are not in concurrency and they will be grouped in two different EADG nodes 
during the EADG generation process. The same thing is done with join nodes (see  
Figure 6 rule 9). 

The rules of the third category are used for generating EADG nodes and edges from 
concurrent UML-AD nodes. Noting that, links are created between the generated EADG 
and UML-AD nodes to use them during the EADG edges generation process. Rule 10 is 
used for creating concurrent EADG nodes from UML-AD fork nodes. All elements of the 
created EADG nodes are imported from the temporary attributes associated to the fork 
nodes. After execution of rule 10, all information about the nodes which follow the fork 
nodes are kept in the created EADG nodes. These nodes, which follow the fork nodes, 
form a level of nodes. Thus, rule 11 is applied to create new groups of concurrent  
UML-AD nodes that follow the fork nodes. The transitions that connect these fork nodes 
with the nodes of the current level of nodes are moved to the nodes of the next level. 
After each execution of rule 11, rule 2 is applied to fill in the lists listFork, listPinInFork 
and listPinOutFork. Then, rule 10 is applied for generating new concurrent EADG nodes. 
Rule 12 is used for creating non-concurrent EADG nodes from UML-AD nodes which 
precede the fork nodes. Rules 13 and 14 are used for creating EADG edges between 
concurrent EADG nodes. 

The rules of the fourth category are used for generating EADG nodes and edges from 
non-concurrent UML-AD nodes. Rule 15 is used for generating EADG nodes from 
Action nodes of UML-AD, all information associated to the created EADG nodes are 
imported from the attributes and the temporary attributes associated to the action nodes. 
Rule 16 is used for creating EADG edges between non-concurrent EADG nodes. 

The rules of the fifth category consist of deleting all elements of UML-AD (see 
Figure 6 rule 17). 

3.1.2 Generating test scenarios from the EADG model 
This subsection presents the second step of the first part of our approach which consists 
of generating test scenarios from the EADG model. 
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3.1.2.1 The extended basic path coverage criterion 
The basic path (Chen et al., 2006, 2008; Linzhang et al., 2004) of an UML-AD is a path 
that its activities occur only once. However, it does not able to test the loop structure. It 
does not test the true value of the loop condition. For example, for testing the  
loop structure shown in Figure 7(a) two paths are needed: 0 → 1 → 2 → 3 and  
0 → 1 → 2 → 1 → 2 → 3. But, the second path is not a basic path because the definition 
of the basic path is not respected (e.g., the activities 1 and 2 occur more than once). Thus, 
according to this example, the basic path coverage criterion may be not able to detect 
faults associated to the true value of the loop condition. So, for solving this problem, a 
new definition of the basic path is proposed. The extended basic path is a path that its 
activities occur at most once except for activities involved in loop structures that may 
occur twice. This definition takes into consideration nested loops. For example three 
paths can be generated from the nested loop shown in Figure 7(b). The path  
0 → 1 → 2 → 3 → 4 → 5 → 6 covers the false value of the two nested loops conditions. 
The second path 0 → 1 → 2 → 3 → 2 → 3 → 4 → 5 → 6 covers the true value of the 
inner loop condition and the false value of the outer loop condition. The third path  
0 → 1 → 2 → 3 → 4 → 5 → 1 → 2 → 3 → 4 → 5 → 6 covers the false value of the 
inner loop condition and the true value of the outer loop condition. For the nested loop 
shown in Figure 7(c), four paths can be generated. The first one 0 → 1 → 2 → 3 → 4 → 
5 → 6 → 7 → 8 → 9 covers the false value of the three nested loops conditions. The 
second path 0 → 1 → 2 → 3 → 4  → 3 → 4 → 5 → 6 → 7 → 8 → 9 covers the false 
value of the intermediate loop and the outer loop conditions, and the true value of the 
inner loop condition. The third path 0 → 1 → 2 → 3 → 4  → 5 → 6 → 2 → 3 → 4 → 5 
→ 6 → 7 → 8 → 9 covers the false value of the inner and the outer loops conditions, and 
the true value of the intermediate loop condition. The fourth path 0 → 1 → 2 → 3 → 4 
→ 5 → 6 → 7 → 8 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 covers the false value of 
the inner and the intermediate loops conditions, and the true value of the outer loop 
condition. 

Figure 7 Examples of loop structures in the UML activity diagram 
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3.1.2.2 Simple path coverage criterion 
The simple path coverage criterion is used for generating test scenarios from concurrent 
activities of UML-AD. It is a selected path from several basic paths (see Subsection 2.2). 
The EADG model offers an easy way for selecting a simple path by taking the elements 
of each EADG node according to their position in their lists and builds a series of 
sequential EADG nodes. For example the two following simple paths can be generated 
from the EADG shown in Figure 3: 

,start a b c d1 d2 d f h i j k l end→ → → → → → → → → → → → →  

.start a b c d1 d2 e g h i j k l end→ → → → → → → → → → → → →  

In the first simple path, the activities a, b and c are taken according to their order in the 
list associated to the EADG node which contains these activities. The same thing is done 
with the activities (d1, d2), the activities (d, f, h, i) and the activities (j, k, l). 

3.1.2.3 Second graph grammar that generates test scenarios from the EADG 
model 

The second graph grammar, which generates test scenarios from EADG according to the 
simple and the extended path coverage criteria, consists of twelve rules divided into three 
categories (see Figure 8). 

The rules of the first category consist of solving the problem of loop structures. 
Notice that, the number of generated paths from nested loops equals the number of the 
nested loops plus one (see Subsection 3.1.2.1). These generated paths cover the true value 
and/or the false value of each nested loop condition. Rule 1 is used to check the existence 
of loop structures and start building the path which covers the true value of the loop 
condition. Notice that, the loop structure in EADG is an EADG node having two 
branches. The execution flow of the branch, which corresponds to the true value of the 
loop condition, returns to the first EADG node after running a certain number of EADG 
nodes, while the execution flow of the other branch continues the execution to reach the 
final EADG node. Rule 2 is used to continue the construction of the path which covers 
the true value of the loop condition. It is repeated until a match is obtained with the LHS 
of rule 3. Rule 3 is used to finishes this process. The two links 4 and 5 , which link the 
EADG node 1 with the two EADG nodes 2 and 3, are obtained from the execution of  
rule 2 one or several times, and the rule 1 one time. In this case, these links are deleted, 
and EADG edge 6, which connects the two EADG nodes 2 and 3, is created. If there are 
nested loops, then the previous three rules are applied randomly on each loop. 

The rules of the second category consist of cloning the EADG nodes for obtaining all 
test paths (test scenarios). The EADG nodes which compose these paths may be 
concurrent or not (i.e., they have several activities or only one). Rule 4 consists of 
cloning each EADG node having n (n > 1) followed EADG nodes to obtain n identical 
EADG nodes. In rule 5, the same technique of rule 4 is used for each EADG node having 
several preceded nodes. Rules 6 and 7 are used to clone the initial EADG node and the 
final EADG node. 
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Figure 8 Some rules for the second graph grammar that generates test scenarios from the EADG 
models (see online version for colours) 

 

The rules of the third category consist of splitting each concurrent EADG node into 
several non-concurrent EADG nodes for obtaining the final test scenarios set. To this 
end, n non-concurrent EADG nodes are generated from each concurrent EADG node 
which has n elements. Rule 8 is used to split a concurrent EADG node to two EADG 
nodes connecting by an EADG edge. The last element of the associated list of the first 
EADG node is used for constructing the second EADG node and deleted from the list 
after that. The same technique is used with rule 9. The execution of the previous  
two rules are repeated until all EADG nodes become non-concurrent (each EADG node 
has only one element). After execution of this graph grammar, the test scenarios are 
generated according to the extended basic and the simple path coverage criteria. 

3.2 Validating of proposed test scenarios 

The second part of our approach consists of validating any test scenarios set proposed by 
testers by applying them on the original UML-AD using a graphical simulation. The 
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validation process consists of verifying two properties called coverage property and order 
property. The coverage property consists of verifying that all UML-AD activities and 
their input and output aspects are presented in the test scenarios model. The order 
property is used to verify that the execution order of UML-AD activities is respected in 
the test scenarios model. 

In order to validate the test scenarios, four different colours are used to indicate if a 
part of UML-AD and/or the test scenarios model is valid or not. The red and the brown 
colours are used to designate invalid parts of the two models according the coverage and 
the order properties respectively. The green colour is used to designate the valid parts of 
models. The original colour of models is used to indicate model parts that have not yet 
been processed by the validation process. 

3.2.1 Verifying the coverage property 
The first step in the validation process consists of verifying the coverage property by 
comparing each EADG node in the test scenarios model with the original UML-AD 
activities. The test scenarios are validated one by one. Firstly, a test scenario is chosen 
and its initial EADG node is compared with the initial state of UML-AD. Secondly, the 
name of the EADG node which follows the initial EADG node is compared with the 
names of UML-AD nodes. If a matching is found, then these two nodes in the two 
models are valid according to the coverage property and their colour is changed into 
green. Secondly, all input and output aspects of these matched nodes are compared one 
by one. The colour of all valid aspects in the two nodes becomes green, otherwise the 
colour of invalid aspects becomes red. Finally, in the case where no matching is found 
between the chosen EADG node and all UML-AD nodes, this EADG node is invalid and 
its colour becomes red and so as the colour of its inputs and outputs aspects. This 
comparison process is repeated for each EADG node of each test scenario. After that, the 
colour of UML-AD nodes which has not changed during this validation process becomes 
red because they do not have any correspondents EADG node in the test scenarios model. 

3.2.2 Verifying the order property 
The second step in the validation process consists of verifying the order property. It is 
applied only on valid nodes of both models according to the coverage property (see the 
previous subsection). Notice that, invalid parts according to the coverage property are not 
worth validating by the order property because they are not valid according the complete 
validation process and they will be changed by testers. The order validation process 
consists of comparing the order of UML-AD nodes with the order of EADG nodes of the 
proposed test scenarios model. 

For non-concurrent UML-AD nodes the order validation process is simple which 
consists of comparing the order of each two consecutive UML-AD nodes with their 
correspondent EADG nodes of the test scenarios model. If the order of nodes is the same, 
then the order property is verified and the colour of nodes remains green. Otherwise, the 
order property is not verified and the colour of nodes becomes brown. 

For concurrent UML-AD nodes the validation process according to the order property 
is difficult because of complex structures of concurrency such as the existence of 
branches and loops between the fork and the join nodes. 
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The particular structures of concurrency are treated before normal structures. This 
validation process is applied on branches between the fork and join nodes. Notice that, 
concurrent UML-AD nodes which belong to different branches must correspond to 
EADG nodes of the test scenarios model belonging to different branches. In this case, all 
nodes of the two models are valid according to the order property, otherwise (e.g.,  
two UML-AD nodes belonging to different branches and correspond to consecutive 
EADG nodes) these nodes are invalid according to the order property. Furthermore, for 
each branch between the fork and the join nodes, all UML-AD nodes which follow 
invalid nodes according to the order property are also invalid according to the order 
property, and so as their correspondent EADG nodes of the test scenarios model. 

Then, the validation process is applied on normal structures of concurrency (i.e., no 
branches and loops between the fork and join nodes). Notice that, UML-AD nodes which 
follow the fork node must be corresponding to consecutive EADG nodes of the test 
scenarios model. In the opposite case, all these nodes in the two models are invalid 
according to the order property. Furthermore, the order of each two consecutive 
concurrent UML-AD nodes and the order of their correspondent consecutive EADG 
nodes must be the same. In the opposite case, all these nodes are invalid according to the 
order property. Moreover, each two concurrent UML-AD nodes which follow two valid 
concurrent UML-AD nodes according to the order property must correspond to two 
consecutive EADG nodes of the test scenarios model because in the test scenarios model 
concurrent EADG nodes form a series of consecutive nodes (see Subsection 3.1.2.3). 

3.2.3 Evaluation of the validation process 
The results of the validation process according to the coverage and the order property are 
evaluated. If the colour of all UML-AD nodes and all EADG nodes of the test scenarios 
model is green, then the test scenarios are valid according to the two properties. 
Otherwise, they are not valid and there are some invalid parts in the two models indicated 
by red and/or brown colours. 

3.2.4 Third graph grammar which validate the test scenarios 
This section presents the third graph grammar which is used to validate any test scenarios 
set proposed by testers according to the coverage and the order properties (see the 
previous subsections). There is an initial Action associated to this graph grammar to 
decorate all nodes and transitions and/or edges of UML-AD and test scenarios model 
with temporary attributes which are used in the conditions specified in the rules. There 
are three temporary attributes which are used to indicate if a part of UML-AD and the test 
scenarios model is valid or not. The first attribute with type integer is called isValidate. It 
is used for all types of nodes of UML-AD and the test scenarios model. The two other 
attributes (called isInputsValidate and isOutputsValidate) are used for the test scenarios 
model to indicate if the inputs and/or the outputs of the EADG nodes are valid or not. The 
previous attributes take values between 0 and 3. If the attribute value equals 0, then the 
validation process has not yet done on this node. If it equals 1, then the node is valid 
according to the coverage and the order properties. If it equals 2, then the node is not 
valid according to the coverage property, and if it equals 3, then the node is not valid 
according to the order property. Initially, these three attributes take the value 0 for each 
node of the two models. 
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Figure 9 Some rules of the first category of the third graph grammar (see online version  
for colours) 

 

This graph grammar consists of 78 rules divided into two categories. 
The rules of the first category are used for verifying the coverage property. They 

consist of 25 rules. Some rules among them are presented in Figure 9. Rule 1 is used to 
start the validation process according to the coverage property by comparing an initial 
EADG node of a test scenario with the UML-AD initial state. Rule 2 is used to verify the 
coverage property for the EADG node which follows the initial EADG node by 
comparing its activity name with the UML-AD names. If a matching is found with an 
UML-AD node, then the value of the temporary attribute isValidate becomes 1 for the 
two nodes of the two models and their colours become green. Rules 3, 4, 5, 6 and 7 are 
used to verify the coverage property for the input and the output aspects of nodes of the 
two models. Rules 3, 4 and 5 are used to detect valid parts in the two models. Otherwise, 
rules 6 and 7 are used to detect invalid parts. Rule 3 is used to verify if the input value of 
an EADG node of the test scenarios model equals the value of the input Pin of its 
correspondent UML-AD Action node. In the case where they are equal, the value of the 
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temporary attribute isInputValidate of the EADG node becomes 1 so as the value of the 
temporary attribute isValidate of the input pin. Rule 4 is used to verify the input value of 
an EADG node with the incoming guard condition of its correspondent UML-AD action 
node. Rule 5 is used to verify the matching between the output value of an EADG node 
and the output Pin of its correspondent UML-AD action node. Rule 6 is used to detect 
invalid parts in the two models and executed only on a particular part of models if rules 3 
and 4 have not been executed in this part. For example, if the condition IsInputsValidate 
== 0 is true for rule 6, then it is executed and the value of the property IsInputsValidate 
becomes 2; therefore, the colour of the input of the EADG node becomes red. However, 
if rules 3 and 4 have been executed, then the value of the propriety IsInputsValidate 
became 1 and rule 6 cannot be executed. Similarly, rule 7 is executed, only if rule 5 has 
not been executed, to detect invalid parts of the two models. Rule 8 is used to indicate 
invalid EADG nodes. It is executed on an EADG node only if rule 2 has not been 
executed and consequently rules 3, 4, 5, 6 and 7 have not been executed too. In such case, 
the value of its temporary attribute IsValidate remains 0, so this EADG node is invalid 
according to the coverage property because it does not have a correspondent UML-AD 
node. Rule 9 is used only to change the value of the temporary attribute Visited for an 
EADG node from 0 to 1 to move the validation process into the next EADG node in the 
current test scenario. After executing this rule the validation process can be repeated from 
rule 2. Rule 10 finishes the validation process according to the coverage property of a test 
scenario (a path). It changes the value of the temporary attribute Visited associated to the 
UML-AD initial state from 1 to 0 and deletes the link which connects it with the final 
EADG node of the current test scenario. After that, the previous validation process  
(rules 1 to 9) can be applied on another test scenario which has not been validated yet. 
Rules 11 and 12 are used to finish the validation process according to the coverage 
property of all test scenarios by changing the colour of all UML-AD nodes whose colour 
has not been changed during the validation process into red. These nodes are invalid 
because they do not have any correspondent EADG node of the test scenarios model. 

The rules of the second category verify the order property. It consists of 53 rules. 
Figure 10 shows some rules among them. Rules 13 and 14 are used to indicate all 
concurrent UML-AD nodes. Rules 15, 16 and 17 are used to verify the order property for 
non-concurrent UML-AD nodes. Rule 15 shows that every two consecutive  
non-concurrent UML-AD nodes and their correspondent EADG nodes in the test 
scenarios model are valid according to the order property because the order of nodes is 
the same in the two models. Rule 16 shows that every two consecutive non-concurrent 
UML-AD nodes and their correspondent EADG nodes in the test scenarios model are 
invalid according to the order property because the order of nodes is not the same in the 
two models. Rule 17 shows that all non-concurrent UML-AD nodes which have not 
treated by rules 15 and 16 and their correspondent EADG nodes are invalid according to 
the order property because they are necessarily not in the same order in the two models. 
Rules 18 and 19 are used to verify the order property for concurrent UML-AD nodes and 
their correspondent EADG nodes in the test scenarios model. Rule 18 shows that every 
two concurrent UML-AD nodes which follow an UML-AD choice node (decision node 
or action node having two followed nodes) are invalid according to the order property if 
they correspond to two consecutive EADG nodes in the test scenarios model because 
these EADG nodes are not in concurrency. Rule 19 completes rule 18 and shows that all 
concurrent UML-AD nodes which follow invalid nodes and their correspondent EADG 
nodes of the test scenarios model are invalid according to the order property. Rules 20, 
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21, 22 and 23 are used to verify the order property for normal structures of concurrency 
in UML-AD. Rule 20 shows that each two UML-AD nodes which follow the fork node 
and correspond to two consecutive EADG nodes in the test scenarios model are valid 
according to the order property so as their correspondent EADG nodes. Rule 21 shows 
that each two correspondent nodes in the two models and they follow valid nodes are also 
valid according to the order property. Rule 22 shows that each two consecutive UML-AD 
nodes which correspond to two consecutive EADG nodes in the test scenarios model are 
valid according to the order property so as their correspondent EADG nodes. Rule 23 
shows that two correspondent nodes in the two models which follow invalid nodes are 
valid according to the order property, although the source nodes in the two models are 
invalid. This is because the source nodes are invalid only with their predecessor nodes. 
This invalidity of the two source nodes comes from the execution of rule 18. 

Figure 10 Some rules of the second category of the third graph grammar (see online version  
for colours) 
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3.3 Extracting of test data 

The category partition method (CPM) (Ostrand and Blacer, 1988) is used for creating 
functional test data suites from the specifications of a system. In CPM, the input domain 
of function being tested is partitioned on classes, and then test data for each class of the 
partition is selected. Each partition corresponds to a test frame which is designated by a 
category which is a major property or characteristic of an environment or parameter. Test 
data are taken values within categories using choices (Chen et al., 2003). In the context 
of test scenarios, we use the same method presented in Sun (2008) to revise the previous 
definitions: each test scenario corresponds to a test frame, while test cases which respect 
a particular test scenario are generated according to the values of a set of choices which 
can be used to execute this test scenario. The choices values and their relationships are 
identified by processing guard conditions in the branches which occur in the same 
scenario paths. Finally, all input and output aspects of EADG nodes are used to generate 
the final test cases set for each test scenario using the boundary testing method by giving 
higher priority to boundary values to improve the ability of our approach towards the 
detection of defects. In this paper, test case selection from test scenarios is performed 
manually and automatic test case selection is left for our future work. Recall the seventh 
generated test scenario in Figure 14 (in Section 4), the guard condition of the branch 
activity Valid login? is [Login failed]. The guard condition of the branch activity 3ed 
invalid login? is [No]. The guard condition of the branch activity Valid login? this time is 
[Login Success]. The output guard condition of the branch activity D is [Faculty Tasks]. 
All previous choices are dependent, for example the choice [No] holds according on the 
choice [Login failed]. By the same, the choice [Login Success] holds according on the 
choice [No], etc. This test scenario must satisfy this dependency to be feasible; otherwise, 
it is infeasible. For example, [Login failed] and [No] and [Login Success] and [Faculty 
Tasks] is a feasible test frame, but, any change on any choice may lead to an infeasible 
test frame (e.g., the choice [No] is changed by the choice [Yes]). The other nine test 
frames are: the first one is [Login failed] and [Yes]. The second one is [Login failed] and 
[No] and [Login failed] and [Yes]. The third one is [Login success] and [Faculty Tasks]. 
The fourth and the fifth ones are [Login success] and [Student Tasks]. The sixth one is 
[Login success] and [Admin Tasks]. The eighth and the ninth ones are [Login failed] and 
[No] and [Login success] and [Student Tasks]. Finally, the tenth one is [Login failed] and 
[No] and [Login success] and [Admin Tasks]. 

4 Case study 

This section presents a case study to examine our proposed approach and evaluate its 
efficiency and effectiveness. First, in order to answering the question of the ability of our 
approach to generate test cases from the specification of a program under test, test 
scenarios are automatically generated from UML-AD of the case study. Then, in order to 
answering the question of the percentage of the fault-detection capability, the approach is 
evaluated using the mutation analysis tool MuJava (Ma et al., 2005). 

This case study is carried out in four steps which are: generating of EADG model and 
test scenarios, generating of test data, seeding faults, and executing tests and collecting 
the results. 
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4.1 Generating of EADG model and test scenarios 

Our proposed approach can be applied in several different domains. In this paper, we 
have chosen the example of a college management system presented in Makhija et al. 
(2015). This scenario covers a college that offers online courses via virtual classrooms. 
This example contains the most important concepts of UML-AD like actions, loops, 
branches, bifurcations, forks and joins. There are many activities involved in the system. 
First, the user logs on. Then, the system checks whether the login entered is success or 
not. If it is failed, the system checks if the failed login is entered for the third time or not. 
If not, the system increments the count of failed login and returns to the activity Login. 
Otherwise, the system ends. In the case where the login is success, the system chooses a 
branch among: Admin Tasks, Faculty Tasks and Student Tasks. For each chosen branch 
the system simultaneously executes some concurrent activities and finishes itself (see 
Figure 11). 

Figure 11 The college management system example (see online version for colours) 

 

There are two steps for generating test scenarios from this example. The first step 
consists of generating the EADG model shown in Figure 12 from the UML-AD shown in 
Figure 11 by running the first graph grammar. Some remarks can be seen here: firstly, 
each set of concurrent activities in UML-AD, which are chosen according to the simple 
path coverage criterion, corresponds to one EADG node. For example, the concurrent 
activities: Download Content, Receive Notice and Give feedback are grouped together in 
the same EADG node (see Figure 12). This group of activities is obtained by applying 
rule 10 of the first graph grammar (see Figure 6 rule 10). Secondly, in order to keep the 
guard conditions of conditional branches, n EADG nodes are generated from each  
UML-AD decision node having n outgoing transitions (n > 1). Each generated EADG 
node is followed by one EADG node and it has one guard condition. For example, in the 
generated EADG model of Figure 12 there are three EADG nodes having the name D. 
The first one has the guard condition [Faculty tasks] in its third part, the second one has 
the guard condition [Student tasks] and the third one has the guard condition [Admin 
tasks]. The previous EADG nodes are obtained by executing rule 6 of the first graph 
grammar (see Figure 6 rule 6). 
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Figure 12 The EADG generated from the previous UML-AD (see online version for colours) 

 

The second step in the test scenario generation process consists of generating the test 
scenarios model shown in Figure 13, 14 and 15 (i.e., each figure shows some test 
scenarios) from the EADG model shown in Figure 12 using the second graph grammar. 
In the final test scenarios set, each EADG node in each test scenario (test path) has one 
element. For example the EADG node having the activities Schedule Class, Issue Notice 
and Upload Content in the EADG model shown in Figure 12 is split into three 
consecutive EADG nodes named: Schedule Class, Issue Notice and Upload Content (see 
Figure 13 test scenario 3). 

This approach also allows validating test scenarios proposed by testers by applying 
them (one by one) on the original UML-AD using a graphical simulation. We have 
proposed three test scenarios and put some faults in the second and the third ones in order 
to show the capability of our approach towards detecting the coverage and the order 
faults. Figure 16 shows the execution of the third graph grammar on the three test 
scenarios. The first one is valid according to the coverage and the order properties 
because all its elements are in green colour. The second one is invalid according to the 
coverage property because the EADG node which contains the activity Increment valid 
login Count is in red colour. This error is due to the fact that this activity does not have a 
corresponding UML-AD node. The third test scenario is invalid according to the order 
property because the colour of the two EADG nodes Attendance and Attend Class is 
brown. This fault is happened because the order of these two activities in the test  
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scenarios model is not the same with the original UML-AD activities. Notice that, many 
UML-AD activities are not concerned here by the validation process and their colour is 
red because they do not correspond to any EADG activity. Furthermore, the previous 
faults can be corrected manually by testers and the validation process can be applied 
again for validating these corrections. 

Figure 13 The test scenarios generated from the previous EADG (first part) (see online version 
for colours) 
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Figure 14 The test scenarios generated from the previous EADG (second part) (see online 
version for colours) 
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Figure 15 The test scenarios generated from the previous EADG (third part) (see online version 
for colours) 
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Figure 16 The process of test scenarios validation during its execution (see online version  
for colours) 
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4.2 Test data generation 

A suite of test data which satisfies the generated test scenarios are generated using the 
category partition method (CPM). A number of test cases are generated for each test 
scenario using higher priority to boundary values to improve the fault-detection 
capability of our approach. 

4.3 Seeding faults 

Mutation testing consists of selecting and applying a set of mutation operators to each 
part of the source code of the program under test. The application of a mutation operator 
on a program results to one mutant (i.e., a program which is modified by a mutation 
operator). If these changes in the program are detected by at least one of the test suite, 
then the mutant is called: killed mutant. MuJava (Ma et al., 2005) is an open-source 
mutation system for Java programs. It is used for seeding faults into Java programs. 
There are 16 types of operators for the method-level mutation testing and 29 types of 
operators for the class-level mutation testing. In this work MuJava is used to 
automatically generate mutants for both method-level (traditional) mutation and  
class-level mutation testing of the college management system. Nine method-level 
operators and five class-level operators are applicable in this case study. At a results  
229 method-level and 243 class-level mutants are generated. 

4.4 Executing tests and collecting the results 

The proposed approach is evaluated for indicating a test suite adequacy of the program 
under test by calculating the mutation score (MS). The mutation score is defined as the 
percentage of killed mutants (i.e., the mutants whose seeded faults are detected by the test 
suite) with the total number of mutants.(mutation score = (number of mutants killed/total 
number of mutants) ∗ 100). The fault-detection capability of the generated test suite using 
our approach is evaluated as follows: First, the impact of the test suite size on the 
effectiveness of the proposed approach is evaluated by changing the number of test cases 
per each test scenario. Next, the impact of the number of test scenarios is evaluated by 
adding some test scenarios which have been validated by the second part of our approach 
using the coverage and the order properties. 

4.4.1 Fault-detection capability using test suite size 
The number of test cases for each test scenario is changed from 1 to 20. First, the original 
program and the adequate generated MuJava mutants are executed using 1 test case for 
each test scenario. Then, they are executed using 5, 10 and 20 test cases for each test 
scenario. Tables 1 and 2 present the MS score for each operator and the overall MS score 
of the method-level and the class-level mutation testing respectively. 
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Table 1 The mutation score (MS) for the method-level mutants using our approach 

Mutant type Number of 
mutants 

Number of test cases 
per test scenario 

Number of killed 
mutants 

Mutation score 
(MS) 

AORS 6 1 4 67% 
  5/10/20 6 100% 
AOIU 14 1 7 50% 
  5/10/20 11 79% 
AOIS 40 1 26 65% 
  5/10/20 29 73% 
ROR 27 1 19 70% 
  5/10/20 19 70% 
COI 7 1 7 100% 
  5/10/20 7 100% 
LOI 19 1 14 74% 
  5/10/20 14 74% 
VDL 5 1 3 60% 
  5/10/20 5 100% 
CDL 27 1 27 100% 
  5/10/20 27 100% 
ODL 84 1 84 100% 
  5/10/20 84 100% 
Total 229 1 191 83% 
  5/10/20 202 88% 

From Tables 1 and 2, in general, we can notice that the fault-detection capability of the 
test suite is good for both method-level and class-level mutation testing with 88% for the 
method-level and the class-level mutation testing. The second remark is that the MS score 
of the class-level mutation and the method-level mutation is almost the same. The third 
remark is that, when the size of test suite is 5 and more, the test suite size has no impact 
on the fault-detection capability for the two mutation levels. The fourth remark is that, the 
test suite size has a big impact for class-level mutation when the size of the test suite is 
changed from 1 to 5 while it has a small impact with the method level. As results, our 
approach needs only a small number of test cases for each scenario. 

In the following, more details about the results which shown in the two tables 1 and 2 
are presented. Table 1 shows the following observations: The MS score is 100% for the 
operators: conditional operator insertion (COI), constant deletion (CDL) and operator 
deletion (ODL). That means that our approach can detect all these types of faults. The MS 
score is less than 100% but it still very high for the operators: arithmetic operator 
replacement replace shortcut arithmetic operators with other unary arithmetic operators 
(AORS) and variable deletion (VDL). That means that our approach can detect the 
majority of these types of faults. The MS score is not very high for the operators: logical 
operator insertion (LOI), arithmetic operator insertion insert basic unary arithmetic 
operators (AOIU), arithmetic operator insertion insert shortcut arithmetic operators 
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(AOIS) and relational operator replacement (ROR). That means that our approach cannot 
detect a lot of these types of faults. 
Table 2 The mutation score (MS) for the class-level mutants using our approach 

Mutant type  Number of 
mutants 

Number of test cases 
per test scenario 

Number of 
killed mutants 

Mutation score 
(MS) 

PRV  86 1 46 53% 
  5/10/20 77 89% 
JTI  24 1 20 83% 
  5/10/20 21 87% 
JTD  25 1 21 84% 
  5/10/20 22 88% 
JSI  26 1 11 42% 
  5/10/20 11 42% 
EAM  82 1 25 30% 
  5/10/20 82 100% 
Total  243 1 123 51% 
  5/10/20 213 88% 

Table 2 shows the following observations: the MS score is almost 100% for the operator 
accessor method change (EAM) that means that our approach can detect almost all these 
types of faults. The MS score is less than 100% but it still very high for the operators: this 
keyword deletion (JTD), this keyword insertion (JTI) and reference assignment with 
other comparable variable (PRV). That means that our approach can detect the majority 
of these types of faults. The MS score is low for the operator JSI (static modifier 
insertion) that means that our approach cannot detect a lot of these types of faults. In 
general, our approach detects about 88% of seeded faults according to the both levels of 
mutation testing where the size of test cases for each test scenario is 5 and more. This rate 
is considerable compared with random approaches because of to the best of our 
knowledge, studies show that the random test can quickly reach around 50% of the test 
goal but tends to peak afterwards (Arora et al., 2017; Thevenod-Fosse et al., 1991; 
Ntafos, 2001; Chen et al., 2010). 

4.4.2 Fault-detection capability using more test scenarios 
The fault-detection capability of the generated test suite using the simple and the basic 
path coverage criteria has been reported in the previous subsection. In this subsection we 
present the fault-detection capability of the generated test suite using more test scenarios 
which are proposed by testers and validated by our approach (see Section 3.2). When we 
use a sufficient number of added test scenarios (50 different test scenarios validated using 
the third graph grammar for the college management system example), the MS score 
where the size of test cases for each test scenario is 1 equals the MS score where the size 
is 5 and more. Furthermore, the previous MS score is the same where we use the simple 
and the basic path coverage criteria where the size of test cases for each test scenario is 5 
and more. For example the previous MS score is 88% according to the both method-level 
and the class-level mutation. These equalities are happened for the following: test suites 
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generated using the simple and the basic path coverage criteria and those using more test 
scenarios, which are validated by the third graph grammar, cover the same basic paths. 
Although, using more test scenarios increases the capability of detecting more 
concurrency-specific faults, the MS score is the same because of the absence of mutation 
operators specific for the concurrency in this version of MuJava. Thus, in this paper, we 
only interest by the fault-detection capability of the test suite generated using the simple 
and the basic path coverage criteria. In the future we aim to use other mutation tools 
which have specific concurrency operators for evaluating the concurrency fault-detection 
capability of the generated test suite. 

5 Related work 

Many studies (Arora et al., 2017; Boghdady et al., 2011; Chen et al., 2006, 2008; 
Chouhan et al., 2012, 2013; Kundu and Samanta, 2009; Li et al., 2013; Linzhang et al., 
2004; Mahali and Acharya, 2013; Malhotra and Bharadwaj, 2012; Ray et al., 2009; Sun, 
2008; Sun et al., 2016; Swain et al., 2010; Zhang et al., 2015) for the topic of test case 
generation from UML-ADs have been proposed. Chen et al. (2006, 2009) introduced the 
notion of simple path coverage criterion to generate test cases from UML-ADs using a 
modified version of depth first search (DFS) algorithm. First, they executed the program 
under test with random test cases to obtain several execution traces. Next, in order to 
obtain the reduced set of test cases according to the simple path coverage criterion, the 
obtained execution traces have been compared with the simple paths obtained by the 
execution of the improved DFS algorithm. In Boghdady et al. (2011), the authors 
proposed an approach for generating test cases from UML-ADs. First, a table called 
activity dependency table (ADT) has been generated automatically from UML-ADs and 
then transformed into a directed graph called activity dependency graph (ADG). Finally, 
the final test cases have been generated using ADG and ADT. Similar approaches to 
Boghdady et al. (2011) are proposed for generating test cases for mobile agents (Chouhan 
et al., 2012, 2013). In Chen et al. (2008), the authors proposed a method for generating 
test cases from UML-ADs using formal methods. First, a formal model called NuSMV 
(Cimatti et al., 2002) input has been generated from UML-AD. Then, coverage criteria 
have been selected and the properties in the form of LTL or CTL formulas have been 
generated. Next, the negated version of these properties has been applied on the obtained 
formal model using the model checking for generating the required tests 
(counterexamples). In Mahali and Acharya (2013) and Malhotra and Bharadwaj (2012), 
the authors used genetic algorithms for generating test cases from UML-ADs based on 
the prioritisation of test cases. In Zhang et al. (2015), the authors used the single 
population genetic algorithm and the data flow testing coverage criterion for generating 
test cases from UML-ADs. In Kundu and Samanta (2009), the authors used the activity 
path coverage criterion for generating test cases from UML-ADs. First, UML-AD has 
been augmented by the necessary test information. Then, UML-AD has been converted 
into an activity graph. Finally, test cases have been generated from the obtained activity 
graph. In Swain et al. (2010), the authors proposed an approach for generating test cases 
from UML state and activity diagrams for integration testing. They generated their 
intermediate model called state-activity diagram (SAD) and then generated test cases 
from SAD using the state-activity coverage criterion (Swain et al., 2010). In Ray et al. 
(2009), the authors proposed an approach for generating test cases from UML-ADs based 
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on a conditioned slicing. First, a flow dependency graph has been built from UML-AD. 
Then, a conditioned slicing has been applied on all predicate nodes of the obtained flow 
dependency graph. Next, a suitable set of test cases has been generated for each slice 
previously generated. Finally, by pulling all practically useful test cases, the number of 
the generated test cases has been reduced. In Linzhang et al. (2004), the authors proposed 
an approach for generating test cases from UML-ADs based on the Gray-Box method. In 
Li et al. (2013), the authors proposed an approach for generating test cases from  
UML-ADs. First, a directed graph has been generated from UML-AD. Then, the Euler 
circuit has been constructed from the directed graph satisfying the transition coverage 
criterion. Finally, the test cases have been generated and minimised using the Euler 
circuit algorithm. In Sun et al., (2016) and Sun (2008), the authors proposed an approach 
and a tool based on Graph transformation for generating scenario oriented test cases from 
concurrent UML-ADs. They generated an intermediate model from UML-AD and then 
test scenarios have been generated from it. Finally, test data have been generated 
manually from the generated test scenarios and applied on the software application. In 
Arora et al. (2017), the authors applied a bio-inspired algorithm to generate test scenarios 
from the concurrent sections in UML-ADs. 

Our approach is compared to research studies presented in (Chen et al., 2006; 
Boghdady et al., 2011; Kundu and Samanta, 2009; Sun et al., 2016; Sun, 2008). 
Boghdady et al. (2011), Chen et al. (2008), Sun et al. (2016) and Sun (2008) proposed 
intermediate models between UML-AD and test cases such as ADG (Activity 
Dependency Graph) presented in Boghdady et al. (2011), AG (Activity Graph) presented 
in Kundu and Samanta (2009) and EBTs (Extended ANDOR Binary Trees) presented in 
Sun et al. (2016) and Sun (2008). These intermediate models are used to facilitate the 
process of test case generation. However, they are insufficient to capture all test 
information in UML-AD; several aspects of UML-AD like the data flow, the guard 
conditions and the concurrency are not expressed in Boghdady et al. (2011) and Kundu 
and Samanta (2009). In order to be able to represent all test information, these 
intermediate models have been reinforced using data structures like activity dependency 
table (ADT) and node description table (NDT) presented in Boghdady et al. (2011) and 
Kundu and Samanta (2009) respectively. Furthermore, the way to generate test cases 
from particular structures in UML-AD like nested loops, complex structures of the 
concurrency and the synchronisation was not discussed in Sun et al., (2016) and Sun 
(2008). In Chen et al. (2006), the authors proposed the concept of simple path coverage 
criterion, which is used to generate test cases from concurrent activities of UML-ADs. 
The simple path is a very good way to avoid basic paths explosion with the existence of 
concurrency. However, the way of choosing a simple path among several basic paths has 
not been discussed. Furthermore, Chen et al. (2006) used the basic path coverage 
criterion with non-concurrent activities. But, the minimal loop testing is not ensured (see 
Subsection 3.1.2.1). 

Our approach is different from related work presented in Chen et al. (2006), 
Boghdady et al. (2011), Kundu and Samanta (2009), Sun et al. (2016) and Sun (2008), 
mainly in our proposal intermediate model (EADG). EADG covers all information of 
UML-AD needed to generate test cases. It models data flow, branches, concurrency and 
loops. Any particular structure in UML-AD can be modelled using EADG and test 
scenario-oriented test cases can be generated from any complex structures of concurrency 
and loops such as forks and/or decisions within the concurrency and nested loops. In this 
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work, using EADG, a simple and an effective method for choosing a simple path from 
several basic paths is proposed by taking the concurrent activities of each EADG node in 
their order during the test scenario generation process (see Subsection 3.1.1.1). 
Furthermore, the problem of the basic path coverage criterion with loops and nested loops 
has been solved by extending the definition of the basic path (see Subsection 3.1.2.1). 
Furthermore, the use of graph transformation with EADG has several advantageous. 
Graph transformation is defined using formal, graphical and high-level fashion 
formalism. Furthermore, with the flexibility of graph grammars, the maintenance of our 
test scenario generation tool becomes easier. Whenever one or several rules can be added, 
modified and/or deleted. This property also allows dealing with particular structures such 
as the problems of loop and nested loop structures in EADG and the complex structures 
of synchronisation and concurrency in UML-AD. For each particular structure one or 
several new graph grammar rules are defined. Another distinction between our work and 
related work is the automatic validation of test scenarios proposed by testers using a 
graphical simulation. This property increases the effectiveness of test scenarios set by 
giving testers the possibility to apply any particular test coverage criterion and validates it 
using our tool (see Section 3.2). 

6 Conclusions 

This paper have been dealt with software testing that is used to verify the correctness of a 
systems implementation by carrying out tests and making observations. The correctness 
criteria can be given in the specifications and UML is used often as model-based 
specifications. UML-AD is one of the important UML diagrams and it is used for 
modelling the global behaviour of a system. In this work, we have proposed an approach 
and a tool based on Graph transformation for generating automatically test scenarios from 
UML-ADs using the two coverage criteria: simple path and extended basic path. This 
approach also gives testers the possibility of validating their proposed test scenarios by 
applying them on UML-AD using a graphical simulation. In this approach we have 
proposed EADG as an intermediate model between UML-AD and test scenarios model in 
order to facilitate the transformation process. Our approach has been realised by 
proposing of two meta-models and three graph grammars. Meta-models are used for 
modelling UML-AD and EADG respectively. Graph grammars are used for performing 
the transformation of UML-AD diagrams into EADG models, for generating test 
scenarios from the obtained EADG model, and for validating test scenarios proposed by 
testers. All ideas presented above have been implemented using the graph transformation 
tool AToM3. Our approach and tool can detect more defects than existing approaches 
such as defects of loops and synchronisation errors. It has been applied to a college 
management system case study. The fault-detection capability of the generated test suite 
using our approach has been evaluated by MuJava mutation tool and given good results. 
As future work, we aim to generate test data automatically using the results of the work 
presented in Kerkouche et al. (in press), and to verify some properties of systems before 
testing them. We also plan to evaluate the capability of the concurrency fault-detection of 
our approach using other mutation tools. 
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