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Abstract: In cloud storage services, public auditing mechanisms allow a third party to verify 
integrity of the outsourced data on behalf of data owners without the need to retrieve data from 
the cloud server. In some applications, the identity of data users should be kept private from the 
third party auditor. Oruta is a privacy preserving public auditing scheme for shared data in the 
cloud which exploits ring signatures to protect the identity privacy. In this paper, we propose two 
attacks and demonstrate that the scheme is insecure and a dishonest server can arbitrarily tamper 
the outsourced data without being detected by the auditor. We also propose a solution to remedy 
this weakness with the minimum overhead and without losing any desirable features of the 
scheme. Performance evaluation demonstrates acceptable efficiency of improved scheme in 
comparison to the original protocol.  
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1 Introduction 

Nowadays, efficient and scalable data storage services 
provided by cloud computing have caused a vast data 
movement from local storage systems to the cloud. However, 
security concerns including data integrity are a serious 
challenge for data owners after outsourcing. Provable Data 
Possession (PDP) protocols introduced by Ateniese et al. 
(2007) are mechanisms for efficient data integrity verification, 
in which a Third Party Auditor (TPA) chooses a random subset 
of data blocks and sends it as a challenge to the cloud server. 
The server generates a proof based on the challenged data 
blocks and their signatures and finally the TPA checks the 
proof that the server returns. PDP protocols have attracted 
significant research in recent years (e.g. Shacham and Waters, 
2008; Wang, 2013; Wang et al., 2014; Tian et al., 2015; Li et 
al., 2016; Rabaninejad et al., 2020; Li et al., 2017; Wang et al., 
2017; Yu et al., 2017; Rabaninejad et al., 2019; Rabaninejad  
et al., 2020). 

Supporting efficient dynamic data operations is an 
important property in PDP protocols. The first dynamic PDP 
scheme was introduced by Ateniese et al. (2008). However, 
their scheme restricts number of auditing requests and also it 
only supports private verification. Wang et al. (2009) and 
Zhang et al. (2017) were the first who introduced PDP schemes 
with fully dynamic operations based on Merkle Hash Tree. 
Dynamic PDP scheme using the concept of rank information 
was researched by Erway et al. (2015). Index Hash Table was 
another tool to achieve dynamic data operations in PDP 
schemes presented by Zhu et al. (2011, 2013). Other very 
recent dynamic PDP proposals include (Shen et al., 2017; Yan 
et al., 2017; Cash et al., 2017; Rabaninejad et al., 2019). 

Since the users may store sensitive data on the cloud, data 
privacy is also another important feature in PDP schemes. In 
other words, the TPA should not learn any information about 
the data content when he is auditing data integrity on behalf of 
users. Random masking technique proposed by Wang et al. 
(2013) addresses this problem. Yu et al. also designed an 
Identity-based PDP scheme with zero-knowledge data privacy 
(Yu et al., 2017). 

With data sharing services such as Dropbox and Google 
Drive, data owners are able to conveniently share their data 
with a group of users. Oruta is a protocol proposed by Wang et 
al. (2014) which enables shared-data auditing. Oruta is based 
on ring signatures (Boneh et al., 2003) to provide identity 
privacy, which means that not only the content of shared-data, 
but also the identities of users are kept private from the public 
verifier. Yu et al. (2014) proposed an attack on Oruta. In their 
attack, an active adversary acts as the man in the middle attack 
and arbitrarily alters the data and also accordingly modifies the  
 
 

auditing proof generated by server such that the proof is 
verified by the TPA, although the data have been polluted. To 
fix this problem, they suggested that the server securely signs 
its proof, so that the active adversary is no more able to modify 
the proof generated by the server and therefore the corruption is 
detected by the TPA. Panda (Wang et al., 2013), is another 
shared-data auditing protocol proposed by Wang et al. which 
provides efficient user revocation. However, it lacks data and 
identity privacy properties which were provided by Oruta. 
Another shared data auditing scheme utilising polynomial-
based authentication tags was proposed by Yuan and Yu (2014, 
2015). In their scheme, user revocation is inefficient since it 
involves three parties including the group manager, the cloud 
server and the TPA (Yuan and Yu, 2015). Yu et al. (2016) 
showed that the scheme in Yuan and Yu (2015) is insecure 
against collusion of the cloud server and a revoked user. Jiang 
et al. (2016) addressed the problem of secure user revocation in 
shared data auditing by employing the group signatures (Boneh 
and Shacham, 2004). However, the scheme is inefficient due to 
the expensive computation cost of generating group signatures 
and costly auditing operations. Recently, Rabaninejad et al. 
proposed a lightweight public shared data auditing protocol 
which employs collusion resistant proxy re-signature and 
preserves users’ identity privacy, enables efficient user 
revocation, and is secure against collusion of the server and 
revoked users (Rabaninejad et al., 2019). 

In this paper, we propose two attacks on Oruta  
(Wang et al., 2014), named as replace and replay attacks, and 
show that a dishonest server can forge a proof on the corrupted 
data which passes the verification phase. In the replace attack 
that some data blocks are corrupted, the server can replace the 
auditing message such that the challenged set of blocks does 
not include the corrupted ones. Also, in the replay attack that 
some blocks are not fresh, the server can generate the proof 
based on the old data blocks and in both cases the generated 
proof passes the verification equation. We note that the 
improvement suggested in Yu et al. (2014) does not make 
Oruta secure against our attacks. Specifically, since the cloud 
server is the attacker itself, therefore it can sign the forged 
proof generated based on corrupted data and the TPA still 
verifies the forged proof. In the next step, we develop a simple 
improvement in the scheme without losing any desirable 
features and demonstrate that this improvement makes Oruta 
secure against the proposed attacks. 

2 The Oruta protocol 

In this section, we get a glimpse of the Oruta scheme  
(Wang et al., 2014). Three parties are involved in the  
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protocol: cloud server, third party auditor (TPA) and data 
users. Let U  denote the group of authorised users with d  
members who have access to the shared data and can 
modify it. Shared data blocks and their signatures are 
outsourced to the cloud server, and the TPA, on behalf of 
users, audits the integrity of the data stored in the cloud. 

Setup. Let 1G , 2G  and TG  be multiplicative cyclic groups of 

prime order p , with 1g  and 2g  as generators of 1G  and 2G , 

respectively. Let 1 2: Te G G G   be a bilinear map, and 

2 1: G G   be an isomorphism such that 2 1( ) =g g . Also 

three hash functions *
1 1:{0,1}H G , *

2 :{0,1} qH Z  and 

1: ph G Z  are used in the scheme. We note that q  is a prime 

much smaller than p . In order to outsource shared data M , it 

is divided into n  blocks as 1= ( ,..., )nM m m . Then, each block 

jm  is also divided into k  sectors in pZ . So, M  can be 

represented as a n k  matrix. Oruta consists of five algorithms 
which are reviewed in the following: 

keyGen. For user iu U , the public and private key pair is: 

2( , ) = ( = , )
xi

i ipk sk w g x , where ix  is chosen randomly from 

pZ . The original user also generates a public aggregate key 

1= ( ,..., )kpak   , where 1l r G  . 

SigGen. Using this algorithm, a user su  generates a ring 

signature on a block jm . Consider block ,1 ,= ( ,..., )j j j km m m  

with identifier jid . The signer su , using her private key ssk , 

public aggregate key pak , and the public key of the other 

1d   users, does the following steps: 

1 Aggregate block jm  using pak : 

,
1 1

=1

= ( ) .
k

m j l
j j l

l

H id G    (1) 

2 The ring signature of block jm  is 

,1 , 1= ( ,..., ) d
j j j d G    . For all i s , su  chooses 

random ,j i pa Z , and sets ,
, 1=

a j i
j i g . For =i s , su  

calculates ,j s  using equation (2). 

1/

, 1
,

= ( )
( )

xj s
j s a j i

i
i s

G
w










 (2) 

Modify. A user in U  can insert, delete or update the j -th 

block of the data as described below. The identifier of block 

jm  is defined as, = { , }j j jid v r , where jv  is the virtual 

index of the block and 2= ( )j j jr H m v . 

 Insert. The user, in order to insert a new block jm   into 

the outsourced data, computes 1= ( ) / 2j j jv v v   , 

2= ( )j j jr H m v   , and sets the new block identifier as 

= { , }j j jid v r   . Next, he signs jm   and sends 

{ , , }j j jm id     to the server.  

 Delete. To delete a block jm , the user only requires to 

send the block index to the server. Accordingly, the 
server deletes { , , }j j jm id   from its storage.  

 Update. The user, in order to update the j -th block 

with a new value jm  , computes 2= ( )j j jr H m v    and 

sets = { , }j j jid v r  , where the virtual index jv  remains 

unchanged. Next, he signs jm   and sends { , , }j j jm id     

to the server.  

ProofGen. In order to audit the data integrity, the TPA first 
chooses a random c -element subset [1, ]J n  as the block 

indices to be challenged in the auditing process. Then for 
each j J , the TPA chooses a random value j qy Z  and 

sends the auditing message {( , )}j j Jj y   to the server. 

The server, after receiving the auditing message 
{( , )}j j Jj y  , generates an auditing proof through the following 

procedure:   

1 For [1, ]l k , the server calculates 1=
rl

l l G   , where 

l r qr Z  and l  is a part of public aggregate key pak . 

2 For [1, ]l k , the server computes a linear function of 

challenged blocks as ,= ( )l j j l l l pj J
y m r h Z 


  . 

3 The server, aggregates the challenged block’s 

signatures as ,=
y j

i j ij J
 

 , for [1, ]i d . 

Finally, the server sends back the auditing proof 
{ , , ,{ } }j j Jid     to the TPA, where 1= ( ,..., )k   , 

1= ( ,..., )k    and 1= ( ,..., )d   . 

ProofVerify. The TPA verifies the server’s proof 
{ , , ,{ } }j j Jid     through equation (3). If the equation 

holds, the verification passes, otherwise it fails. The 
verification is done using the auditing message {( , )}j j Jj y  , 

the public aggregate key and all the users public keys. 

?
( )

1 2 2
=1 =1 =1

( ( ) . , ) =( ( , )). ( , )
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


     (3) 

3 Security analysis of Oruta 

Two kinds of threats related to the integrity of shared data 
are considered in Wang et al. (2014). First, an adversary 
may try to corrupt the integrity of shared data. Second, the 
cloud server may inadvertently corrupt (or even remove) 
data in its storage due to hardware failures or human errors. 
Making matters worse, the cloud server tries to hide such 
data corruptions from the users in order to save its  
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reputation and avoid losing profits of its services. In this 
section, we propose two attacks and show that a dishonest 
server can forge a proof on the corrupted data which passes 
verification in equation (3). We then propose a simple fix to 
make Oruta secure against the proposed attacks. 

3.1 Replace attack 

Assume that a block tm  of the data stored at the cloud 

server is corrupted. Upon receiving the auditing message 
{( , )}j j Jj y  , where t J , the server replaces the set J  

with a set *J  such that *t J –i.e., replaces the corrupted 

block tm  with another intact block in *J –, and generates 

auditing proof for the auditing message *{( , )}j j J
j y


, with 

the same jy  values as the original auditing message. More 

specifically, the auditing proof is generated as below: 

1 For [1, ]l k , l  values are calculated as before. 

2 For [1, ]l k , the server computes 
*

* ,= ( )l j j l l lj J
y m rh 


 . 

3 For [1, ]i d , *
* ,=

y j
i j ij J
 

 . 

Therefore, the only difference with the normal auditing 
proof explained in Section 2, is that J  is replaced with *J  
in Steps 2 and 3. Finally, the server returns 

* *
*{ , , ,{ } }j j J

id  


 as the auditing proof to the TPA. Next, 

the TPA checks equation (4): 

?* ( )*
1 2 2

=1 =1 =1

( ( ) . , )=( ( , )). ( , )
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


     (4) 

It can be seen that because the indices j J  are not directly 

used in the verification equation, and the coefficients jy  

used by the server are the same as the original auditing 
message, the proof generated for the set *J  passes the 
TPA’s verification. So, the server could successfully make 
the equation hold while the data have been corrupted. 

3.2 Replay attack 

As mentioned before, Oruta supports dynamic operations and a 
user can insert, delete or update a block in shared data stored at 
the cloud server. The second attack arises here when a user 
wants to update the tht  block with a new value tm   and sends 

{ , , }t t tm id     to the cloud server. Consider a scenario that an 

adversary interrupts the user–server line and this update request 
is not received by the server. Also, consider a scenario that the 
server inadvertently does not follow data update requests due to 
hardware failures or human errors or even denial of service 
happens when a burst of update requests are received by the 
cloud. These scenarios are possible according to threat model 
of Oruta paper (Wang et al., 2014). Now, we show that in case  
 
 
 

these scenarios occur, the dishonest server can generate a valid 
proof in response to the TPA based on the old values 
{ , , }t t tm id  . Assume that the auditing message {( , )}j j Jj y  , 

where t J  is sent to the server. The server generates a proof 

for this auditing message, but based on the old version of tht  
block as follows: 

1 For [1, ]l k , the server calculates l  values as before. 

2 For [1, ]l k , *
,= ( )l j j l l lj J

y m r h 


 ; where for 

=j t , ,t lm  is considered (instead of ,t lm ). 

3 For [1, ]i d , *
,=

y j
i j ij J
 

 ; where for =j t , ,t i  is 

considered (instead of ,t i  ). 

The auditing proof returned by the server is * *{ , , ,{ } }j j Jid    , 

where for =j t , tid  is sent (instead of tid  ). The TPA checks 

equation (5). 

?* ( )*
1 2 2

=1 =1 =1

( ( ) . , ) =( ( , )). ( , )
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


     (5) 

Based on the above equation, the TPA is convinced by the 
server that the data integrity is not violated; while in fact the 
data is not fresh and the update process in not followed 
properly. 

4 An improved protocol 

In this section, we first describe an improved protocol to 
resolve the weakness discussed in the previous section. Next, 
we discuss how the improved protocol withstands the 
aforementioned attacks. Finally, we evaluate the performance 
of improved protocol. 

4.1 Improved Oruta 

The weakness causes these attacks work, is that in Oruta, the 
TPA has no information about the verification metadata and 
this enables the server to fool the TPA in the verification 
process. Here, we suggest a simple fix to overcome the 
weakness. The idea is to leverage an authenticated data 
structure like Merkle Hash Tree (MHT) (Wang et al., 2011; 
Rabaninejad et al., 2019), where the updated MHT root is sent 
to the TPA. In the following, we first review MHT 
authentication structure and then provide a detailed explanation 
of scheme modifications. 

 – Merkle Hash Tree 

A Merkle Hash Tree (MHT) (Merkle, 1980) is a tree in which 
leaf nodes are labelled with the hashes of authentic elements. 
Also, every non-leaf node is the cryptographic hash of its  
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child nodes, as shown in Figure 1. For example, consider a 
verifier who possess the root rh  requests to authenticate the 

values 1 3 8{ , , }T T T . The prover returns 1 3 8{ , , }T T T  together with 

1 2= h , 3 4= h , and 8 7= { , }eh h  as Auxiliary 

Authentication Information (AAI). The verifier uses AAI to 
check the integrity of 1 3 8{ , , }T T T  as follows: 

1 1 3 3 8 8= ( ), = ( ), = ( )h h T h h T h h T  

1 2 3 4 7 8= ( , ), = ( , ), = ( , )c d fh h h h h h h h h h h h  

= ( , ), = ( , )a c d b e fh h h h h h h h  

= ( , )r a bh h h h  

Finally, if =r rh h , it is proved that 1 3 8{ , , }T T T  are unaltered. 

It should be noted that MHT leaves are considered as a left-
to-right sequence, which makes it possible to authenticate 
both values and positions of the data blocks. 

Figure 1 An example of data authentication using MHT 

 

– Scheme modifications. The improved protocol is as 
follows. Here, we only emphasise on modifications and the 
unmodified parts are referred to the original protocol to 
avoid repetition: 

Setup. (.)H  is a hash function employed in MHT 

authenticated data structure and is defined as 
*:{0,1} qH Z . Other parameters are chosen the same as 

Setup algorithm of the original protocol. 
 
 
 
 
 

keyGen. This algorithm is the same as the original protocol. 

SigGen. The signature ,1 , 1= ( ,..., ) d
j j j d G     on block 

jm  with identifier jid  is generated exactly the same as the 

original protocol. The difference here is that a MHT 
authenticated data structure is produced with the nodes as 
hash of identifiers [1, ]{ }j j nid   related to the data file 

1= ( ,..., )nM m m . Also, ( , )rootroot   respectively denotes 

MHT root and its signature, which are simultaneously 
forwarded to both the server and the TPA. For each new 
block ( , )j jm id , the MHT root is re-computed and the new 

root  is forwarded to both the server and the TPA, so that 

they replace root  as the last version of the MHT root in 

their storage. 

Modify. 

 Insert. 

(a) The user, in order to insert a new block jm   into thj  

position of the outsourced data, computes 

1= ( ) / 2j j jv v v   , 2= ( )j j jr H m v   , and sets  

the new block identifier as = { , }j j jid v r   . Next, he signs 

jm   and sends { , , }j j jm id     to the server. This step was 

the same as the original protocol. But other steps are 
different. 

(b) The server inserts { , , }j j jm id     in the thj  row and also 

inserts ( )jH id   as the thj  leaf of the MHT, 

(c) The server regenerates MHT root *root  and forwards 
*( , , , )j j rootid root  to the user. 

(d) The user first uses jid  and its AAI j  to compute root , 

and checks whether the returned root  is a valid signature 

on root . Second, he computes *'root  and checks whether 
* *' =root root . If it is so, he generates *root

  and forwards 

*
*( , )

root
root   to both the server and the TPA. The insert 

operation is accomplished. 

 Delete.   

(a) The user sends a request to delete a block jm  from the 

outsourced data. 

(b) Upon receiving delete request, the server deletes thj  

row { , , }j j jm id   and updates the MHT using the same 

procedure explained in Insert operation. 
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 Update. 

(a) The user sends { , , }j j jm id     to the server, as a request 

to update the j -th block with a new value jm  . 

(b) Upon receiving update request, the server updates the 
thj  row and also updates the MHT using the same 

procedure explained in Insert operation. 

ProofGen. In order to audit the data integrity, the TPA first 
chooses a random c -element subset [1, ]J n  as the block 

indices to be challenged in the auditing process. Then for 
each j J , the TPA chooses a random value j qy Z  and 

sends the auditing message {( , )}j j Jj y   to the server. 

Upon receiving the auditing message {( , )}j j Jj y   from the 

TPA, the server generates an auditing proof through the 
following procedure: 

1 For [1, ]l k , the server calculates 1=
rl

l l G   , where 

l r qr Z  and l  is a part of public aggregate key pak . 

2 For [1, ]l k , the server computes a linear function of 

challenged blocks as ,= ( )l j j l l l pj J
y m r h Z 


  . 

3 The server, aggregates the challenged block’s 

signatures as ,=
y j

i j ij J
 

 , for [1, ]i d . 

Finally, the server sends back the auditing proof 
{ , , ,{ , } }j j j Jid     to the TPA, where 1= ( ,..., )k   , 

1= ( ,..., )k    and 1= ( ,..., )d   . Besides, j  is the set of 

Auxiliary Authentication Information (AAI) corresponding 
to the challenged nodes in MHT. 

ProofVerify. This algorithm includes two following steps: 

1 In this step, the TPA uses parameters { , }j j j Jid   which 

are returned by the server as part of the proof. Specifically, 
the TPA calculates MHT root root  using the nodes 
{ ( )}j j JH id   and its AAI set { }j j J . If root  is equal to 

root  (the last MHT root stored by the TPA), it means that 
the block identifiers { }j j Jid   returned by the server are 

the exact values corresponding to the challenged blocks. 
Consequently, this step prevents replace/replay attacks 
which will be discussed in the security subsection.  

2 The TPA checks equation (6) to verify the correctness 
of the proof { , , ,{ } }j j Jid    . If the equation holds, 

the verification passes, otherwise it fails.  

?
( )

1 2 2
=1 =1 =1

( ( ) . , ) =( ( , )). ( , )
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


     (6) 

We note that the second step is the same as ProofVerify 
algorithm of the original scheme but the first step is different. 
More precisely, in the first step, the TPA uses parameters 
{ , }j j j Jid   exactly in the same indices { } j Jj   it had 

challenged the server, in order to generate MHT root root . In 
case the values { , }j j j Jid   are not related to the indices 

{ } j Jj   (replace attack) or are not the updated values (replay 

attack), root root  calculated by the TPA is is different from 
root  (the last MHT root stored by the TPA) and the 
verification fails. In other words, Step 1 fixes the weakness in 
the basic scheme since Merkle Hash Tree is the verification 
metadata that helps the TPA to detect a forged proof. 

4.2 Security of improved Oruta 

Here, we discuss how improved Oruta resists against 
replace/replay attacks proposed in Section 3. 

Security against replace Attack. In this attack, the cloud 
server replaced corrupted block tm  with another intact 

block, lets name it *t
m , and generated auditing proof for the 

auditing message *{( , )}j j J
j y


. So, the set *J  is equal to set 

J  except that index t  is replaced with *t . The server 

returns * *
*= { , , ,{ , } }j j j J

P id  


  as the auditing proof to 

the TPA. Now, we show that Step 1 of ProofVerify 
algorithm described above fails: the TPA calculates MHT 
root root  using the values *{ ( )}j j J

H id


 as the MHT nodes 

and the AAI set *{ }j j J
 , which are returned by the server. 

Technically, the TPA puts the values *{ ( )}j j J
H id


 in j J  

positions of the merkle hash tree nodes. Therefore, *( )tH id  

is placed as the tht  node. Obviously, root  is not equal to 

root  (the real MHT root), since *( )tH id  is not equal to 

( )tH id  (the correct value for tht  node of the MHT). 

Therefore, before the TPA gets to check equation (6) to 
verify the correctness of the proof in Step 2, Step 1 of 
ProofVerify algorithm fails and the replace attack is 
detected in the improved protocol. 

Security against replay Attack. The argument here is the 
same with slight differences. Replay attack considered a 
case when a block tm  is not properly updated according to 

scenarios explained in 3.2. In case that the cloud server 
received an auditing message {( , )}j j Jj y  , where t J , the 

server generated a proof based on the old version of block 

tm  and returned auditing proof * *{ , , ,{ , } }j j j Jid    , 

where for =j t , tid  is sent (instead of updated tid  ). Now, 

we show that Step 1 of ProofVerify algorithm described 
above fails: the TPA calculates MHT root root  using the 
values { ( )}j j JH id   as the MHT nodes and the AAI set 

{ }j j J , which are returned by the server. Obviously, root  

is not equal to root  (the real MHT root), since ( )tH id  (the 

old value) is not equal to ( )tH id   (the correct updated value 

for tht  node of the MHT). Therefore, before the TPA gets to 
check equation (6) to verify the correctness of the proof in 
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Step 2, Step 1 of ProofVerify algorithm fails and the replay 
attack is detected in the improved protocol. 

To summarise, if the server replaces the challenged blocks 
with other blocks (replace attack) or replays the old versions of 
the blocks (replay attack) in generating the auditing proof, the 
MHT root computed by the TPA will be different from the real 
MHT root, and the verification fails. Therefore, the improved 
protocol is secure against the proposed attacks without losing 
any desirable features. 

4.3 Performance evaluation 

In terms of performance, the improved Oruta protocol has 
employed Merkle Hash Tree (MHT) in its construction in  
comparison to original Oruta protocol. Here, through a detailed 
overhead analysis, we demonstrate that the computation/ 
communication costs caused by MHT are acceptable for the 
users, the server, and the TPA. Hence, improved Oruta 
achieves comparable efficiency to the original Oruta protocol, 
but with enhanced security level. 

Table 1 presents computation overhead for the users, the 
cloud server and the TPA and also communication overhead, 
for both Oruta and Improved Oruta schemes. In this table, the 
computational complexity of hash function, modular 
multiplications, exponentiations, and pairings are denoted by 
H, Mul , Exp , and Pair , respectively. Also, the index of the 

operation denotes the group that the operation is defined in, for 
example 

1GMul  means multiplication over 1G . Furthermore, 

as additions have negligible cost, they are omitted from 
overhead analysis. 

First column of Table 1 represents overhead analysis of 
the original Oruta protocol. An explanation on how these 
overheads are calculated can be found in Rabaninejad et al. 
(2019). For improved Oruta which is denoted in the second 
column, the terms ‘Sign. Gen. Complexity’ (Row 1) and 
‘Server Comp. Complexity’ (Row 2) are equal to the ones  
 

for Oruta protocol, which is a direct result of protocol 
description in Subsection 4.1, since these parts are exactly 
the same as the original protocol. For ‘Verifier Comp. 
Complexity’ (Row 3), Step 1 is added to ProofVerify 
algorithm of the improved protocol, in which the TPA 
computes MHT root. For a tree with n  leaves, each root 
computation includes about 2log n  hash evaluations, where 

n  is the total number of data blocks and 2log n  equals to 

the tree depth. Since cost of computing an ordinary hash 
function which maps an arbitrary string to elements in q , 

is negligible in comparison to the other operations, this term 
has not a big impact on computational cost of TPA. 
Technically, assume the schemes are implemented on a 
personal computer (Intel I5-3470 3.20 GHz processor, 4 GB 
memory and Windows 7 operating system) using MIRACL 
library (see http://www.shamus.ie/index.php?page=home), 
an ordinary hash function takes 0.053 milliseconds, while 
pairing takes 11.515 milliseconds. For example, for 
1000,000 blocks, the root computation cost is about 

21000,000 0.053 = 20 0.053 =1.06log   , which is ignorable 

to ( 2)d Pair  operations required in the verification 

process. Finally, for ‘Comm. Complexity’ (Row 4), in 
improved protocol the server responds the values of 
challenged nodes and their siblings { , }j j j Jid   for MHT 

root authentication in the auditing process. Hence, MHTCom  

is the communication cost introduced by the term 
{ , }j j j Jid  . For a tree with n  leaves, each j  contains at 

most 2log n  nodes equal to the tree depth. Therefore, the 

maximum cost of this term is 2= (| | | |)MHTCom c q log n q . 

All in all, it can be observed from Table 1 that the overall 
performance of the two schemes are comparable to each 
other and the slight extra overhead in improved protocol is 
the cost paid for enhanced security level.   

Table 1 Performance comparison 

                                             Scheme 
Metric 

Oruta (Wang et al., 2014) Improved Oruta (this paper) 

Sign. Gen. Complexity 
1 1

1 ( ) (2 )G GH d k Mul d k Exp     
1 1

1 ( ) (2 )G GH d k Mul d k Exp     

Server Comp. Complexity 

1 1

( )

( ) ( )

q

G G

kH ck Mul

k dc Exp dc Mul



  


 

1 1
( ) ( ) ( )G Gq

kH ck Mul k dc Exp dc Mul     

Verifier Comp. Complexity 
2

1 1

( 2)

(2 ) (2 )

G

G G

cH dMul d Pair

k c Exp k c Mul

  

   
 

2 1
( 2) (2 ) (2 )G GcH dMul d Pair k c Exp k c Mu      

 

Comm. Complexity (2 ) | | (2 | | | |)k d p c q n    (2 ) | | (2 | | | |) MHTk d p c q n Com     

Notes: Parameters d, k and c denote size of the group U, number of elements per block and number of challenged blocks in an 
auditing task, respectively. 
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5 Conclusion 

In this paper, we investigated Oruta, a privacy preserving 
public auditing protocol for shared data in the cloud, and 
showed that by applying the replace and replay attacks, a 
dishonest server can cheat and hide data corruption from the 
TPA’s view. We next improved Oruta to fix the weakness and 
made it secure against the proposed attacks. Our solution 
enjoys the desirable features of the original protocol with 
acceptable computation and communication overheads 
according to our performance evaluation. 
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