
60 Int. J. Internet Protocol Technology, Vol. 15, No. 1, 2022

Copyright © 2022 Inderscience Enterprises Ltd.

Security enhancement of an auditing scheme for
shared cloud data

Reyhaneh Rabaninejad* and
Mahmoud Ahmadian Attari
Department of Electrical Engineering,
K.N. Toosi University of Technology,
Tehran, Iran
Email: rabaninejad@ee.kntu.ac.ir
Email: m_ahmadian@kntu.ac.ir
*Corresponding author

Maryam Rajabzadeh Asaar
Department of Electrical and Computer Engineering,
Science and Research Branch,
Islamic Azad University,
Tehran, Iran
Email: asaar@srbiau.ac.ir

Mohammad Reza Aref
Department of Electrical Engineering,
Sharif University of Technology,
Tehran, Iran
Email: aref@sharif.edu

Abstract: In cloud storage services, public auditing mechanisms allow a third party to verify
integrity of the outsourced data on behalf of data owners without the need to retrieve data from
the cloud server. In some applications, the identity of data users should be kept private from the
third party auditor. Oruta is a privacy preserving public auditing scheme for shared data in the
cloud which exploits ring signatures to protect the identity privacy. In this paper, we propose two
attacks and demonstrate that the scheme is insecure and a dishonest server can arbitrarily tamper
the outsourced data without being detected by the auditor. We also propose a solution to remedy
this weakness with the minimum overhead and without losing any desirable features of the
scheme. Performance evaluation demonstrates acceptable efficiency of improved scheme in
comparison to the original protocol.

Keywords: cloud storage; shared data; public auditing; security analysis.

Reference to this paper should be made as follows: Rabaninejad, R., Attari, M.A., Asaar, M.R.
and Aref, M.R. (2022) ‘Security enhancement of an auditing scheme for shared cloud data’,
Int. J. Internet Protocol Technology, Vol. 15, No. 1, pp.60–68.

Biographical notes: Reyhaneh Rabaninejad received the BSc and MSc degrees in electrical
engineering from the Sharif University of Technology, Tehran, Iran. She is currently working
toward the PhD degree in communications engineering, and is a member of Information Systems
and Security Lab, Sharif University of Technology. Her research interests include network
security and cloud computing security.

Mahmoud Ahmadian Attari received the PhD degree from the University of Manchester, UK, in
electrical engineering. He has been a professor at K.N. Toosi University of Technology since
1979 where he founded the Cryptography and Coding Lab (CCL), in 2003. His research interests
include multifunctional coding, and network security.

Maryam Rajabzadeh Asaar received the MSc and PhD degrees in electrical engineering from the
Sharif University of Technology. She is an assistant professor at Department of Electrical and
Computer Engineering, Science and Research Branch, Islamic Azad University. Her research
interests include cryptographic protocols and network security.

 Security enhancement of an auditing scheme for shared cloud data 61

Mohammad Reza Aref received the MSc and PhD degrees from Stanford University, in electrical
engineering. He has been a professor of electrical engineering at the Sharif University of
Technology since 1995. His research interests include information theory and cryptography, in
which he has published more than 290 technical papers.

1 Introduction

Nowadays, efficient and scalable data storage services
provided by cloud computing have caused a vast data
movement from local storage systems to the cloud. However,
security concerns including data integrity are a serious
challenge for data owners after outsourcing. Provable Data
Possession (PDP) protocols introduced by Ateniese et al.
(2007) are mechanisms for efficient data integrity verification,
in which a Third Party Auditor (TPA) chooses a random subset
of data blocks and sends it as a challenge to the cloud server.
The server generates a proof based on the challenged data
blocks and their signatures and finally the TPA checks the
proof that the server returns. PDP protocols have attracted
significant research in recent years (e.g. Shacham and Waters,
2008; Wang, 2013; Wang et al., 2014; Tian et al., 2015; Li et
al., 2016; Rabaninejad et al., 2020; Li et al., 2017; Wang et al.,
2017; Yu et al., 2017; Rabaninejad et al., 2019; Rabaninejad
et al., 2020).

Supporting efficient dynamic data operations is an
important property in PDP protocols. The first dynamic PDP
scheme was introduced by Ateniese et al. (2008). However,
their scheme restricts number of auditing requests and also it
only supports private verification. Wang et al. (2009) and
Zhang et al. (2017) were the first who introduced PDP schemes
with fully dynamic operations based on Merkle Hash Tree.
Dynamic PDP scheme using the concept of rank information
was researched by Erway et al. (2015). Index Hash Table was
another tool to achieve dynamic data operations in PDP
schemes presented by Zhu et al. (2011, 2013). Other very
recent dynamic PDP proposals include (Shen et al., 2017; Yan
et al., 2017; Cash et al., 2017; Rabaninejad et al., 2019).

Since the users may store sensitive data on the cloud, data
privacy is also another important feature in PDP schemes. In
other words, the TPA should not learn any information about
the data content when he is auditing data integrity on behalf of
users. Random masking technique proposed by Wang et al.
(2013) addresses this problem. Yu et al. also designed an
Identity-based PDP scheme with zero-knowledge data privacy
(Yu et al., 2017).

With data sharing services such as Dropbox and Google
Drive, data owners are able to conveniently share their data
with a group of users. Oruta is a protocol proposed by Wang et
al. (2014) which enables shared-data auditing. Oruta is based
on ring signatures (Boneh et al., 2003) to provide identity
privacy, which means that not only the content of shared-data,
but also the identities of users are kept private from the public
verifier. Yu et al. (2014) proposed an attack on Oruta. In their
attack, an active adversary acts as the man in the middle attack
and arbitrarily alters the data and also accordingly modifies the

auditing proof generated by server such that the proof is
verified by the TPA, although the data have been polluted. To
fix this problem, they suggested that the server securely signs
its proof, so that the active adversary is no more able to modify
the proof generated by the server and therefore the corruption is
detected by the TPA. Panda (Wang et al., 2013), is another
shared-data auditing protocol proposed by Wang et al. which
provides efficient user revocation. However, it lacks data and
identity privacy properties which were provided by Oruta.
Another shared data auditing scheme utilising polynomial-
based authentication tags was proposed by Yuan and Yu (2014,
2015). In their scheme, user revocation is inefficient since it
involves three parties including the group manager, the cloud
server and the TPA (Yuan and Yu, 2015). Yu et al. (2016)
showed that the scheme in Yuan and Yu (2015) is insecure
against collusion of the cloud server and a revoked user. Jiang
et al. (2016) addressed the problem of secure user revocation in
shared data auditing by employing the group signatures (Boneh
and Shacham, 2004). However, the scheme is inefficient due to
the expensive computation cost of generating group signatures
and costly auditing operations. Recently, Rabaninejad et al.
proposed a lightweight public shared data auditing protocol
which employs collusion resistant proxy re-signature and
preserves users’ identity privacy, enables efficient user
revocation, and is secure against collusion of the server and
revoked users (Rabaninejad et al., 2019).

In this paper, we propose two attacks on Oruta
(Wang et al., 2014), named as replace and replay attacks, and
show that a dishonest server can forge a proof on the corrupted
data which passes the verification phase. In the replace attack
that some data blocks are corrupted, the server can replace the
auditing message such that the challenged set of blocks does
not include the corrupted ones. Also, in the replay attack that
some blocks are not fresh, the server can generate the proof
based on the old data blocks and in both cases the generated
proof passes the verification equation. We note that the
improvement suggested in Yu et al. (2014) does not make
Oruta secure against our attacks. Specifically, since the cloud
server is the attacker itself, therefore it can sign the forged
proof generated based on corrupted data and the TPA still
verifies the forged proof. In the next step, we develop a simple
improvement in the scheme without losing any desirable
features and demonstrate that this improvement makes Oruta
secure against the proposed attacks.

2 The Oruta protocol

In this section, we get a glimpse of the Oruta scheme
(Wang et al., 2014). Three parties are involved in the

62 R. Rabaninejad et al.

protocol: cloud server, third party auditor (TPA) and data
users. Let U denote the group of authorised users with d
members who have access to the shared data and can
modify it. Shared data blocks and their signatures are
outsourced to the cloud server, and the TPA, on behalf of
users, audits the integrity of the data stored in the cloud.

Setup. Let 1G , 2G and TG be multiplicative cyclic groups of

prime order p , with 1g and 2g as generators of 1G and 2G ,

respectively. Let 1 2: Te G G G  be a bilinear map, and

2 1: G G  be an isomorphism such that 2 1() =g g . Also

three hash functions *
1 1:{0,1}H G , *

2 :{0,1} qH Z and

1: ph G Z are used in the scheme. We note that q is a prime

much smaller than p . In order to outsource shared data M , it

is divided into n blocks as 1= (,...,)nM m m . Then, each block

jm is also divided into k sectors in pZ . So, M can be

represented as a n k matrix. Oruta consists of five algorithms
which are reviewed in the following:

keyGen. For user iu U , the public and private key pair is:

2(,) = (= ,)
xi

i ipk sk w g x , where ix is chosen randomly from

pZ . The original user also generates a public aggregate key

1= (,...,)kpak   , where 1l r G  .

SigGen. Using this algorithm, a user su generates a ring

signature on a block jm . Consider block ,1 ,= (,...,)j j j km m m

with identifier jid . The signer su , using her private key ssk ,

public aggregate key pak , and the public key of the other

1d  users, does the following steps:

1 Aggregate block jm using pak :

,
1 1

=1

= () .
k

m j l
j j l

l

H id G   (1)

2 The ring signature of block jm is

,1 , 1= (,...,) d
j j j d G    . For all i s , su chooses

random ,j i pa Z , and sets ,
, 1=

a j i
j i g . For =i s , su

calculates ,j s using equation (2).

1/

, 1
,

= ()
()

xj s
j s a j i

i
i s

G
w










 (2)

Modify. A user in U can insert, delete or update the j -th

block of the data as described below. The identifier of block

jm is defined as, = { , }j j jid v r , where jv is the virtual

index of the block and 2= ()j j jr H m v .

 Insert. The user, in order to insert a new block jm  into

the outsourced data, computes 1= () / 2j j jv v v   ,

2= ()j j jr H m v   , and sets the new block identifier as

= { , }j j jid v r   . Next, he signs jm  and sends

{ , , }j j jm id    to the server.

 Delete. To delete a block jm , the user only requires to

send the block index to the server. Accordingly, the
server deletes { , , }j j jm id  from its storage.

 Update. The user, in order to update the j -th block

with a new value jm  , computes 2= ()j j jr H m v   and

sets = { , }j j jid v r  , where the virtual index jv remains

unchanged. Next, he signs jm  and sends { , , }j j jm id   

to the server.

ProofGen. In order to audit the data integrity, the TPA first
chooses a random c -element subset [1,]J n as the block

indices to be challenged in the auditing process. Then for
each j J , the TPA chooses a random value j qy Z and

sends the auditing message {(,)}j j Jj y  to the server.

The server, after receiving the auditing message
{(,)}j j Jj y  , generates an auditing proof through the following

procedure:

1 For [1,]l k , the server calculates 1=
rl

l l G   , where

l r qr Z and l is a part of public aggregate key pak .

2 For [1,]l k , the server computes a linear function of

challenged blocks as ,= ()l j j l l l pj J
y m r h Z 


  .

3 The server, aggregates the challenged block’s

signatures as ,=
y j

i j ij J
 

 , for [1,]i d .

Finally, the server sends back the auditing proof
{ , , ,{ } }j j Jid    to the TPA, where 1= (,...,)k   ,

1= (,...,)k   and 1= (,...,)d   .

ProofVerify. The TPA verifies the server’s proof
{ , , ,{ } }j j Jid    through equation (3). If the equation

holds, the verification passes, otherwise it fails. The
verification is done using the auditing message {(,)}j j Jj y  ,

the public aggregate key and all the users public keys.

?
()

1 2 2
=1 =1 =1

(() . ,) =((,)). (,)
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


    (3)

3 Security analysis of Oruta

Two kinds of threats related to the integrity of shared data
are considered in Wang et al. (2014). First, an adversary
may try to corrupt the integrity of shared data. Second, the
cloud server may inadvertently corrupt (or even remove)
data in its storage due to hardware failures or human errors.
Making matters worse, the cloud server tries to hide such
data corruptions from the users in order to save its

 Security enhancement of an auditing scheme for shared cloud data 63

reputation and avoid losing profits of its services. In this
section, we propose two attacks and show that a dishonest
server can forge a proof on the corrupted data which passes
verification in equation (3). We then propose a simple fix to
make Oruta secure against the proposed attacks.

3.1 Replace attack

Assume that a block tm of the data stored at the cloud

server is corrupted. Upon receiving the auditing message
{(,)}j j Jj y  , where t J , the server replaces the set J

with a set *J such that *t J –i.e., replaces the corrupted

block tm with another intact block in *J –, and generates

auditing proof for the auditing message *{(,)}j j J
j y


, with

the same jy values as the original auditing message. More

specifically, the auditing proof is generated as below:

1 For [1,]l k , l values are calculated as before.

2 For [1,]l k , the server computes
*

* ,= ()l j j l l lj J
y m rh 


 .

3 For [1,]i d , *
* ,=

y j
i j ij J
 

 .

Therefore, the only difference with the normal auditing
proof explained in Section 2, is that J is replaced with *J
in Steps 2 and 3. Finally, the server returns

* *
*{ , , ,{ } }j j J

id  


 as the auditing proof to the TPA. Next,

the TPA checks equation (4):

?* ()*
1 2 2

=1 =1 =1

(() . ,)=((,)). (,)
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


    (4)

It can be seen that because the indices j J are not directly

used in the verification equation, and the coefficients jy

used by the server are the same as the original auditing
message, the proof generated for the set *J passes the
TPA’s verification. So, the server could successfully make
the equation hold while the data have been corrupted.

3.2 Replay attack

As mentioned before, Oruta supports dynamic operations and a
user can insert, delete or update a block in shared data stored at
the cloud server. The second attack arises here when a user
wants to update the tht block with a new value tm  and sends

{ , , }t t tm id    to the cloud server. Consider a scenario that an

adversary interrupts the user–server line and this update request
is not received by the server. Also, consider a scenario that the
server inadvertently does not follow data update requests due to
hardware failures or human errors or even denial of service
happens when a burst of update requests are received by the
cloud. These scenarios are possible according to threat model
of Oruta paper (Wang et al., 2014). Now, we show that in case

these scenarios occur, the dishonest server can generate a valid
proof in response to the TPA based on the old values
{ , , }t t tm id  . Assume that the auditing message {(,)}j j Jj y  ,

where t J is sent to the server. The server generates a proof

for this auditing message, but based on the old version of tht
block as follows:

1 For [1,]l k , the server calculates l values as before.

2 For [1,]l k , *
,= ()l j j l l lj J

y m r h 


 ; where for

=j t , ,t lm is considered (instead of ,t lm).

3 For [1,]i d , *
,=

y j
i j ij J
 

 ; where for =j t , ,t i is

considered (instead of ,t i ).

The auditing proof returned by the server is * *{ , , ,{ } }j j Jid    ,

where for =j t , tid is sent (instead of tid ). The TPA checks

equation (5).

?* ()*
1 2 2

=1 =1 =1

(() . ,) =((,)). (,)
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


    (5)

Based on the above equation, the TPA is convinced by the
server that the data integrity is not violated; while in fact the
data is not fresh and the update process in not followed
properly.

4 An improved protocol

In this section, we first describe an improved protocol to
resolve the weakness discussed in the previous section. Next,
we discuss how the improved protocol withstands the
aforementioned attacks. Finally, we evaluate the performance
of improved protocol.

4.1 Improved Oruta

The weakness causes these attacks work, is that in Oruta, the
TPA has no information about the verification metadata and
this enables the server to fool the TPA in the verification
process. Here, we suggest a simple fix to overcome the
weakness. The idea is to leverage an authenticated data
structure like Merkle Hash Tree (MHT) (Wang et al., 2011;
Rabaninejad et al., 2019), where the updated MHT root is sent
to the TPA. In the following, we first review MHT
authentication structure and then provide a detailed explanation
of scheme modifications.

 – Merkle Hash Tree

A Merkle Hash Tree (MHT) (Merkle, 1980) is a tree in which
leaf nodes are labelled with the hashes of authentic elements.
Also, every non-leaf node is the cryptographic hash of its

64 R. Rabaninejad et al.

child nodes, as shown in Figure 1. For example, consider a
verifier who possess the root rh requests to authenticate the

values 1 3 8{ , , }T T T . The prover returns 1 3 8{ , , }T T T together with

1 2= h , 3 4= h , and 8 7= { , }eh h as Auxiliary

Authentication Information (AAI). The verifier uses AAI to
check the integrity of 1 3 8{ , , }T T T as follows:

1 1 3 3 8 8= (), = (), = ()h h T h h T h h T

1 2 3 4 7 8= (,), = (,), = (,)c d fh h h h h h h h h h h h

= (,), = (,)a c d b e fh h h h h h h h

= (,)r a bh h h h

Finally, if =r rh h , it is proved that 1 3 8{ , , }T T T are unaltered.

It should be noted that MHT leaves are considered as a left-
to-right sequence, which makes it possible to authenticate
both values and positions of the data blocks.

Figure 1 An example of data authentication using MHT

– Scheme modifications. The improved protocol is as
follows. Here, we only emphasise on modifications and the
unmodified parts are referred to the original protocol to
avoid repetition:

Setup. (.)H is a hash function employed in MHT

authenticated data structure and is defined as
*:{0,1} qH Z . Other parameters are chosen the same as

Setup algorithm of the original protocol.

keyGen. This algorithm is the same as the original protocol.

SigGen. The signature ,1 , 1= (,...,) d
j j j d G    on block

jm with identifier jid is generated exactly the same as the

original protocol. The difference here is that a MHT
authenticated data structure is produced with the nodes as
hash of identifiers [1,]{ }j j nid  related to the data file

1= (,...,)nM m m . Also, (,)rootroot  respectively denotes

MHT root and its signature, which are simultaneously
forwarded to both the server and the TPA. For each new
block (,)j jm id , the MHT root is re-computed and the new

root is forwarded to both the server and the TPA, so that

they replace root as the last version of the MHT root in

their storage.

Modify.

 Insert.

(a) The user, in order to insert a new block jm  into thj

position of the outsourced data, computes

1= () / 2j j jv v v   , 2= ()j j jr H m v   , and sets

the new block identifier as = { , }j j jid v r   . Next, he signs

jm  and sends { , , }j j jm id    to the server. This step was

the same as the original protocol. But other steps are
different.

(b) The server inserts { , , }j j jm id    in the thj row and also

inserts ()jH id  as the thj leaf of the MHT,

(c) The server regenerates MHT root *root and forwards
*(, , ,)j j rootid root to the user.

(d) The user first uses jid and its AAI j to compute root ,

and checks whether the returned root is a valid signature

on root . Second, he computes *'root and checks whether
* *' =root root . If it is so, he generates *root

 and forwards

*
*(,)

root
root  to both the server and the TPA. The insert

operation is accomplished.

 Delete.

(a) The user sends a request to delete a block jm from the

outsourced data.

(b) Upon receiving delete request, the server deletes thj

row { , , }j j jm id  and updates the MHT using the same

procedure explained in Insert operation.

 Security enhancement of an auditing scheme for shared cloud data 65

 Update.

(a) The user sends { , , }j j jm id    to the server, as a request

to update the j -th block with a new value jm  .

(b) Upon receiving update request, the server updates the
thj row and also updates the MHT using the same

procedure explained in Insert operation.

ProofGen. In order to audit the data integrity, the TPA first
chooses a random c -element subset [1,]J n as the block

indices to be challenged in the auditing process. Then for
each j J , the TPA chooses a random value j qy Z and

sends the auditing message {(,)}j j Jj y  to the server.

Upon receiving the auditing message {(,)}j j Jj y  from the

TPA, the server generates an auditing proof through the
following procedure:

1 For [1,]l k , the server calculates 1=
rl

l l G   , where

l r qr Z and l is a part of public aggregate key pak .

2 For [1,]l k , the server computes a linear function of

challenged blocks as ,= ()l j j l l l pj J
y m r h Z 


  .

3 The server, aggregates the challenged block’s

signatures as ,=
y j

i j ij J
 

 , for [1,]i d .

Finally, the server sends back the auditing proof
{ , , ,{ , } }j j j Jid    to the TPA, where 1= (,...,)k   ,

1= (,...,)k   and 1= (,...,)d   . Besides, j is the set of

Auxiliary Authentication Information (AAI) corresponding
to the challenged nodes in MHT.

ProofVerify. This algorithm includes two following steps:

1 In this step, the TPA uses parameters { , }j j j Jid  which

are returned by the server as part of the proof. Specifically,
the TPA calculates MHT root root using the nodes
{ ()}j j JH id  and its AAI set { }j j J . If root is equal to

root (the last MHT root stored by the TPA), it means that
the block identifiers { }j j Jid  returned by the server are

the exact values corresponding to the challenged blocks.
Consequently, this step prevents replace/replay attacks
which will be discussed in the security subsection.

2 The TPA checks equation (6) to verify the correctness
of the proof { , , ,{ } }j j Jid    . If the equation holds,

the verification passes, otherwise it fails.

?
()

1 2 2
=1 =1 =1

(() . ,) =((,)). (,)
k d k

y hj l l
j l i i l

j J l i l

e H id g e w e g
   


    (6)

We note that the second step is the same as ProofVerify
algorithm of the original scheme but the first step is different.
More precisely, in the first step, the TPA uses parameters
{ , }j j j Jid  exactly in the same indices { } j Jj  it had

challenged the server, in order to generate MHT root root . In
case the values { , }j j j Jid  are not related to the indices

{ } j Jj  (replace attack) or are not the updated values (replay

attack), root root calculated by the TPA is is different from
root (the last MHT root stored by the TPA) and the
verification fails. In other words, Step 1 fixes the weakness in
the basic scheme since Merkle Hash Tree is the verification
metadata that helps the TPA to detect a forged proof.

4.2 Security of improved Oruta

Here, we discuss how improved Oruta resists against
replace/replay attacks proposed in Section 3.

Security against replace Attack. In this attack, the cloud
server replaced corrupted block tm with another intact

block, lets name it *t
m , and generated auditing proof for the

auditing message *{(,)}j j J
j y


. So, the set *J is equal to set

J except that index t is replaced with *t . The server

returns * *
*= { , , ,{ , } }j j j J

P id  


 as the auditing proof to

the TPA. Now, we show that Step 1 of ProofVerify
algorithm described above fails: the TPA calculates MHT
root root using the values *{ ()}j j J

H id


 as the MHT nodes

and the AAI set *{ }j j J
 , which are returned by the server.

Technically, the TPA puts the values *{ ()}j j J
H id


 in j J

positions of the merkle hash tree nodes. Therefore, *()tH id

is placed as the tht node. Obviously, root is not equal to

root (the real MHT root), since *()tH id is not equal to

()tH id (the correct value for tht node of the MHT).

Therefore, before the TPA gets to check equation (6) to
verify the correctness of the proof in Step 2, Step 1 of
ProofVerify algorithm fails and the replace attack is
detected in the improved protocol.

Security against replay Attack. The argument here is the
same with slight differences. Replay attack considered a
case when a block tm is not properly updated according to

scenarios explained in 3.2. In case that the cloud server
received an auditing message {(,)}j j Jj y  , where t J , the

server generated a proof based on the old version of block

tm and returned auditing proof * *{ , , ,{ , } }j j j Jid    ,

where for =j t , tid is sent (instead of updated tid ). Now,

we show that Step 1 of ProofVerify algorithm described
above fails: the TPA calculates MHT root root using the
values { ()}j j JH id  as the MHT nodes and the AAI set

{ }j j J , which are returned by the server. Obviously, root

is not equal to root (the real MHT root), since ()tH id (the

old value) is not equal to ()tH id  (the correct updated value

for tht node of the MHT). Therefore, before the TPA gets to
check equation (6) to verify the correctness of the proof in

66 R. Rabaninejad et al.

Step 2, Step 1 of ProofVerify algorithm fails and the replay
attack is detected in the improved protocol.

To summarise, if the server replaces the challenged blocks
with other blocks (replace attack) or replays the old versions of
the blocks (replay attack) in generating the auditing proof, the
MHT root computed by the TPA will be different from the real
MHT root, and the verification fails. Therefore, the improved
protocol is secure against the proposed attacks without losing
any desirable features.

4.3 Performance evaluation

In terms of performance, the improved Oruta protocol has
employed Merkle Hash Tree (MHT) in its construction in
comparison to original Oruta protocol. Here, through a detailed
overhead analysis, we demonstrate that the computation/
communication costs caused by MHT are acceptable for the
users, the server, and the TPA. Hence, improved Oruta
achieves comparable efficiency to the original Oruta protocol,
but with enhanced security level.

Table 1 presents computation overhead for the users, the
cloud server and the TPA and also communication overhead,
for both Oruta and Improved Oruta schemes. In this table, the
computational complexity of hash function, modular
multiplications, exponentiations, and pairings are denoted by
H, Mul , Exp , and Pair , respectively. Also, the index of the

operation denotes the group that the operation is defined in, for
example

1GMul means multiplication over 1G . Furthermore,

as additions have negligible cost, they are omitted from
overhead analysis.

First column of Table 1 represents overhead analysis of
the original Oruta protocol. An explanation on how these
overheads are calculated can be found in Rabaninejad et al.
(2019). For improved Oruta which is denoted in the second
column, the terms ‘Sign. Gen. Complexity’ (Row 1) and
‘Server Comp. Complexity’ (Row 2) are equal to the ones

for Oruta protocol, which is a direct result of protocol
description in Subsection 4.1, since these parts are exactly
the same as the original protocol. For ‘Verifier Comp.
Complexity’ (Row 3), Step 1 is added to ProofVerify
algorithm of the improved protocol, in which the TPA
computes MHT root. For a tree with n leaves, each root
computation includes about 2log n hash evaluations, where

n is the total number of data blocks and 2log n equals to

the tree depth. Since cost of computing an ordinary hash
function which maps an arbitrary string to elements in q ,

is negligible in comparison to the other operations, this term
has not a big impact on computational cost of TPA.
Technically, assume the schemes are implemented on a
personal computer (Intel I5-3470 3.20 GHz processor, 4 GB
memory and Windows 7 operating system) using MIRACL
library (see http://www.shamus.ie/index.php?page=home),
an ordinary hash function takes 0.053 milliseconds, while
pairing takes 11.515 milliseconds. For example, for
1000,000 blocks, the root computation cost is about

21000,000 0.053 = 20 0.053 =1.06log   , which is ignorable

to (2)d Pair operations required in the verification

process. Finally, for ‘Comm. Complexity’ (Row 4), in
improved protocol the server responds the values of
challenged nodes and their siblings { , }j j j Jid  for MHT

root authentication in the auditing process. Hence, MHTCom

is the communication cost introduced by the term
{ , }j j j Jid  . For a tree with n leaves, each j contains at

most 2log n nodes equal to the tree depth. Therefore, the

maximum cost of this term is 2= (| | | |)MHTCom c q log n q .

All in all, it can be observed from Table 1 that the overall
performance of the two schemes are comparable to each
other and the slight extra overhead in improved protocol is
the cost paid for enhanced security level.

Table 1 Performance comparison

 Scheme
Metric

Oruta (Wang et al., 2014) Improved Oruta (this paper)

Sign. Gen. Complexity
1 1

1 () (2)G GH d k Mul d k Exp   
1 1

1 () (2)G GH d k Mul d k Exp   

Server Comp. Complexity

1 1

()

() ()

q

G G

kH ck Mul

k dc Exp dc Mul



  



1 1
() () ()G Gq

kH ck Mul k dc Exp dc Mul   

Verifier Comp. Complexity
2

1 1

(2)

(2) (2)

G

G G

cH dMul d Pair

k c Exp k c Mul

  

   

2 1
(2) (2) (2)G GcH dMul d Pair k c Exp k c Mu      

Comm. Complexity (2) | | (2 | | | |)k d p c q n   (2) | | (2 | | | |) MHTk d p c q n Com   

Notes: Parameters d, k and c denote size of the group U, number of elements per block and number of challenged blocks in an
auditing task, respectively.

 Security enhancement of an auditing scheme for shared cloud data 67

5 Conclusion

In this paper, we investigated Oruta, a privacy preserving
public auditing protocol for shared data in the cloud, and
showed that by applying the replace and replay attacks, a
dishonest server can cheat and hide data corruption from the
TPA’s view. We next improved Oruta to fix the weakness and
made it secure against the proposed attacks. Our solution
enjoys the desirable features of the original protocol with
acceptable computation and communication overheads
according to our performance evaluation.

Acknowledgement

This work was partially supported by Iran NSF under Grant
No. 96.53979.

References

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,
Peterson, Z. and Song, D. (2007) ‘Provable data possession at
untrusted stores’, Proceedings of the 14th ACM conference on
Computer and communications security, ACM 2007, pp.598–609.

Ateniese, G., Di Pietro, R., Mancini, L.V. and Tsudik, G. (2008)
‘Scalable and efficient provable data possession’, Proceedings of
the 4th international conference on Security and privacy in
communication netowrks, ACM.

Boneh, D. and Shacham, H. (2004) ‘Group signatures with verifier-
local revocation’, Proceedings of the 11th ACM conference on
Computer and communications security, ACM, pp.168–177.

Boneh, D., Gentry, C., Lynn, B. and Shacham, H. (2003) ‘Aggregate
and verifiably encrypted signatures from bilinear maps’,
International Conference on the Theory and Applications of
Cryptographic Techniques: Advances in Cryptology
(EUROCRYPT’03), Springer, pp.416–432.

Cash, D., Küpçü, A. and Wichs, D. (2017) ‘Dynamic proofs of
retrievability via oblivious ram’, Journal of Cryptology, Vol. 30,
No. 1, pp.22–57.

Erway, C., Küpçü, A., Papamanthou, C. and Tamassia, R. (2015)
‘Dynamic provable data possession’, ACM Transactions on
Information and System Security (TISSEC), Vol. 17, No. 4, p.15.

Jiang, T., Chen, X. and Ma, J. (2016) ‘Public integrity auditing for
shared dynamic cloud data with group user revocation’, IEEE
Transactions on Computers, Vol. 65, No. 8, pp.2363–2373.

Li, F., Xie, D., Gao, W., Chen, K., Wang, G. and Metere, R. (2017) ‘A
certificateless signature scheme and a certificateless public
auditing scheme with authority trust level 3+’, Journal of
Ambient Intelligence and Humanized Computing, pp.1–10.

Li, J., Zhang, L., Liu, J.K., Qian, H. and Dong, Z. (2016) ‘Privacy-
preserving public auditing protocol for low-performance end
devices in cloud’, IEEE Transactions on Information Forensics
and Security, Vol. 11, No. 11, pp.2572–2583.

Merkle, R.C. (1980) ‘Protocols for public key cryptosystems’, Security
and Privacy, 1980 IEEE Symposium on, pp.122–122.

Rabaninejad, R., Ahmadian, M., Asaar, M.R. and Aref, M.R. (2019)
‘A lightweight auditing service for shared data with secure user
revocation in cloud storage’, IEEE Transactions on Services
Computing, doi:10.1109/TSC.2019.2919627.

Rabaninejad, R., Asaar, M.R., Attari, M.A. and Aref, M.R. (2019) ‘An
identity-based online/offline secure cloud storage auditing
scheme’, Cluster Computing, pp.1–14, doi:10.1007/s10586-019-
03000-5.

Rabaninejad, R., Attari, M.A., Asaar, M.R. and Aref, M.R. (2019)
‘Comments on a lightweight cloud auditing scheme:
Security analysis and improvement’, Journal of
Network and Computer Applications, Vol. 139, pp.49–56,
doi:10.1016/j.jnca.2019.04.012.

Rabaninejad, R., Attari, M.A., Asaar, M.R. and Aref, M.R. (2020) ‘A
lightweight identity-based provable data possession
supporting users’ identity privacy and traceability’, Journal of
Information Security and Applications, Vol. 51, 102454,
doi:10.1016/j.jisa.2020.102454.

Shacham, H. and Waters, B. (2008) ‘Compact proofs of
retrievability’, International Conference on the Theory and
Application of Cryptology and Information Security,
pp.90–107.

Shen, J., Shen, J., Chen, X., Huang, X. and Susilo, W. (2017) ‘An
efficient public auditing protocol with novel dynamic structure
for cloud data’, IEEE Transactions on Information Forensics and
Security, Vol. 12, No. 10, pp.2402–2415.

Tian, H., Chen, Y., Chang, C., Jiang, H., Huang, Y., Chen, Y. and Liu,
J. (2015) ‘Dynamic-hash-table based public auditing for secure
cloud storage’, IEEE Transactions on Services Computing,
Vol. 10, No. 5, pp.701–714.

Wang, B., Li, B. and Li, H. (2013) ‘Panda: public auditing for
shared data with efficient user revocation in the cloud’,
IEEE Transactions on Services Computing, Vol. 8, No. 1,
pp.92–106.

Wang, B., Li, B. and Li, H. (2014) ‘Oruta: privacy-preserving public
auditing for shared data in the cloud’, IEEE Transactions on
Cloud Computing, Vol. 2, No. 1, pp.43–56.

Wang, B., Li, H., Liu, X., Li, F. and Li, X. (2014) ‘Efficient public
verification on the integrity of multi-owner data in the cloud’,
Journal of Communications and Networks, Vol. 16, No. 6,
pp.592–599.

Wang, C., Chow, S.S.M., Wang, Q., Ren, K. and Lou, W. (2013)
‘Privacy-preserving public auditing for secure cloud storage’,
IEEE Transactions on computers, Vol. 62, No. 2,
pp.362–375.

Wang, H. (2013) ‘Proxy provable data possession in public clouds’,
IEEE Transactions on Services Computing, Vol. 6, No. 4,
pp.551–559.

Wang, Q., Wang, C., Li, J., Ren, K. and Lou, W. (2009) ‘Enabling
public verifiability and data dynamics for storage security
in cloud computing’, Computer Security–ESORICS 2009,
pp.355–370.

Wang, Q., Wang, C., Ren, K., Lou, W. and Li, J. (2011) ‘Enabling
public auditability and data dynamics for storage security in cloud
computing’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 22, No. 5, pp.847–859.

Wang, Y., Wu, Q., Qin, B., Tang, S. and Susilo, W. (2017)
‘Online/offline provable data possession’, IEEE Transactions
on Information Forensics and Security, Vol. 12, No. 5,
pp.1182–1194.

Yan, H., Li, J., Han, J. and Zhang, Y. (2017) ‘A novel efficient remote
data possession checking protocol in cloud storage’, IEEE
Transactions on Information Forensics and Security, Vol. 12,
No. 1, pp.78–88.

68 R. Rabaninejad et al.

Yu, Y., Au, M.H., Ateniese, G., Huang, X., Susilo, W., Dai, Y. and
Min, G. (2017) ‘Identity-based remote data integrity checking
with perfect data privacy preserving for cloud storage’, IEEE
Transactions on Information Forensics and Security, Vol. 12,
No. 4, pp.767–778.

Yu, Y., Li, Y., Ni, J., Yang, G., Mu, Y. and Susilo, W. (2016)
‘Comments on public integrity auditing for dynamic data sharing
with multiuser modification’, IEEE Transactions on Information
Forensics and Security, Vol. 11, No. 3, pp.658–659.

Yu, Y., Niu, L., Yang, G., Mu, Y. and Susilo, W. (2014)’ On the
security of auditing mechanisms for secure cloud storage’, Future
Generation Computer Systems, Vol. 30, pp.127–132.

Yuan, J. and Yu, S. (2014) ‘Efficient public integrity checking for
cloud data sharing with multi-user modification’, INFOCOM,
2014 Proceedings IEEE, pp.2121–2129.

Yuan, J. and Yu, S. (2015) ‘Public integrity auditing for dynamic
data sharing with multiuser modification’, IEEE Transactions
on Information Forensics and Security, Vol. 10, No. 8,
pp.1717–1726.

Zhang, H., Tu, T. et al. (2017) ‘Dynamic outsourced auditing
services for cloud storage based on batch-leaves-authenticated
merkle hash tree’, IEEE Transactions on Services
Computing.

Zhu, Y., Ahn, G., Hu, H., Yau, S.S., An, H.G. and Hu, C. (2013)
‘Dynamic audit services for outsourced storages in clouds’, IEEE
Transactions on Services Computing, Vol. 6, No. 2, pp.227–238.

Zhu, Y., Wang, H., Hu, Z., Ahn, G., Hu, H. and Yau, S.S. (2011)
‘Dynamic audit services for integrity verification of outsourced
storages in clouds’, Proceedings of the 2011 ACM Symposium on
Applied Computing, pp.1550–1557.

