
   

  

   

   
 

   

   

 

   

   Int. J. Student Project Reporting, Vol. 1, No. 1, 2022 43    
 

   Copyright © 2022 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Secondary structure prediction of RNA using 
convolutional neural networks 

Bisera Chauleva* 
Department of Computer Science and Engineering, 
University for Information Science and Technology 
‘St. Paul the Apostole’ Ohrid, North Macedonia 
Email: bisera.cauleva@cse.uist.edu.mk 
*Corresponding author 

Atanas Hristov 
Department of Computer Systems, Complex and Networks, 
University for Information Science and Technology 
‘St. Paul the Apostole’ Ohrid, North Macedonia 
Email: atanas.hristov@uist.edu.mk 

Ustijana Rechkoska Shikoska 
Department of Electrical Engineering and Computer Science, 
University for Information Science and Technology 
‘St. Paul the Apostole’ Ohrid, North Macedonia 
Email: ustijana.r.shikoska@uist.edu.mk 

Ljubinka Gjergjeska Sandjakoska 
Department of Machine Learning, 
University for Information Science and Technology 
‘St. Paul the Apostole’ Ohrid, North Macedonia 
Email: ljubinka.gjergjeska@uist.edu.mk 

Abstract: One of the most popular bioinformatics and genetics topics is the 
secondary structure prediction of RNA since it is the first step in developing 
new therapeutic and pharmacological methods. The crucial point in these 
branches is the development time and accuracy. The work presented in this 
paper will look upon the state-of-the-art techniques that are currently used for 
prediction. The deep learning method is evaluated to speed up and to increase 
accuracy level. Furthermore, modern convolutional neural networks known as 
residual network, as a secondary structure prediction of RNA, are considered as 
a more accurate and efficient approach. Finally, a comparison of evaluating 
results with existing methods is performed, which will prove the successfulness 
of the proposed algorithm, taken into consideration the benchmark evaluation. 

Keywords: ribonucleic acid; RNA; secondary structure prediction; 
bioinformatics; artificial intelligence; deep learning; convolutional neural 
networks; PyTorch; classification; residual networks; ResNet; artificial neural 
networks. 



   

 

   

   
 

   

   

 

   

   44 B. Chauleva et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Reference to this paper should be made as follows: Chauleva, B., Hristov, A., 
Shikoska, U.R. and Sandjakoska, L.G. (2022) ‘Secondary structure prediction 
of RNA using convolutional neural networks’, Int. J. Student Project 
Reporting, Vol. 1, No. 1, pp.43–67. 

Biographical notes: Bisera Chauleva obtained her Bachelors degree from the 
Faculty for Computer Science and Engineering, University of Information 
Science and Technology ‘St. Paul the Apostole’ Ohrid, N. Macedonia. She is 
currently an MSc student. Her research interest is centred on the usage of the 
machine learning algorithms for the purpose of solving bioinformatic’s 
problems. She has one research paper considering parallelisation for speed up 
of RNA secondary structure prediction methods. 

Atanas Hristov obtained his Doctors degree from Computer Systems and 
Networks, Technical University of Sofia in 2013 and worked over  
Post-Doctoral Fellowship in the University of Antwerpen, Belgium September 
2015–June 2016. He has coauthored over 25 publications interested into 
supercomputing, parallelisation, big data, algorithms for AI and ML, networks 
etc. He works as an Associate Professor for subjects of: programming, 
operating systems, cryptography, network architectures, communication 
protocols, parallel programming, big data analytics, high-performance 
computing at University of Information Science and Technology ‘St. Paul the 
Apostole’ Ohrid, N. Macedonia. 

Ustijana Rechkoska Shikoska obtained her Doctoral degree from the 
Department of Electrical Engineering and Computer Science from University 
of ‘Kiril and Metodius’ Skopje, N. Macedonia. She has coauthored more than 
35 publications with consideration of areas such as: databases, algorithms, 
computer communication networks, internet security etc. She also works as an 
Associate Professor as well as the Dean of Faculty for Computer Science and 
Engineering at Univeristy for Information Science and Technology ‘St. Paul 
the Apostole’ Ohird, N. Macedonia. 

Ljubinka Gjergjeska Sandjakoska obtained her MSc degree from University Ss 
Cyril and Methodius, Faculty of Mechanical Engineering – Skopje where she is 
working on Doctors degree considering Artificial Networks and Machine 
Learning. She has coauthored more than 15 research papers considering 
different topics among which: big data analytics, deep neural networks, 
cognitive computing, drug development etc. She works as an assistant on the 
University of Information Science and Technology ‘St. Paul the Apostole’ 
Ohrid, N. Macedonia, for the subjects: discrete mathematics, pattern 
recognition, artificial intelligence, operation research, and knowledge based 
systems. 

 

1 Introduction 

Ribonucleic acid (RNA) as a complex molecule, takes function in cellular protein 
synthesis, additionally acting as deoxyribonucleic acid (DNA) in some viruses. RNA is 
known for the importance as element after DNA, based on the usage in encoding, and 
decoding genes, as well as regulation of their expression in the living organisms. Since 
RNA receptors and its final structure are detected with tertiary structure formation, 
secondary structure of the RNA must be used. 
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RNA is constructed of ribose nucleotides connected with phosphor-di-ester bonds 
forming strands of varying lengths. The nitrogenous bases in RNA are adenine, guanine, 
cytosine, and uracil, where the uracil replaces thymine in DNA. The presence of  
self-complementary sequences in the RNA strand leads to internal base-pairing and 
folding onto itself. The chain forms complex structures that consist of different kinds of 
loops, which is the aim of the prediction algorithm. 

Starting from the beginning, X-ray diffraction and nuclear magnetic resonance 
(NMR) were first methods used for structure prediction of RNA. Later, due to 
inefficiency and impracticality, new methods based on dynamical programming were 
developed. Some of the mostly used methods in practice are: Nussinov-Jacobson 
algorithm (Zhao and Sahni, 2016), Zuker’s (Palkowski and Bielecki, 2016) MFE 
algorithm, maximum expected accuracy (MEA) algorithm (Clote et al., 2017), 
pseudoknotted algorithms (Mustoe and Buasan, 2018), etc. 

However, most of these methods have enough accuracy, and speed in the prediction 
process, but they are falling down once working with higher amount of sequences, as 
well as longer nucleotides are taken in consideration. 

Figure 1 Flowchart of network created for secondary structure prediction of RNA, upper blocks 
are showing the training process and creation of model, lower part blocks for testing 
purposes (see online version for colours) 

 

Since, for solving this problem, following paper proposes CNN approach based on a 
more modern type known as residual networks (ResNet). This approach will be tested 
over 10.000 sequences with lengths of around 1,000 nucleotides, extracted from bpRNA 
database (Danaae et al., 2018). Data being used considers dot bracket representation of 
secondary structures. In order to perform faster and more accurate prediction, the data 
will be prepared within embedded layer to suit a dictionary approach. The main model 
considers three convolutional layers, yet inspired by method proposed in Singh et al. 
(2019), the proposed model uses (ResNet) approach, for the purpose of proper 
classification as well as for avoiding vanishing gradient levels. The main reason behind 
ResNet as type of CNN used is the immersive capability to solve very complex problems 
that require very large amount of layers in a very efficient way, not affecting time and 
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accuracy. The concept of constructing CNN for the problem of finding secondary 
structure of RNA is given with the following flowchart. 

Residual learning or ResNet are constructions that mainly prefer skipping some 
connections with the possibility to skip some layers. These ResNet models are mainly 
designed for the purpose of double or triple layer skips instead of using consecutive 
layers which is the most often type of deep neural networks (DNN). Skipping over layers 
provides us with the possibility to avoid the vanishing gradient problem. 

In this study, we are using residual learning type of CNN for optimisation of network 
parameters. The study uses concept proposed by He et al. (2015), where initial 
convolution layer is with size of 3 by 3 followed by ResNet block that consists of two 
convolutional layers considering kernel sizes of 11 by 11 and 7 by 7 respectively. The 
function being used is the rectified linear unit (ReLU) nonlinear activation function 
whereas for the dropout regularisation the specified value is 20% for purpose of avoiding 
the overfitting case. 

2 Related work 

In the following section a review of the methods that are already used by the research 
community has been provided, starting from the oldest to the newest and most advanced 
approaches. All the advancements followed by details that are going to find usage in 
building the CNN architecture represented in this paper, are going to be discussed 
(Chauleva, et al., 2020). 

• Nussinov-Jacobson algorithm (Zhao and Sahni, 2016) proposed by Nussinov and 
Jacobson in 1978, has been defined as algorithm for secondary RNA structure 
prediction based on the folding principle or also known as single structure prediction 
approach, where RNA strand is folding onto itself, without taking in consideration 
complex formations like pseudoknots (stem-loops present in structure). 

The main version of the algorithm uses the maximum amount of base pairs for 
optimising of the score. Standard approach of implementation is interested in the 
usage of 2D array. 

• The score considers Xi and Xj values, which are stored in a form of a matrix M[i][j] 
(Palkowski and Bielecki, 2016). 

• Zuker’s minimum free energy (MFE) algorithm (Kong et al., 2018), however, is 
based on calculation of the MFE scheme, where experimentally predetermined 
values are added for each base pair that is found within dynamic programming 
matrix. The free energy depends on the sequence part of actual segment and the most 
adjacent base pairs. The total free energy would be the sum of all increments. There 
are certain limitations that must be considered for MFE method. Moreover, as the 
most important to be specified are energies of bulge loops and single non-canonical 
pairs that are not being predicted. 

RNA folding process lacks the balancing, yet the kinetics of the process may be 
pointed out. Due to that, the structure obtained by MFE might not be the same as the 
actual native fold. As another drawback case of MFE method that must be 
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considered is lack of prediction of pseudoknots in the structure, similarly as in the 
Nussinov’s algorithm. 

• The concept of MEA algorithm (Clote et al., 2017) deploys the technique of partition 
function calculation known as McCaskill’s partitioning function (Palkowski and 
Bielecki, 2019), where prediction of base-pair probabilities is mainly considered. 
Moreover, these probabilities are integrated into dynamic programming algorithm. 
This method has been tested in different kinds of RNA, showing a high level of 
accuracy measure, even higher than the one provided by the MFE method. 

MFE method finds one specific best guess for secondary structure of RNA. 
Eventually, with this method, high probability base pairs are chosen that leads to 
higher accuracy level. Other relevant difference is within characteristics used. MEA 
method utilises stable base pair probability, over the thermodynamic measures 
established by MFE algorithm. 

More advance models for pseudoknot detection and secondary prediction are 
Pseudoknot algorithms (Liu et al., 2015). There are two steps that are building up 
this kind of dynamic programming algorithm. First and foremost, the possibility of 
finding helices that could form pseudoknot formations is achieved followed by the 
calculation and folding of the whole structure formation. 

Once obtained the energy dot plot that gives the candidate pseudoknot helix list, H, 
along with the corresponding helix energies, some characteristics must be 
considered, in particular: sequences longer than 100 nucleotides or more are taken in 
account, due to what tested sequences are ranging from 200, 500 until 1,000 
nucleotides, secondary, the energy level of ΔG° must be 25% of the free energy of 
the MFE. The ΔG° of Hi would be obtained from the nearest-neighbour AU/GU 
pairs. Eventually, filtration of helices in the H would consider some predefined steps. 
Moreover, a helix Hi would be accepted into H if it has more than three base pairs 
(Mustoe and Buasan, 2018). 

• The most advanced algorithms used for the justification of secondary structure 
prediction of RNA are considering, appraise different kind of neural networks (NNs). 
Following are the most relevant as well as analogous to the presented paper: 
a RNA secondary structure prediction using an ensemble of two-dimensional DNN 

and transfer learning (Singh, 2019), is a method considering pseudoknots as the 
most advanced and delicate structures to be predicted. This method is however 
more sophisticated than the one proposed in this paper, but the idea of using 
CNN is the same. Due to its advance features being taken into consideration, 
this can be supported as the most accurate method as well as the starting point 
for our research. Moreover, its immersive capabilities are going to be discussed 
within results comparison section. Yet, it must be discussed that the concepts for 
the usage of ResNet has been inspired by this paper, with difference of the 
missing steps and concepts that are not considered. Main difference must be 
established in the usage of RNN’s and two different types of databases for data 
entry and pre-processing as well as for the transfer learning. 
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b Predicting RNA secondary structure via adaptive deep recurrent neural 
networks (RNN) with energy-based filter (Lu et al., 2019), as the title suggests is 
a method used for secondary structure prediction of RNA mainly based on the 
usage of RNN. Considering that this research paper follows fairly different 
concept of prediction, it is not considered into development of current paper. 
However the results obtained may be discussed for the purpose of proper 
differentiation and power of NNs for same task. 

c Prediction of RNA secondary structure with pseudoknots using coupled DNN 
(Mao et al., 2020), is method that uses homologous type of sequences for the 
intention of finding the secondary structure of RNA. Besides, this method uses 
multiple sequences approach and mainly falls within the approaches of 
comparative analysis for the purpose of structure discovering. Since within this 
paper, single RNA approach is considered, this might not be appropriate method 
to be compared with. 

d RNA secondary structure prediction using deep learning with thermodynamic 
integrations (Sato et al., 2020), however, observes one of the oldest approaches 
and mostly used one, the Zuker MFE method that is interested into 
thermodynamic parameters when applied as additional features to the overall 
folding process of the RNA. Fundamentally, this concept is far different by the 
one proposed in this paper, due to the lack of usage of these parameters in the 
case. These parameters are highly impacting the level of accuracy, yet, when 
pseudo-knots are taken into consideration, this method may lacks large amount 
accuracy, especially if considered sequences are very long. 

e A new method of RNA secondary structure prediction based on convolutional 
neural network and dynamic programming (Zhang et al., 2019b), is method 
which is the most fundamentally similar to the CNN that are going to be 
discussed furthermore. Crucial difference might be encountered in the 
application of dynamical programming algorithm present in the beginning of 
this method that uses matrix representation and the sliding window approach to 
classify the pairing of the bases based on such values obtained. Essentially, the 
idea behind this algorithm is proper evaluation and pre-processing of data, since 
data being used lacks that, which is not the case with the bpRNA database used 
in this study. As final point established, the way CNN are being implemented in 
the discussed paper may be seen as very different than the one presented in the 
current one, since it uses classical type of convolutional neural networks. This 
gives good support for comparison discussed in the results section. 

f Predicting RNA SHAPE scores with deep learning (Noah Bliss, 2020), may be 
defined as the most irrelevant to the one proposed, yet very important for the 
purpose of secondary structure prediction. This is one of the newest methods in 
the branch considering NNs. Moreover the structure approaches finding of 
Pearson correlation coefficient with experimental SHAPE scores, due to these 
advance concepts being incorporated in the study, it is usually categorised as 
one of the most sophisticated. 
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3 Research methodology 

CNN as advanced architectures of standard artificial NNs, have the ability of replacing 
the process of manual feature engineering by representation learning, known as feature 
learning. Feature learning allows detection of some latent data characteristic, without 
human intervention. Extraction of general purpose features that work well for unknown 
classes, obtained by employing shift-invariant filters, which supports concise and reliable 
analysis results. The importance of feature identification and learning is in promotion of 
faster learning without explicit direction for that. CNNs are applied in variety of domains 
such as: recognition of breast cancer from image, semantic segmentation or recognition 
of semantics of every pixel in a given image, end to end robotic control (Aarshay, 2016). 

In bioinformatics field (Zhang et al., 2019b), CNNs are used for: gene expression, 
regulation and ChIP-seq data, analysis of gene expression levels, etc. CNN has been 
applied on both microarray and sequencing data of RNA binding proteins, for a purpose 
of learning sequence binding specificities. CNNs are powerful methods in solving tasks 
where a spatial information has been provided, as well as for the purpose of natural 
language processes (NLP) tasks. 

In this section general overview of components and building blocks of the NNs, 
followed by some main characteristics are provided. 

Main processing unit of each layer in artificial NN is defined to be the neuron  
(Figure 2). If a comparison to the human neurons is performed, drawn conclusion is that, 
not any difference in the function exists except for the physical difference. 

Some of the basic parts that build up the neuron as a structure are (Aarshay, 2016): 

• Dendrites – part of the neuron that takes impulse from other neuron, or input data. 

• Neuron’s body – takes impulses, analyse them and makes decision what step to take 
next. 

• Axon terminal – exit part of neuron that gives the output in form of electrical signal. 

Dendrites of each neuron takes electrical impulses as input data in the cell’s body, makes 
some processing or combines the data provided in order to obtain useful information and 
as final product outputs electrical impulses to other set of neurons or so called terminals. 

Figure 2 Comparison between human neuron and artificial neuron (see online version  
for colours) 

 

Source: Library (2020) 
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On Figure 2, is given an input layer which works similarly to how dendrites work. The 
major goal of the neuron is to collect all of the given inputs, analyse them and makes 
conclusion based on the analysis. The processing is done in the hidden layers. Finally, 
after the hidden layer follows the output layer that transmits the final output finding all 
other neurons in the same way as in the human NN. 

A basic structure of NN considers the following different layers (Thomas, 2019) 
(Figure 3): 

• Input layer: what is given to the neurons as an input raw data. 

• Hidden layers: what would be analysed, organised and formed into complex 
conclusion based on the input data provided to network. 

• Output layer: the final step which will provide results or conclusions from the 
previous layers. 

Usually the secondary structure of RNA prediction considers RNN. Moreover, the main 
difference between the method of convolution and recurrent one is in the representation 
of the sequence. RNN works with simple sequence, whereas CNN works with matrices or 
vectors. Finally, prediction of the structure would consider the dot bracket representation, 
which is based on the probability of matching the bases or establishing the G-C, A-U and 
G-U relationships between bases. 

Figure 3 General structure and levels of artificial NN (see online version for colours) 

 

Source: Sorokina (2017) 

Discussing about CNNs, these DNN are composed by several different layers of 
convolutions that consider nonlinear activation functions such as ReLU or tanh affecting 
the obtained results. Additionally, in feed-forward NN concept, each input neuron relates 
to output neuron that is followed by in the next layer, also called as fully connected layer, 
compared to that in the convolutions this concept lacks. Besides, results are formed on 
local connections, where each region of the input is connected to a neuron in the output. 
Each layer concern different filters, usually of a high amount and as final obtains the 
results. In addition, these networks use subsampling layers. Furthermore, during the 
training phase, a CNN automatically learns the values of its filters based on the task being 
performed. Finally, the last layer is a classifier which idea is to use high-level features. 
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Substantially, in order to solve a complex problem, additional layers are added to the 
DNN that affect the levels of accuracy and performance. Main benefit behind adding 
more layers relies on the progressive learning on more complex features. Nevertheless, it 
was detected that there is a maximum threshold for depth with the traditional 
convolutional neural network model (Mujtaba, 2020). In order to solve the problem of 
training very deep networks, introduction of ResNet was done. The main features behind 
ResNet are the so known residual blocks (Figure 4). Predominantly, different is that there 
exist direct connections that skip some layers which are in between. Due to this skip 
connection, the output of the layer might not perform the same. Without using skip 
connections, the input is multiplied by the weights of the layer followed by adding a bias 
term. 

Figure 4 ResNet blocks, residual network (see online version for colours) 

 

Source: Mujtaba (2020) 

Main benefit behind the usage of skip connections or ResNet overall, is seen in the 
vanishing gradient problem solving in DNN. Additionally, these connections aid by 
allowing the model to learn the identity functions that assures higher layer will have the 
same performance as lower layer (Zhang et al., 2019a). 

3.1 Structure of the algorithm 

For the formal definition of the algorithm, the following declaration should be 
considered: 

( ){ }, where 1, 2, 3, ..,i iA x y i n= =  

• A is the set of pairs of sequences. 

• n is the amount of available bases that would form pairs. 

• x defined as amount of primary structures given. 

• y stands for the amount of secondary structures obtained. 

The network is considering the following definitions. Let consider that f is a function, 
where F is the set of functions building up the network, therefore f ϵ F, dataset of features 
mapping 

As a = x → y, labels y we get to: 

arg ( ( , ), ) where
f

f L a f x y= ∈f F  
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For the purpose of vector representation, it must be considered usage of two dimensions 
V and W, where V is for primary and W is for secondary structure annotation. 

Basic Python packages that are used for building the algorithm are: 

• Torch and Torch.nn, used for a purpose of DNN, creation of convolutional neural 
networks and working with them. 

• Torchtext (Pytorch, 2019), as a package used for the data processing utilities and 
formation of datasets for natural language. 

• Matplotlib (Hunter, 2012), used as library for creating static, animated, and 
interactive visualisations within Python. 

• Numpy (The NumPy community, 2008) used for working with arrays, 
multidimensional arrays mostly. 

• Os (Python, 2001), library for reading from file in Python. 

• Pandas (2008), the library used for manipulation and working with CSV and other 
text files, mostly for reading and writing data, alignment, reshaping, slicing, 
indexing, grouping merging, etc. 

• Forgi (Beckmann et al., 2015), library for RNA analysis and representation of RNA 
structure, based on Vienna RNA package. 

In order to obtain higher efficiency, code has been divided into different files. Every file 
has a different purpose: 

utilities.py Has defined functions for work with the sequence, sequences predictions 
comparison, making the balance of the sequences and making the 
visualisation at the end with matplotlib and forgi libraries. 

dataset.py Has been used for defining the dataset, uploading the data from files 
downloaded from the official database for bpRNA, reading and writing them 
into sequences, loading them as key value pairs to be easily processed and 
worked with. 

model.py Has been used for declaration of model (defined convolutional layers and 
other layers of the ResNet). 

train.py Has been used for optimisation, validation and evaluation of the model. 

3.2 Input layer 

Input layer consist of a files that include RNA sequences. The files have been retrieved 
from the official database bpRNA (Danaae et al., 2018). The files would consider  
dot-bracket representation type; therefore the sequence would be of type 
symbols/characters. The amounts of sequences used in this work are around 10.000 
sequences. Since these files are being pre-processed and checked, additional cleaning and 
processing of the data in the files is not acquired and not applied, therefore, this must be 
considered as additional step when considering for different data as source. 

When working with deep learning where natural language is present, reading from 
file acquires steps such as: to tokenise characters, to perform mapping from a character to 
unique identifier, to make conversation of character into integer form, also to perform 
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loading data in a format that NN accepts it, and finally must be aware of the equality in 
sequences length. 

In order to deal with all of these characteristics, the usage of Torchtext (Pytorch, 
2019) is essential. Torchtext’s role is to take any file in a raw format, such as is csv, json, 
etc. and make it into a dataset. 

Dataset could be defined as a block of data, which has been pre-processed. Form of 
representation is canonical, or easy to be used by other data structures. After formation of 
the dataset, follows the step where the iterator, must be used for a purpose of batching, 
numeration, packaging and moving up of the data. This is the step that gives possibility to 
a data to come up to the deep neural network, hidden layers (Figure 5). 

To introduce these variables to the NN vector representation has been used. 
Following is that, each of the characters is represented with some form of zeros and ones 
in the vector. 

Figure 5 TorchText parts and workflow (see online version for colours) 

 

Moreover, ending up with hyper-parametrised vectors, there is some need of feeding 
these characters to the NN. That is where the embedded layer, previously discussed, 
comes into usage. Usually this is a layer of a size given ,sizesize vectorvocabulary dense∗  
where for each word in the vocabulary (character); there exist a corresponding index in 
embedded matrix. 

3.3 Building up the model 

Working with sequential data, usage of CNN must consider one dimension, so 
convolution would be defined as convolution of one dimension (Figure 3). This CNN 
filter working on the principle of sliding down the sequence. 

Since working with embedded CNN, the input and output size must be the same size, 
therefore must not be any change in the amount of channels specified. Difference is 
present in the kernel size, since it starts with amount of 11 degrades to 7 and the final 
convolutional layer has 3 as a kernel size. 

Finally, the formation of a new matrix known as ‘convolved feature’ or ‘activation 
map’ as well as ‘feature map’ (Thomas, 2019), is provided. It is important to note that 
filters act as feature detectors from the original input image. The specification of a stride 
gives the amount of move from one to another element when applying the filter (kernel). 
Usually the smaller the stride is, the higher the overlapping will be (Figure 6), for this 
purpose stride considered in this network is considered to be fixed and 1. 
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Figure 6 Formation of feature map (see online version for colours) 

 

Source: Library (2020) 

3.4 ReLU function and dropout layers 

The CNN architecture is consisted of three hidden layers, one which is initialisation 
convolutional layer and other two layers within the ResNet block, with the ReLU 
preceding them (Paszke et al., 2019) as activation function as well as dropout 
regularisation method. 

Most used activation function is ReLU because of its possibility to work with 
nonlinear data ReLU among other activation functions (ELU, SELU, LeakyReLU, 
Swish…) is very easy to be calculated and implemented in general, since it uses 
comparison with input and the value of zero (Paszke, et al., 2019). ReLU activation 
function allows CNN to scale up the size. The most important thing about usage of this 
function is the avoiding the false zero approach, when high value of input is present. 

ReLU function in the proposed algorithm has been implemented in two places, both 
of which are before the dropout layer, which is not an exact layer by the theory, but is 
defined as that in practise. 

Moreover, the dropout layer as layer mostly applied on top layers consisted of large 
number of parameters for the purpose of prevention of feature co-adaptation and 
overfitting. Besides, it may also be considered as regulariser. Therefore, as widening of 
residual blocks results in an increase of parameters, we tend to implement dropout layers 
after ReLU activation functions. Previously, dropout as regulariser in ResNet was used as 
identity part of the block that has shown big amount of negative effects of that. Followed 
by that, the dropout is therefore added between convolutional layers, acting as selector 
within neurons for the role deciding which one will continue on the next level. 

Figure 7 Dropout layer role within convolutional neural network (see online version for colours) 
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However, this is practical when prevention of confusions in the model or over-fitting of 
the training data is present. Simple representation of these layers in our network would be 
to filter out which neurons are important and drop out which are not, also seen on  
(Figure 7) (Brownlee, 2018). 

As a final statement, addition of the dropout layer into ResNet block was considered 
to be between convolutions after ReLU for a purpose of disconcert batch normalisation in 
the following block and avoidance of overfitting, additionally as the best specified 
amount of it was decided to be value of 0.2% or 20%. Nevertheless, in deep ResNet this 
approach aids with diminishing feature. 

3.5 Optimisation and loss function 

PyTorch (Anaconda, 2012) has inbuilt loss and optimisation functions. In this paper is 
used cross entropy (CE) function, which works with a batch of size N corresponding to C 
labels that give a variable of dimension N by C. This value of a variable has been 
obtained when the variable of that dimension passes throughout the model. 

Optimisation package in PyTorch, allows easy interfaced optimisation of the 
algorithms. It works in a way that passing of the parameters in the model that will be 
updated at each iteration is done. Another available possibility is to specify the learning 
rate to be per layer or per variable. The learning rate specified in this case is considered to 
be 1e-3 (Paszke et al., 2019). 

For the learning rate the specification of the scheduler must be done. The learning 
rate of each parameter group is specified to be by gamma in every step_size of the epoch 
(whole set). This decay may happen simultaneously with other changes presented in the 
learning rate, which come outside of this scheduler. 

3.6 Training and testing of the network 

Foremost, the training starts with one convolution layer followed by block of ResNet. 
The following (Figure 8) gives an example of the training with amount of epochs 
(traversals over whole set) set to 10 over the whole set and also over the deeper layers by 
the ResNet blocks specified as batches (sections divided in the embedded layer) that are 
specified with additional batch_size. This is followed by the conversion of data and target 
into PyTorch variables. 

Once the training has been finished, the result for ten epoches will give the following 
ratio between the training loss and validation loss showed in Figure 8. 

Classification problems base prediction on discrete class as output. Moreover, the 
interest is put over the separation of dataset into mismatched and possibly distinctive 
classes that are mainly based on dissimilar parameters, therefore novel and obscure 
record will proceed into the classes. 

Knowing that entropy is the quantifier of randomness when the information has been 
processed, whereas CE is a quantifier of the difference between the randomness when 
two arbitrary variables are being examined, statement must be made that: 

• Cross-entropy (Paszke et al., 2019) is a loss function used with intention to learning 
how to use the probability of memorised data. Once faulty prediction occurs it will 
provide greater penalty, for the predictions, with higher confidence levels. However, 
if the divergence of the predicted probability escalates, the cross-entropy loss will 
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also escalate. Moreover, if predicted probability is around 0.020 when genuine 
examination ranges up to 1, triggered point will be high loss value. 

Figure 8 Validation and train loss of the network for epochs of value 10 (see online version  
for colours) 

 

Finally, if considering an ideal model yet to be faultless that will acquire a value that 
has logarithmic loss roughly 0. 

• CE loss, where calculation of the gradient when output neurons of the CNN are 
accounted for back-propagation, as well as when optimisation of defined loss 
function uses tuning of the parameters within network. Therefore, the computation of 
the gradient of CE Loss is done with the respect of each CNN class score which is 
defined in s. 

• Terms that are defined as negative are the zero one. However, scenario with the loss 
gradient taken with respect to the negative classes must also be on account of 
Softmax to the positive class that will depend on the scores that are obtained from 
negative classes. 

• However the gradient expression will be the same for values of the C with lack of 
consideration of the ground truth class Cp, since score of Cp(sp) are defined in the 
nominator of the following formulae: 

log
s
p
c s
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The usage of this function is due to the classification tasks, since it works on the basis of 
confident model it only predicts accurately, with a very high probability. Once 
implemented the loss in the network will have different value (Figure 9). 

However, the classic Softmax and cross-entropy loss combination is often used as 
norm for training NNs that must be calculated from the output probability of the ground-
truth class. Moreover, measurement of the cross-entropy is done between the ground truth 
label y and the output of the NN ý. Succeeding is the adjustment of network’s parameters 
to reduce the cross-entropy with the usage of back-propagation. 

For the final classification task, a softmax function is being used. Defined as 
nonlinear function with a special usage within the network, since it is only used at the 
end, when taken a vector of real numbers. Softmax function (Paszke et al., 2019) is used 
mainly where trafnsformation from numeric output in the last linear layer must be made, 
in order to obtain probabilities from the final layer and perform proper classification of 
stated values (in this case the within two classes of characters). 

Therefore, when exponents of each output are taken and being normalised, each 
number by the sum of those exponents has been summed up and forms a total amount of 
one. The importance of it might be found when collecting all possible probabilities in the 
networks, for a purpose of obtaining probability of one. 

Figure 9 CE loss function (validated loss) in the network (see online version for colours) 

 

CE loss that has been previously discussed is one loss function that has a purpose of 
multi-class classification problem. 

Finally, the loss for optimising NN models usually uses the cross-entropy approach 
with known one-hot representation (label of target class) and a categorical distribution 
calculated by the output of the network through softmax. However, with this common 
setting of the cost function, the network is trained to make the categorical distribution as 
close as possible to target elements that are all zero except the one for the true class 
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which are stated as one. It has been widely accepted that minimising the cross-entropy 
loss is an objective which reasonably conforms achieving high classification accuracy (Li 
and Maki, 2018). 

3.7 Output layer of the network 

Once taken the result from the classification step, the obtained result would consider 
three main character representation :{ (,) and }. These characters are mainly used to 
describe the state of pairing between bases such as: paired, half-paired or unpaired, which 
leads to the formation of secondary structures in the RNA, also called as loops. Matching 
parenthesis and dots denotes paired and free bases, respectively. The algorithm could 
execute them in the raw format of dot-bracket representation, which is a way to get the 
first output, yet the dot-bracket notation usually happens to be cumbersome, considering 
that it leads to large expressions that usually consider information that is partially 
obscured for human readers. 

Because of it counting of the identical characters is acquired and formation of pairs 
too, which must be done manually. For more convenience, if certain features in the 
sequence are modelled in readable way, such as graphical shaping of the different loops, 
it solves the major problem. For solving previously stated problem, special visualisation 
package has been used, ViennaRNA package (Hofacker, 2017) in specific, through the 
forgi and forgi.nn libraries. 

First and foremost, the representation of the actual and predicted model is outputted 
as dot-bracket representation that additionally has used it for building up the 
representation of the secondary structure of the RNA within visual format. The final 
representation is seen on Figure 9. 

Figure 10 Usage of forgi library for visual comparison of real structure and predicted structure 
(see online version for colours) 
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4 Methods and results 

In order to be able to replicate these methods and obtain similar or same results, 
following steps must be taken into consideration: 

• With help of the main Python (2001) library Os, reading of characters in the bpRNA 
(Danaae et al., 2018) files is performed and characters are pushed into sequences. 
Mainly for the purpose of working with sequences we need to consider library as 
NumPy (The NumPy community, 2008). 

• Once sequences of dot – brackets are formed they are also given values to be able to 
perform operation over key-value pairs formed, therefore each character has value or 
weight to be operated with. 

• This is followed by the creation of a model, with the help of Torch library or 
PyTorch which has torch.nn (Anaconda, 2012) library that is used for the creation 
and work with NNs, in this case the convolutional neural network or more specific 
ResNet type of it. 

• Consequently, CNN must use three convolutional layers, two dropout layers and two 
ReLU layers. The algorithm would follow the structure of (Figure 1), where input 
layers starts with key-value pairs, dot brackets and their weight. This enters the 
initial convolutional layer that has kernel size of 11(filters), which would continue to 
the ResNet block considering convolution layer of 7 by 7 and ReLU function as well 
as first dropout layer (with 0.2 value implied), that ends up into next convolutional 
layer considering five kernels (filters). Next it proceeds into ReLU function with 
additional dropout layer which gives input to the final output layer considering  
cross-entropy optimisation and max-pooling as final mediators into the training 
process, at the end the calling of the visualisation library forgi (Hofacker, 2017) is 
performed for visual representation of the results obtained. 

The last part of the algorithm to be discussed after the model is created is the training and 
validation loss (Paszke et al., 2019). For this purpose we need to create functions that will 
approach the average loss of the sequences one for the training and one for the validating. 
For the purpose of comparing how big is their difference that is preferred to be as low as 
possible, backward propagation in the CNN is used, with updating of the weights after 
each running until reaching the final optimal solution. This is followed by the plotting 
with Matplotlib library (Hunter, 2012) that shows how good the learning process goes. 

4.1 Methods evaluation 

After overall evaluation of the model and obtained results, an accuracy level comparison 
of the algorithms must be made for the purpose of verifying its accuracy and sensitivity. 
Therefore, the classical benchmark specification known as positive-predictive value 
(PPV) is used, which is founded on the base-pair prediction accuracy and another one 
known as sensitivity specificity for overall sensitivity prediction. 

Secondary structure prediction of RNA usually uses two benchmarked estimators for 
purpose of predicting accuracy and this has been taken as general rule within 
bioinformatics area. 



   

 

   

   
 

   

   

 

   

   60 B. Chauleva et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Sensitivity is defined as percentage of known pairs which are correctly predicted, and 
PPV is the percentage of predicted pairs that has been known in the structure. These two 
statistical benchmarks are calculated with the following formulae (Zhi, 2009): 

number of correctly predicted base pairssensitivity
total number of known base pairs

=  

number of correctly predicted base pairsPPV
total number of predicted base pairs

=  

Moreover, these benchmark specifications are widely used as estimators of the state of 
the algorithm, starting from the very beginning of algorithms for the purpose of 
Secondary Structure prediction, as well as needed in order to obtain valid values which 
are used for the calculation of the F-score, furthermore. The values obtained for 
sensitivity are ranging around 0.72 and the values for PPV or specificity are also around 
0.80. 

However, F-score which can be also referred as F1-score is a measure of how 
accurate a model is with a given dataset. Often it is accepted to be used within binary 
classification systems. Besides, the F-score uses a combination of the sensitivity and 
specificity of the model, which also can be stated as the harmonic mean of the model’s 
precision and recall. 

The F-score finds its usage within wide variety of machine learning models, in 
particular and most often within natural language processing. Adjustment of the F-score 
is possible and depends on the parameters such as sensitivity and specificity and their 
adjustment overall. 

Obtained values of the previous two statistical benchmarks which are easily obtained 
with Python functions, are after that input in the benchmark F-score, which was already 
discussed, and is given within the following formulae: 

2 sensitivity AND specificityF score
sensitivity OR specificity

∗=  

For the purpose of comparison with similar methods that employ NNs, we use the 
comparison metric F1 previously calculated, given on Figure 11. From the figure we can 
conclude that CNN approach (labelled as CNNProposed) or last one in the bar chart), has 
the value of F1 around 0.76 or 76%, which compared to most models is between highest. 
However, better and more sophisticated can be spotted to be CDPFOLD represented by 
Zhang et al. (2019b). 

The Nussinov Jacobson algorithm as the oldest one would have running time of O(n2) 
(Venkatachalam et al., 2014), compared to that the algorithm of Zuker’s MFE works with 
the time complexity of O(n4) (Zhao and Sahni, 2016), whereas when considering a little 
bit more advance algorithm such as MEA it works in O(n4) (Clote et al., 2017). 
Consecutively the amount of time needed to execute the Pesudoknotted algorithm would 
be O(n5) (Mustoe and Buasan, 2018). 
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Figure 11 Sensitivity, specificity and F1 scores comparison, other popular methods considering 
NNs and our method, labelled as CNNproposed) (see online version  
for colours) 

 

For the purpose of complexity evaluation within NN usually we analyse model’s 
complexity by taking the count of total amount learnable parameters, moreover, 
collecting the size of the parameter file in terms of MB for our model. However, this kind 
of information is very useful for understanding the minimum amount of GPU memory 
required for execution of the model. For the purpose of calculating time complexity of 
our method we have taken statement from this study (Bienstock, 2018), which states that 
CNN ResNet can calculate time complexity with the following formulae based on the 
cross-entropy combined with soft-max: 

( )( )+ +( 2)- + log( )Δ / n m NO kCross Entropy Soft Max O m m D− =   

From where n and m are the input and output dimensions and N is the total number of 
parameters. We ∆ to express the maximum vertex in-degree in G which is directed graph 
defining the NN. 

In all results the node computations are linear with bias term and normalised 
coefficients, and activation functions with Lipschitz constant at most 1 and with 0 as a 
fixed point which also includes ReLU as well, additionally k stands for the depth, and 
finally, D stands for the size of the dataset. 

From here we can conclude that the time complexity of this algorithm stays way 
much forward older methods, and can compete with other methods considering NN’s. 
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5 Discussion and future work 

5.1 Technical implementation 

For the purpose of algorithm testing, from dynamical algorithms, until the newly 
discussed algorithm, platform being used is of performances: CPU Intel(R) Core(TM)  
i5-8250U CPU @ 1.60GHz. For the algorithms: Nussinov-Jacobson, Zuker’s MFE and 
Four Russian implementation of Nussinov, MEA and pseudoknotted had been used the 
source code based in C/C++ language and tested in the Visual Studio 2017 Package 
(Microsoft, 2012) as a running environment with additional support of OpenMP (Board, 
2018) for the purpose of parallelisation. 

For the second part, where design of the CNN architecture had been considered, the 
following components were mainly considered: 

Python 3.7 (64 bit) (Pytorch, 2016), with the addition of the Anaconda Navigator), 
Jupyter Notebook 6.0.3 version (Perez and Granger, 2014), environment for interactive 
testing and computing, ViennaRNA Forgi – library for RNA for visualisation of the 
secondary structure (Hofacker, 2017), Pytorch 1.6.0 version (Anaconda, 2012) – building 
the convolutional neural network support whereas the dataset has being extracted from 
bpRNA – 1 m version 1.0 (Danaae et al., 2018). 

However, model has been constructed of three convolutional layers, two dropout 
layers and two ReLU function layers (Lab, 2016), where one initialization convolution 
layer was taken out of the ResNet block which concluded all of the previously mentioned 
steps. Moreover, with the help of the forgi library taken from Vienna RNA package final 
comparison between the real and the predicted structure of RNA is proved with visual 
representation of otherwise burdensome representation with dot-bracket. 

Some changes in the algorithms could result in better accuracy and better time 
complexity which may be seen as a new chance for a purpose of obtaining better results, 
and may be discussed as a future work in this field. 

5.2 Research implications 

Constructing NN for the purpose of predicting secondary structure of RNA has been 
discussed throughout different studies (Singh, 2019; Bliss et al., 2020; Lu et al., 2019), 
the proposed model with convolutional neural network considering modern type of 
implementation known as ResNet approach is done for the purpose of proper 
classification of the results into adequate groups as well as for avoidance of vanishing 
gradient that often occurs within very deep networks consisted of large amount of layers. 
Additionally, reason behind ResNet as type of CNN being used, is the immersive 
capability to solve very complex problems that require very large amount of layers in a 
very efficient way, not affecting time and accuracy. 

However, considering the large amount of studies implementing different techniques 
and models for the same purpose, withdrawing only the most efficient and competitive 
conclusions must be made. For this purpose, constructing model which will run the best 
possible way was only considered. 

ResNet are novel type of networks when searching throughout different types of 
CNN, yet they have proved their ability to precisely and efficiently approach large 
amount of problems, which was also proved within this paper. Moreover, this study 
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intentionally avoids prediction of the pseudoknots for the purpose of avoiding low 
accuracy rates that usually occur within such a type of models. 

Additionally, for advancement of this study a transfer learning approach may be 
considered that will furthermore add up some missing parts, which came as 
complementary intention from recent studies (Lu et al., 2019), showing up great results 
with this approach too. 

Finally, this may be defined as a good starting point for more efficient and accurate 
network with additional work over it. 

5.3 Future work 

First and foremost, as advancement of the proposed method, different type of NN can be 
considered for the same purpose as well as addition to the already existing, CNN model, 
which is discussed in similar studies with the RNN and combination of RNN (Lu et al., 
2019) and CNN models (Wang et al., 2019). 

Secondary, a hybrid version of NNs may also find purpose in the implementation for 
increasing the speed up and accuracy, when considering different NNs in combination. 
Since this thesis considered only one type of activation and regulation function, whereas 
there are a large amount of them present, this could be seen as another possible 
implementation. 

Finally, the addition of more features that would shift the sensitivity and accuracy 
levels to even higher value may be evaluated and implemented. 

Moreover, this paper suggests usage of modern type of CNN known as ResNet for the 
purpose of avoiding diminishing gradient as well as for avoiding very DNN that add to 
the complexity but they lack the amount of accuracy needed. This can be a crucial point 
for development of additional models for even better performance, yet it may be qualified 
as a very competitive approach considering the already established time complexity and 
accuracy level as one of the highest compared to the already existing method which 
consider the approach of NNs. 

Competitiveness of the suggested method is high, yet any method being suggested 
may acquire additional changes which may better the results. Moreover, this method 
lacks the ability to predict some complex structures such as pseudoknots, which is 
intentionally avoided within the network for the purpose of avoiding high levels of 
inaccuracy that may occur with such structures. Therefore, ability for their prediction 
may be considered with addition of transitional learning model or with some 
complementary NN that will add more value to the already exiting model. 

Future work may also consider advancement in multiple levels of RNA structure 
detection, such as the possibility to add over the secondary structure detection the 
detection of tertiary structure of the RNA. 

6 Conclusions 

After the testing and obtaining the F-score (Zhang et al., 2019b), with the benchmark 
formula applied over true and predicted pairs in the RNA models, above 75% of F1 
values has been proved. However, running time also proved that time complexity taken 
from training and testing of the model with 10,000 sequences, was very good (Danaae  
et al., 2018), compared to older and already existing competing algorithms. 
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Working with secondary structure of RNA, as a complex process still lacks the 
possibility to detect pseudoknot structures. RNAs taken in consideration for development 
of model as well as for testing were free from pseudoknots, mainly due to the possibility 
to predict faulty stem areas. This can be seen as a point for advancement since 
pseudoknots play important role in overall function of RNA, and their existence cannot 
be ignored for extreme accuracy obtaining. 

Moreover, the length of sequences differs which also makes possibility to experiment 
with different kind of RNA and their length; this is very important when considering the 
possible different kinds of RNA available in nature. The main representation being used 
is dot bracket representation, which has not been reflected once some faulty of knots was 
present. 

When working with deep learning methods such as in this case, with consideration of 
the CNN modern approach ResNet, the amount of data to be used plays a crucial role in 
the prediction process, for a purpose of avoiding overgeneralised models the data was 
mostly preserved to be around 1,000 nucleotides long. 

Since RNA sequences could be differentiated among different types, to specify, when 
functional RNA is present, we may obtain a fixed structure, which is not the case with 
some non-functional RNA sequences. And as a matter of fact, around 2%–3% of RNAs 
are functional only. 

However, RNAs are instable sequences; any factor from aside may have some 
impact, which usually can lead to changes in the structure prediction too, so addition of 
large amount of prediction characteristics can enlarge the amount of accuracy in the 
prediction of secondary structure of RNA. 

Nonetheless, introduced algorithm that considers working with CNN approach 
modern version defined as ResNet for a purpose of secondary structure prediction of 
RNA, obtained the best possible results when considering algorithms in its class, that 
does not consider pseudoknots, and has results nearby similar to the one that considers 
them. This research gives some possible approaches of incorporating artificial 
intelligence (AI) as a new way of solving tedious and redundantly large work that lacks 
accuracy and time efficiency of other older approaches. 

As a final conclusion to be established, DNN such as CNN (Aarshay, 2016; Thomas, 
2019), are an extremely competitive method to be implemented, when accuracy and time 
are crucial points to be established. 

In the area of bioinformatics where development of a new drug is sensitive work, 
time and accuracy is of high importance. Additionally to consider is that implementation 
of the CNN for the purpose of secondary structure prediction of the RNA could be done 
in a very practical way, with usage of less resources and with a possibility to predict a 
structure which would have above 80% accuracy and sensitivity, according to the 
benchmark testing (Zhang et al., 2019b). 

7 Author contributions 
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from bpRNA database, research and contribute to the development of CNN. Also the 
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manuscript, all of the authors were employed. Afterwards following with the reviewing 
process of the manuscript, before final approval to be send for publication. 

8 Lessons learned 

Working with secondary structure of RNA, as a complex process still lacks the possibility 
to detect pseudoknot structures. RNAs taken in consideration for development of model 
as well for testing were free from pseudoknots, mainly due to the possibility to predict 
faulty stem areas. This can be seen as a point for advancement since pseudoknots play 
important role in overall function of RNA, and their existence cannot be ignored for 
extreme accuracy obtaining. 

Working with sequences taken from bpRNA database, model was built over 10,318 
RNA secondary structures from seven different sources. The length of sequences differs 
which also makes possibility to experiment with different kind of RNA and their length; 
this is very important when considering the possible different kinds of RNA available in 
nature. The main representation being used is dot bracket representation, which has not 
been reflected once some faulty of knots was present. 

When working with deep learning methods such as in this case, with consideration of 
the CNN approach, the amount of data to be used plays a large role in the prediction 
process, for a purpose of avoiding overgeneralised models the data was mostly preserved 
to be around 1000 nucleotides long, notice must be made, since this can lead to false 
predictions. 

As a final notice, RNAs are instable sequences; any factor from aside may have some 
impact, which usually can lead to changes in the structure prediction too, so addition of 
large amount of prediction characteristics can enlarge the amount of accuracy in the 
prediction of secondary structure of RNA. 

To conclude, introduced algorithm that considers working with CNN approach for a 
purpose of Secondary Structure prediction of RNA, obtained the best possible results 
when considering algorithms in its class, that does not consider pseudoknots, and has 
results nearby similar to the one that considers them. 
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