

 Int. J. Student Project Reporting, Vol. 1, No. 1, 2022 43

 Copyright © 2022 Inderscience Enterprises Ltd.

Secondary structure prediction of RNA using
convolutional neural networks

Bisera Chauleva*
Department of Computer Science and Engineering,
University for Information Science and Technology
‘St. Paul the Apostole’ Ohrid, North Macedonia
Email: bisera.cauleva@cse.uist.edu.mk
*Corresponding author

Atanas Hristov
Department of Computer Systems, Complex and Networks,
University for Information Science and Technology
‘St. Paul the Apostole’ Ohrid, North Macedonia
Email: atanas.hristov@uist.edu.mk

Ustijana Rechkoska Shikoska
Department of Electrical Engineering and Computer Science,
University for Information Science and Technology
‘St. Paul the Apostole’ Ohrid, North Macedonia
Email: ustijana.r.shikoska@uist.edu.mk

Ljubinka Gjergjeska Sandjakoska
Department of Machine Learning,
University for Information Science and Technology
‘St. Paul the Apostole’ Ohrid, North Macedonia
Email: ljubinka.gjergjeska@uist.edu.mk

Abstract: One of the most popular bioinformatics and genetics topics is the
secondary structure prediction of RNA since it is the first step in developing
new therapeutic and pharmacological methods. The crucial point in these
branches is the development time and accuracy. The work presented in this
paper will look upon the state-of-the-art techniques that are currently used for
prediction. The deep learning method is evaluated to speed up and to increase
accuracy level. Furthermore, modern convolutional neural networks known as
residual network, as a secondary structure prediction of RNA, are considered as
a more accurate and efficient approach. Finally, a comparison of evaluating
results with existing methods is performed, which will prove the successfulness
of the proposed algorithm, taken into consideration the benchmark evaluation.

Keywords: ribonucleic acid; RNA; secondary structure prediction;
bioinformatics; artificial intelligence; deep learning; convolutional neural
networks; PyTorch; classification; residual networks; ResNet; artificial neural
networks.

 44 B. Chauleva et al.

Reference to this paper should be made as follows: Chauleva, B., Hristov, A.,
Shikoska, U.R. and Sandjakoska, L.G. (2022) ‘Secondary structure prediction
of RNA using convolutional neural networks’, Int. J. Student Project
Reporting, Vol. 1, No. 1, pp.43–67.

Biographical notes: Bisera Chauleva obtained her Bachelors degree from the
Faculty for Computer Science and Engineering, University of Information
Science and Technology ‘St. Paul the Apostole’ Ohrid, N. Macedonia. She is
currently an MSc student. Her research interest is centred on the usage of the
machine learning algorithms for the purpose of solving bioinformatic’s
problems. She has one research paper considering parallelisation for speed up
of RNA secondary structure prediction methods.

Atanas Hristov obtained his Doctors degree from Computer Systems and
Networks, Technical University of Sofia in 2013 and worked over
Post-Doctoral Fellowship in the University of Antwerpen, Belgium September
2015–June 2016. He has coauthored over 25 publications interested into
supercomputing, parallelisation, big data, algorithms for AI and ML, networks
etc. He works as an Associate Professor for subjects of: programming,
operating systems, cryptography, network architectures, communication
protocols, parallel programming, big data analytics, high-performance
computing at University of Information Science and Technology ‘St. Paul the
Apostole’ Ohrid, N. Macedonia.

Ustijana Rechkoska Shikoska obtained her Doctoral degree from the
Department of Electrical Engineering and Computer Science from University
of ‘Kiril and Metodius’ Skopje, N. Macedonia. She has coauthored more than
35 publications with consideration of areas such as: databases, algorithms,
computer communication networks, internet security etc. She also works as an
Associate Professor as well as the Dean of Faculty for Computer Science and
Engineering at Univeristy for Information Science and Technology ‘St. Paul
the Apostole’ Ohird, N. Macedonia.

Ljubinka Gjergjeska Sandjakoska obtained her MSc degree from University Ss
Cyril and Methodius, Faculty of Mechanical Engineering – Skopje where she is
working on Doctors degree considering Artificial Networks and Machine
Learning. She has coauthored more than 15 research papers considering
different topics among which: big data analytics, deep neural networks,
cognitive computing, drug development etc. She works as an assistant on the
University of Information Science and Technology ‘St. Paul the Apostole’
Ohrid, N. Macedonia, for the subjects: discrete mathematics, pattern
recognition, artificial intelligence, operation research, and knowledge based
systems.

1 Introduction

Ribonucleic acid (RNA) as a complex molecule, takes function in cellular protein
synthesis, additionally acting as deoxyribonucleic acid (DNA) in some viruses. RNA is
known for the importance as element after DNA, based on the usage in encoding, and
decoding genes, as well as regulation of their expression in the living organisms. Since
RNA receptors and its final structure are detected with tertiary structure formation,
secondary structure of the RNA must be used.

 Secondary structure prediction of RNA 45

RNA is constructed of ribose nucleotides connected with phosphor-di-ester bonds
forming strands of varying lengths. The nitrogenous bases in RNA are adenine, guanine,
cytosine, and uracil, where the uracil replaces thymine in DNA. The presence of
self-complementary sequences in the RNA strand leads to internal base-pairing and
folding onto itself. The chain forms complex structures that consist of different kinds of
loops, which is the aim of the prediction algorithm.

Starting from the beginning, X-ray diffraction and nuclear magnetic resonance
(NMR) were first methods used for structure prediction of RNA. Later, due to
inefficiency and impracticality, new methods based on dynamical programming were
developed. Some of the mostly used methods in practice are: Nussinov-Jacobson
algorithm (Zhao and Sahni, 2016), Zuker’s (Palkowski and Bielecki, 2016) MFE
algorithm, maximum expected accuracy (MEA) algorithm (Clote et al., 2017),
pseudoknotted algorithms (Mustoe and Buasan, 2018), etc.

However, most of these methods have enough accuracy, and speed in the prediction
process, but they are falling down once working with higher amount of sequences, as
well as longer nucleotides are taken in consideration.

Figure 1 Flowchart of network created for secondary structure prediction of RNA, upper blocks
are showing the training process and creation of model, lower part blocks for testing
purposes (see online version for colours)

Since, for solving this problem, following paper proposes CNN approach based on a
more modern type known as residual networks (ResNet). This approach will be tested
over 10.000 sequences with lengths of around 1,000 nucleotides, extracted from bpRNA
database (Danaae et al., 2018). Data being used considers dot bracket representation of
secondary structures. In order to perform faster and more accurate prediction, the data
will be prepared within embedded layer to suit a dictionary approach. The main model
considers three convolutional layers, yet inspired by method proposed in Singh et al.
(2019), the proposed model uses (ResNet) approach, for the purpose of proper
classification as well as for avoiding vanishing gradient levels. The main reason behind
ResNet as type of CNN used is the immersive capability to solve very complex problems
that require very large amount of layers in a very efficient way, not affecting time and

 46 B. Chauleva et al.

accuracy. The concept of constructing CNN for the problem of finding secondary
structure of RNA is given with the following flowchart.

Residual learning or ResNet are constructions that mainly prefer skipping some
connections with the possibility to skip some layers. These ResNet models are mainly
designed for the purpose of double or triple layer skips instead of using consecutive
layers which is the most often type of deep neural networks (DNN). Skipping over layers
provides us with the possibility to avoid the vanishing gradient problem.

In this study, we are using residual learning type of CNN for optimisation of network
parameters. The study uses concept proposed by He et al. (2015), where initial
convolution layer is with size of 3 by 3 followed by ResNet block that consists of two
convolutional layers considering kernel sizes of 11 by 11 and 7 by 7 respectively. The
function being used is the rectified linear unit (ReLU) nonlinear activation function
whereas for the dropout regularisation the specified value is 20% for purpose of avoiding
the overfitting case.

2 Related work

In the following section a review of the methods that are already used by the research
community has been provided, starting from the oldest to the newest and most advanced
approaches. All the advancements followed by details that are going to find usage in
building the CNN architecture represented in this paper, are going to be discussed
(Chauleva, et al., 2020).

• Nussinov-Jacobson algorithm (Zhao and Sahni, 2016) proposed by Nussinov and
Jacobson in 1978, has been defined as algorithm for secondary RNA structure
prediction based on the folding principle or also known as single structure prediction
approach, where RNA strand is folding onto itself, without taking in consideration
complex formations like pseudoknots (stem-loops present in structure).

The main version of the algorithm uses the maximum amount of base pairs for
optimising of the score. Standard approach of implementation is interested in the
usage of 2D array.

• The score considers Xi and Xj values, which are stored in a form of a matrix M[i][j]
(Palkowski and Bielecki, 2016).

• Zuker’s minimum free energy (MFE) algorithm (Kong et al., 2018), however, is
based on calculation of the MFE scheme, where experimentally predetermined
values are added for each base pair that is found within dynamic programming
matrix. The free energy depends on the sequence part of actual segment and the most
adjacent base pairs. The total free energy would be the sum of all increments. There
are certain limitations that must be considered for MFE method. Moreover, as the
most important to be specified are energies of bulge loops and single non-canonical
pairs that are not being predicted.

RNA folding process lacks the balancing, yet the kinetics of the process may be
pointed out. Due to that, the structure obtained by MFE might not be the same as the
actual native fold. As another drawback case of MFE method that must be

 Secondary structure prediction of RNA 47

considered is lack of prediction of pseudoknots in the structure, similarly as in the
Nussinov’s algorithm.

• The concept of MEA algorithm (Clote et al., 2017) deploys the technique of partition
function calculation known as McCaskill’s partitioning function (Palkowski and
Bielecki, 2019), where prediction of base-pair probabilities is mainly considered.
Moreover, these probabilities are integrated into dynamic programming algorithm.
This method has been tested in different kinds of RNA, showing a high level of
accuracy measure, even higher than the one provided by the MFE method.

MFE method finds one specific best guess for secondary structure of RNA.
Eventually, with this method, high probability base pairs are chosen that leads to
higher accuracy level. Other relevant difference is within characteristics used. MEA
method utilises stable base pair probability, over the thermodynamic measures
established by MFE algorithm.

More advance models for pseudoknot detection and secondary prediction are
Pseudoknot algorithms (Liu et al., 2015). There are two steps that are building up
this kind of dynamic programming algorithm. First and foremost, the possibility of
finding helices that could form pseudoknot formations is achieved followed by the
calculation and folding of the whole structure formation.

Once obtained the energy dot plot that gives the candidate pseudoknot helix list, H,
along with the corresponding helix energies, some characteristics must be
considered, in particular: sequences longer than 100 nucleotides or more are taken in
account, due to what tested sequences are ranging from 200, 500 until 1,000
nucleotides, secondary, the energy level of ΔG° must be 25% of the free energy of
the MFE. The ΔG° of Hi would be obtained from the nearest-neighbour AU/GU
pairs. Eventually, filtration of helices in the H would consider some predefined steps.
Moreover, a helix Hi would be accepted into H if it has more than three base pairs
(Mustoe and Buasan, 2018).

• The most advanced algorithms used for the justification of secondary structure
prediction of RNA are considering, appraise different kind of neural networks (NNs).
Following are the most relevant as well as analogous to the presented paper:
a RNA secondary structure prediction using an ensemble of two-dimensional DNN

and transfer learning (Singh, 2019), is a method considering pseudoknots as the
most advanced and delicate structures to be predicted. This method is however
more sophisticated than the one proposed in this paper, but the idea of using
CNN is the same. Due to its advance features being taken into consideration,
this can be supported as the most accurate method as well as the starting point
for our research. Moreover, its immersive capabilities are going to be discussed
within results comparison section. Yet, it must be discussed that the concepts for
the usage of ResNet has been inspired by this paper, with difference of the
missing steps and concepts that are not considered. Main difference must be
established in the usage of RNN’s and two different types of databases for data
entry and pre-processing as well as for the transfer learning.

 48 B. Chauleva et al.

b Predicting RNA secondary structure via adaptive deep recurrent neural
networks (RNN) with energy-based filter (Lu et al., 2019), as the title suggests is
a method used for secondary structure prediction of RNA mainly based on the
usage of RNN. Considering that this research paper follows fairly different
concept of prediction, it is not considered into development of current paper.
However the results obtained may be discussed for the purpose of proper
differentiation and power of NNs for same task.

c Prediction of RNA secondary structure with pseudoknots using coupled DNN
(Mao et al., 2020), is method that uses homologous type of sequences for the
intention of finding the secondary structure of RNA. Besides, this method uses
multiple sequences approach and mainly falls within the approaches of
comparative analysis for the purpose of structure discovering. Since within this
paper, single RNA approach is considered, this might not be appropriate method
to be compared with.

d RNA secondary structure prediction using deep learning with thermodynamic
integrations (Sato et al., 2020), however, observes one of the oldest approaches
and mostly used one, the Zuker MFE method that is interested into
thermodynamic parameters when applied as additional features to the overall
folding process of the RNA. Fundamentally, this concept is far different by the
one proposed in this paper, due to the lack of usage of these parameters in the
case. These parameters are highly impacting the level of accuracy, yet, when
pseudo-knots are taken into consideration, this method may lacks large amount
accuracy, especially if considered sequences are very long.

e A new method of RNA secondary structure prediction based on convolutional
neural network and dynamic programming (Zhang et al., 2019b), is method
which is the most fundamentally similar to the CNN that are going to be
discussed furthermore. Crucial difference might be encountered in the
application of dynamical programming algorithm present in the beginning of
this method that uses matrix representation and the sliding window approach to
classify the pairing of the bases based on such values obtained. Essentially, the
idea behind this algorithm is proper evaluation and pre-processing of data, since
data being used lacks that, which is not the case with the bpRNA database used
in this study. As final point established, the way CNN are being implemented in
the discussed paper may be seen as very different than the one presented in the
current one, since it uses classical type of convolutional neural networks. This
gives good support for comparison discussed in the results section.

f Predicting RNA SHAPE scores with deep learning (Noah Bliss, 2020), may be
defined as the most irrelevant to the one proposed, yet very important for the
purpose of secondary structure prediction. This is one of the newest methods in
the branch considering NNs. Moreover the structure approaches finding of
Pearson correlation coefficient with experimental SHAPE scores, due to these
advance concepts being incorporated in the study, it is usually categorised as
one of the most sophisticated.

 Secondary structure prediction of RNA 49

3 Research methodology

CNN as advanced architectures of standard artificial NNs, have the ability of replacing
the process of manual feature engineering by representation learning, known as feature
learning. Feature learning allows detection of some latent data characteristic, without
human intervention. Extraction of general purpose features that work well for unknown
classes, obtained by employing shift-invariant filters, which supports concise and reliable
analysis results. The importance of feature identification and learning is in promotion of
faster learning without explicit direction for that. CNNs are applied in variety of domains
such as: recognition of breast cancer from image, semantic segmentation or recognition
of semantics of every pixel in a given image, end to end robotic control (Aarshay, 2016).

In bioinformatics field (Zhang et al., 2019b), CNNs are used for: gene expression,
regulation and ChIP-seq data, analysis of gene expression levels, etc. CNN has been
applied on both microarray and sequencing data of RNA binding proteins, for a purpose
of learning sequence binding specificities. CNNs are powerful methods in solving tasks
where a spatial information has been provided, as well as for the purpose of natural
language processes (NLP) tasks.

In this section general overview of components and building blocks of the NNs,
followed by some main characteristics are provided.

Main processing unit of each layer in artificial NN is defined to be the neuron
(Figure 2). If a comparison to the human neurons is performed, drawn conclusion is that,
not any difference in the function exists except for the physical difference.

Some of the basic parts that build up the neuron as a structure are (Aarshay, 2016):

• Dendrites – part of the neuron that takes impulse from other neuron, or input data.

• Neuron’s body – takes impulses, analyse them and makes decision what step to take
next.

• Axon terminal – exit part of neuron that gives the output in form of electrical signal.

Dendrites of each neuron takes electrical impulses as input data in the cell’s body, makes
some processing or combines the data provided in order to obtain useful information and
as final product outputs electrical impulses to other set of neurons or so called terminals.

Figure 2 Comparison between human neuron and artificial neuron (see online version
for colours)

Source: Library (2020)

 50 B. Chauleva et al.

On Figure 2, is given an input layer which works similarly to how dendrites work. The
major goal of the neuron is to collect all of the given inputs, analyse them and makes
conclusion based on the analysis. The processing is done in the hidden layers. Finally,
after the hidden layer follows the output layer that transmits the final output finding all
other neurons in the same way as in the human NN.

A basic structure of NN considers the following different layers (Thomas, 2019)
(Figure 3):

• Input layer: what is given to the neurons as an input raw data.

• Hidden layers: what would be analysed, organised and formed into complex
conclusion based on the input data provided to network.

• Output layer: the final step which will provide results or conclusions from the
previous layers.

Usually the secondary structure of RNA prediction considers RNN. Moreover, the main
difference between the method of convolution and recurrent one is in the representation
of the sequence. RNN works with simple sequence, whereas CNN works with matrices or
vectors. Finally, prediction of the structure would consider the dot bracket representation,
which is based on the probability of matching the bases or establishing the G-C, A-U and
G-U relationships between bases.

Figure 3 General structure and levels of artificial NN (see online version for colours)

Source: Sorokina (2017)

Discussing about CNNs, these DNN are composed by several different layers of
convolutions that consider nonlinear activation functions such as ReLU or tanh affecting
the obtained results. Additionally, in feed-forward NN concept, each input neuron relates
to output neuron that is followed by in the next layer, also called as fully connected layer,
compared to that in the convolutions this concept lacks. Besides, results are formed on
local connections, where each region of the input is connected to a neuron in the output.
Each layer concern different filters, usually of a high amount and as final obtains the
results. In addition, these networks use subsampling layers. Furthermore, during the
training phase, a CNN automatically learns the values of its filters based on the task being
performed. Finally, the last layer is a classifier which idea is to use high-level features.

 Secondary structure prediction of RNA 51

Substantially, in order to solve a complex problem, additional layers are added to the
DNN that affect the levels of accuracy and performance. Main benefit behind adding
more layers relies on the progressive learning on more complex features. Nevertheless, it
was detected that there is a maximum threshold for depth with the traditional
convolutional neural network model (Mujtaba, 2020). In order to solve the problem of
training very deep networks, introduction of ResNet was done. The main features behind
ResNet are the so known residual blocks (Figure 4). Predominantly, different is that there
exist direct connections that skip some layers which are in between. Due to this skip
connection, the output of the layer might not perform the same. Without using skip
connections, the input is multiplied by the weights of the layer followed by adding a bias
term.

Figure 4 ResNet blocks, residual network (see online version for colours)

Source: Mujtaba (2020)

Main benefit behind the usage of skip connections or ResNet overall, is seen in the
vanishing gradient problem solving in DNN. Additionally, these connections aid by
allowing the model to learn the identity functions that assures higher layer will have the
same performance as lower layer (Zhang et al., 2019a).

3.1 Structure of the algorithm

For the formal definition of the algorithm, the following declaration should be
considered:

(){ }, where 1, 2, 3, ..,i iA x y i n= =

• A is the set of pairs of sequences.

• n is the amount of available bases that would form pairs.

• x defined as amount of primary structures given.

• y stands for the amount of secondary structures obtained.

The network is considering the following definitions. Let consider that f is a function,
where F is the set of functions building up the network, therefore f ϵ F, dataset of features
mapping

As a = x → y, labels y we get to:

arg ((,),) where
f

f L a f x y= ∈f F

 52 B. Chauleva et al.

For the purpose of vector representation, it must be considered usage of two dimensions
V and W, where V is for primary and W is for secondary structure annotation.

Basic Python packages that are used for building the algorithm are:

• Torch and Torch.nn, used for a purpose of DNN, creation of convolutional neural
networks and working with them.

• Torchtext (Pytorch, 2019), as a package used for the data processing utilities and
formation of datasets for natural language.

• Matplotlib (Hunter, 2012), used as library for creating static, animated, and
interactive visualisations within Python.

• Numpy (The NumPy community, 2008) used for working with arrays,
multidimensional arrays mostly.

• Os (Python, 2001), library for reading from file in Python.

• Pandas (2008), the library used for manipulation and working with CSV and other
text files, mostly for reading and writing data, alignment, reshaping, slicing,
indexing, grouping merging, etc.

• Forgi (Beckmann et al., 2015), library for RNA analysis and representation of RNA
structure, based on Vienna RNA package.

In order to obtain higher efficiency, code has been divided into different files. Every file
has a different purpose:

utilities.py Has defined functions for work with the sequence, sequences predictions
comparison, making the balance of the sequences and making the
visualisation at the end with matplotlib and forgi libraries.

dataset.py Has been used for defining the dataset, uploading the data from files
downloaded from the official database for bpRNA, reading and writing them
into sequences, loading them as key value pairs to be easily processed and
worked with.

model.py Has been used for declaration of model (defined convolutional layers and
other layers of the ResNet).

train.py Has been used for optimisation, validation and evaluation of the model.

3.2 Input layer

Input layer consist of a files that include RNA sequences. The files have been retrieved
from the official database bpRNA (Danaae et al., 2018). The files would consider
dot-bracket representation type; therefore the sequence would be of type
symbols/characters. The amounts of sequences used in this work are around 10.000
sequences. Since these files are being pre-processed and checked, additional cleaning and
processing of the data in the files is not acquired and not applied, therefore, this must be
considered as additional step when considering for different data as source.

When working with deep learning where natural language is present, reading from
file acquires steps such as: to tokenise characters, to perform mapping from a character to
unique identifier, to make conversation of character into integer form, also to perform

 Secondary structure prediction of RNA 53

loading data in a format that NN accepts it, and finally must be aware of the equality in
sequences length.

In order to deal with all of these characteristics, the usage of Torchtext (Pytorch,
2019) is essential. Torchtext’s role is to take any file in a raw format, such as is csv, json,
etc. and make it into a dataset.

Dataset could be defined as a block of data, which has been pre-processed. Form of
representation is canonical, or easy to be used by other data structures. After formation of
the dataset, follows the step where the iterator, must be used for a purpose of batching,
numeration, packaging and moving up of the data. This is the step that gives possibility to
a data to come up to the deep neural network, hidden layers (Figure 5).

To introduce these variables to the NN vector representation has been used.
Following is that, each of the characters is represented with some form of zeros and ones
in the vector.

Figure 5 TorchText parts and workflow (see online version for colours)

Moreover, ending up with hyper-parametrised vectors, there is some need of feeding
these characters to the NN. That is where the embedded layer, previously discussed,
comes into usage. Usually this is a layer of a size given ,sizesize vectorvocabulary dense∗
where for each word in the vocabulary (character); there exist a corresponding index in
embedded matrix.

3.3 Building up the model

Working with sequential data, usage of CNN must consider one dimension, so
convolution would be defined as convolution of one dimension (Figure 3). This CNN
filter working on the principle of sliding down the sequence.

Since working with embedded CNN, the input and output size must be the same size,
therefore must not be any change in the amount of channels specified. Difference is
present in the kernel size, since it starts with amount of 11 degrades to 7 and the final
convolutional layer has 3 as a kernel size.

Finally, the formation of a new matrix known as ‘convolved feature’ or ‘activation
map’ as well as ‘feature map’ (Thomas, 2019), is provided. It is important to note that
filters act as feature detectors from the original input image. The specification of a stride
gives the amount of move from one to another element when applying the filter (kernel).
Usually the smaller the stride is, the higher the overlapping will be (Figure 6), for this
purpose stride considered in this network is considered to be fixed and 1.

 54 B. Chauleva et al.

Figure 6 Formation of feature map (see online version for colours)

Source: Library (2020)

3.4 ReLU function and dropout layers

The CNN architecture is consisted of three hidden layers, one which is initialisation
convolutional layer and other two layers within the ResNet block, with the ReLU
preceding them (Paszke et al., 2019) as activation function as well as dropout
regularisation method.

Most used activation function is ReLU because of its possibility to work with
nonlinear data ReLU among other activation functions (ELU, SELU, LeakyReLU,
Swish…) is very easy to be calculated and implemented in general, since it uses
comparison with input and the value of zero (Paszke, et al., 2019). ReLU activation
function allows CNN to scale up the size. The most important thing about usage of this
function is the avoiding the false zero approach, when high value of input is present.

ReLU function in the proposed algorithm has been implemented in two places, both
of which are before the dropout layer, which is not an exact layer by the theory, but is
defined as that in practise.

Moreover, the dropout layer as layer mostly applied on top layers consisted of large
number of parameters for the purpose of prevention of feature co-adaptation and
overfitting. Besides, it may also be considered as regulariser. Therefore, as widening of
residual blocks results in an increase of parameters, we tend to implement dropout layers
after ReLU activation functions. Previously, dropout as regulariser in ResNet was used as
identity part of the block that has shown big amount of negative effects of that. Followed
by that, the dropout is therefore added between convolutional layers, acting as selector
within neurons for the role deciding which one will continue on the next level.

Figure 7 Dropout layer role within convolutional neural network (see online version for colours)

 Secondary structure prediction of RNA 55

However, this is practical when prevention of confusions in the model or over-fitting of
the training data is present. Simple representation of these layers in our network would be
to filter out which neurons are important and drop out which are not, also seen on
(Figure 7) (Brownlee, 2018).

As a final statement, addition of the dropout layer into ResNet block was considered
to be between convolutions after ReLU for a purpose of disconcert batch normalisation in
the following block and avoidance of overfitting, additionally as the best specified
amount of it was decided to be value of 0.2% or 20%. Nevertheless, in deep ResNet this
approach aids with diminishing feature.

3.5 Optimisation and loss function

PyTorch (Anaconda, 2012) has inbuilt loss and optimisation functions. In this paper is
used cross entropy (CE) function, which works with a batch of size N corresponding to C
labels that give a variable of dimension N by C. This value of a variable has been
obtained when the variable of that dimension passes throughout the model.

Optimisation package in PyTorch, allows easy interfaced optimisation of the
algorithms. It works in a way that passing of the parameters in the model that will be
updated at each iteration is done. Another available possibility is to specify the learning
rate to be per layer or per variable. The learning rate specified in this case is considered to
be 1e-3 (Paszke et al., 2019).

For the learning rate the specification of the scheduler must be done. The learning
rate of each parameter group is specified to be by gamma in every step_size of the epoch
(whole set). This decay may happen simultaneously with other changes presented in the
learning rate, which come outside of this scheduler.

3.6 Training and testing of the network

Foremost, the training starts with one convolution layer followed by block of ResNet.
The following (Figure 8) gives an example of the training with amount of epochs
(traversals over whole set) set to 10 over the whole set and also over the deeper layers by
the ResNet blocks specified as batches (sections divided in the embedded layer) that are
specified with additional batch_size. This is followed by the conversion of data and target
into PyTorch variables.

Once the training has been finished, the result for ten epoches will give the following
ratio between the training loss and validation loss showed in Figure 8.

Classification problems base prediction on discrete class as output. Moreover, the
interest is put over the separation of dataset into mismatched and possibly distinctive
classes that are mainly based on dissimilar parameters, therefore novel and obscure
record will proceed into the classes.

Knowing that entropy is the quantifier of randomness when the information has been
processed, whereas CE is a quantifier of the difference between the randomness when
two arbitrary variables are being examined, statement must be made that:

• Cross-entropy (Paszke et al., 2019) is a loss function used with intention to learning
how to use the probability of memorised data. Once faulty prediction occurs it will
provide greater penalty, for the predictions, with higher confidence levels. However,
if the divergence of the predicted probability escalates, the cross-entropy loss will

 56 B. Chauleva et al.

also escalate. Moreover, if predicted probability is around 0.020 when genuine
examination ranges up to 1, triggered point will be high loss value.

Figure 8 Validation and train loss of the network for epochs of value 10 (see online version
for colours)

Finally, if considering an ideal model yet to be faultless that will acquire a value that
has logarithmic loss roughly 0.

• CE loss, where calculation of the gradient when output neurons of the CNN are
accounted for back-propagation, as well as when optimisation of defined loss
function uses tuning of the parameters within network. Therefore, the computation of
the gradient of CE Loss is done with the respect of each CNN class score which is
defined in s.

• Terms that are defined as negative are the zero one. However, scenario with the loss
gradient taken with respect to the negative classes must also be on account of
Softmax to the positive class that will depend on the scores that are obtained from
negative classes.

• However the gradient expression will be the same for values of the C with lack of
consideration of the ground truth class Cp, since score of Cp(sp) are defined in the
nominator of the following formulae:

log
s
p
c s

jj

e

e
= −

CE

 Secondary structure prediction of RNA 57

The usage of this function is due to the classification tasks, since it works on the basis of
confident model it only predicts accurately, with a very high probability. Once
implemented the loss in the network will have different value (Figure 9).

However, the classic Softmax and cross-entropy loss combination is often used as
norm for training NNs that must be calculated from the output probability of the ground-
truth class. Moreover, measurement of the cross-entropy is done between the ground truth
label y and the output of the NN ý. Succeeding is the adjustment of network’s parameters
to reduce the cross-entropy with the usage of back-propagation.

For the final classification task, a softmax function is being used. Defined as
nonlinear function with a special usage within the network, since it is only used at the
end, when taken a vector of real numbers. Softmax function (Paszke et al., 2019) is used
mainly where trafnsformation from numeric output in the last linear layer must be made,
in order to obtain probabilities from the final layer and perform proper classification of
stated values (in this case the within two classes of characters).

Therefore, when exponents of each output are taken and being normalised, each
number by the sum of those exponents has been summed up and forms a total amount of
one. The importance of it might be found when collecting all possible probabilities in the
networks, for a purpose of obtaining probability of one.

Figure 9 CE loss function (validated loss) in the network (see online version for colours)

CE loss that has been previously discussed is one loss function that has a purpose of
multi-class classification problem.

Finally, the loss for optimising NN models usually uses the cross-entropy approach
with known one-hot representation (label of target class) and a categorical distribution
calculated by the output of the network through softmax. However, with this common
setting of the cost function, the network is trained to make the categorical distribution as
close as possible to target elements that are all zero except the one for the true class

 58 B. Chauleva et al.

which are stated as one. It has been widely accepted that minimising the cross-entropy
loss is an objective which reasonably conforms achieving high classification accuracy (Li
and Maki, 2018).

3.7 Output layer of the network

Once taken the result from the classification step, the obtained result would consider
three main character representation :{ (,) and }. These characters are mainly used to
describe the state of pairing between bases such as: paired, half-paired or unpaired, which
leads to the formation of secondary structures in the RNA, also called as loops. Matching
parenthesis and dots denotes paired and free bases, respectively. The algorithm could
execute them in the raw format of dot-bracket representation, which is a way to get the
first output, yet the dot-bracket notation usually happens to be cumbersome, considering
that it leads to large expressions that usually consider information that is partially
obscured for human readers.

Because of it counting of the identical characters is acquired and formation of pairs
too, which must be done manually. For more convenience, if certain features in the
sequence are modelled in readable way, such as graphical shaping of the different loops,
it solves the major problem. For solving previously stated problem, special visualisation
package has been used, ViennaRNA package (Hofacker, 2017) in specific, through the
forgi and forgi.nn libraries.

First and foremost, the representation of the actual and predicted model is outputted
as dot-bracket representation that additionally has used it for building up the
representation of the secondary structure of the RNA within visual format. The final
representation is seen on Figure 9.

Figure 10 Usage of forgi library for visual comparison of real structure and predicted structure
(see online version for colours)

 Secondary structure prediction of RNA 59

4 Methods and results

In order to be able to replicate these methods and obtain similar or same results,
following steps must be taken into consideration:

• With help of the main Python (2001) library Os, reading of characters in the bpRNA
(Danaae et al., 2018) files is performed and characters are pushed into sequences.
Mainly for the purpose of working with sequences we need to consider library as
NumPy (The NumPy community, 2008).

• Once sequences of dot – brackets are formed they are also given values to be able to
perform operation over key-value pairs formed, therefore each character has value or
weight to be operated with.

• This is followed by the creation of a model, with the help of Torch library or
PyTorch which has torch.nn (Anaconda, 2012) library that is used for the creation
and work with NNs, in this case the convolutional neural network or more specific
ResNet type of it.

• Consequently, CNN must use three convolutional layers, two dropout layers and two
ReLU layers. The algorithm would follow the structure of (Figure 1), where input
layers starts with key-value pairs, dot brackets and their weight. This enters the
initial convolutional layer that has kernel size of 11(filters), which would continue to
the ResNet block considering convolution layer of 7 by 7 and ReLU function as well
as first dropout layer (with 0.2 value implied), that ends up into next convolutional
layer considering five kernels (filters). Next it proceeds into ReLU function with
additional dropout layer which gives input to the final output layer considering
cross-entropy optimisation and max-pooling as final mediators into the training
process, at the end the calling of the visualisation library forgi (Hofacker, 2017) is
performed for visual representation of the results obtained.

The last part of the algorithm to be discussed after the model is created is the training and
validation loss (Paszke et al., 2019). For this purpose we need to create functions that will
approach the average loss of the sequences one for the training and one for the validating.
For the purpose of comparing how big is their difference that is preferred to be as low as
possible, backward propagation in the CNN is used, with updating of the weights after
each running until reaching the final optimal solution. This is followed by the plotting
with Matplotlib library (Hunter, 2012) that shows how good the learning process goes.

4.1 Methods evaluation

After overall evaluation of the model and obtained results, an accuracy level comparison
of the algorithms must be made for the purpose of verifying its accuracy and sensitivity.
Therefore, the classical benchmark specification known as positive-predictive value
(PPV) is used, which is founded on the base-pair prediction accuracy and another one
known as sensitivity specificity for overall sensitivity prediction.

Secondary structure prediction of RNA usually uses two benchmarked estimators for
purpose of predicting accuracy and this has been taken as general rule within
bioinformatics area.

 60 B. Chauleva et al.

Sensitivity is defined as percentage of known pairs which are correctly predicted, and
PPV is the percentage of predicted pairs that has been known in the structure. These two
statistical benchmarks are calculated with the following formulae (Zhi, 2009):

number of correctly predicted base pairssensitivity
total number of known base pairs

=

number of correctly predicted base pairsPPV
total number of predicted base pairs

=

Moreover, these benchmark specifications are widely used as estimators of the state of
the algorithm, starting from the very beginning of algorithms for the purpose of
Secondary Structure prediction, as well as needed in order to obtain valid values which
are used for the calculation of the F-score, furthermore. The values obtained for
sensitivity are ranging around 0.72 and the values for PPV or specificity are also around
0.80.

However, F-score which can be also referred as F1-score is a measure of how
accurate a model is with a given dataset. Often it is accepted to be used within binary
classification systems. Besides, the F-score uses a combination of the sensitivity and
specificity of the model, which also can be stated as the harmonic mean of the model’s
precision and recall.

The F-score finds its usage within wide variety of machine learning models, in
particular and most often within natural language processing. Adjustment of the F-score
is possible and depends on the parameters such as sensitivity and specificity and their
adjustment overall.

Obtained values of the previous two statistical benchmarks which are easily obtained
with Python functions, are after that input in the benchmark F-score, which was already
discussed, and is given within the following formulae:

2 sensitivity AND specificityF score
sensitivity OR specificity

∗=

For the purpose of comparison with similar methods that employ NNs, we use the
comparison metric F1 previously calculated, given on Figure 11. From the figure we can
conclude that CNN approach (labelled as CNNProposed) or last one in the bar chart), has
the value of F1 around 0.76 or 76%, which compared to most models is between highest.
However, better and more sophisticated can be spotted to be CDPFOLD represented by
Zhang et al. (2019b).

The Nussinov Jacobson algorithm as the oldest one would have running time of O(n2)
(Venkatachalam et al., 2014), compared to that the algorithm of Zuker’s MFE works with
the time complexity of O(n4) (Zhao and Sahni, 2016), whereas when considering a little
bit more advance algorithm such as MEA it works in O(n4) (Clote et al., 2017).
Consecutively the amount of time needed to execute the Pesudoknotted algorithm would
be O(n5) (Mustoe and Buasan, 2018).

 Secondary structure prediction of RNA 61

Figure 11 Sensitivity, specificity and F1 scores comparison, other popular methods considering
NNs and our method, labelled as CNNproposed) (see online version
for colours)

For the purpose of complexity evaluation within NN usually we analyse model’s
complexity by taking the count of total amount learnable parameters, moreover,
collecting the size of the parameter file in terms of MB for our model. However, this kind
of information is very useful for understanding the minimum amount of GPU memory
required for execution of the model. For the purpose of calculating time complexity of
our method we have taken statement from this study (Bienstock, 2018), which states that
CNN ResNet can calculate time complexity with the following formulae based on the
cross-entropy combined with soft-max:

()()+ +(2)- + log()Δ / n m NO kCross Entropy Soft Max O m m D− =

From where n and m are the input and output dimensions and N is the total number of
parameters. We ∆ to express the maximum vertex in-degree in G which is directed graph
defining the NN.

In all results the node computations are linear with bias term and normalised
coefficients, and activation functions with Lipschitz constant at most 1 and with 0 as a
fixed point which also includes ReLU as well, additionally k stands for the depth, and
finally, D stands for the size of the dataset.

From here we can conclude that the time complexity of this algorithm stays way
much forward older methods, and can compete with other methods considering NN’s.

 62 B. Chauleva et al.

5 Discussion and future work

5.1 Technical implementation

For the purpose of algorithm testing, from dynamical algorithms, until the newly
discussed algorithm, platform being used is of performances: CPU Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz. For the algorithms: Nussinov-Jacobson, Zuker’s MFE and
Four Russian implementation of Nussinov, MEA and pseudoknotted had been used the
source code based in C/C++ language and tested in the Visual Studio 2017 Package
(Microsoft, 2012) as a running environment with additional support of OpenMP (Board,
2018) for the purpose of parallelisation.

For the second part, where design of the CNN architecture had been considered, the
following components were mainly considered:

Python 3.7 (64 bit) (Pytorch, 2016), with the addition of the Anaconda Navigator),
Jupyter Notebook 6.0.3 version (Perez and Granger, 2014), environment for interactive
testing and computing, ViennaRNA Forgi – library for RNA for visualisation of the
secondary structure (Hofacker, 2017), Pytorch 1.6.0 version (Anaconda, 2012) – building
the convolutional neural network support whereas the dataset has being extracted from
bpRNA – 1 m version 1.0 (Danaae et al., 2018).

However, model has been constructed of three convolutional layers, two dropout
layers and two ReLU function layers (Lab, 2016), where one initialization convolution
layer was taken out of the ResNet block which concluded all of the previously mentioned
steps. Moreover, with the help of the forgi library taken from Vienna RNA package final
comparison between the real and the predicted structure of RNA is proved with visual
representation of otherwise burdensome representation with dot-bracket.

Some changes in the algorithms could result in better accuracy and better time
complexity which may be seen as a new chance for a purpose of obtaining better results,
and may be discussed as a future work in this field.

5.2 Research implications

Constructing NN for the purpose of predicting secondary structure of RNA has been
discussed throughout different studies (Singh, 2019; Bliss et al., 2020; Lu et al., 2019),
the proposed model with convolutional neural network considering modern type of
implementation known as ResNet approach is done for the purpose of proper
classification of the results into adequate groups as well as for avoidance of vanishing
gradient that often occurs within very deep networks consisted of large amount of layers.
Additionally, reason behind ResNet as type of CNN being used, is the immersive
capability to solve very complex problems that require very large amount of layers in a
very efficient way, not affecting time and accuracy.

However, considering the large amount of studies implementing different techniques
and models for the same purpose, withdrawing only the most efficient and competitive
conclusions must be made. For this purpose, constructing model which will run the best
possible way was only considered.

ResNet are novel type of networks when searching throughout different types of
CNN, yet they have proved their ability to precisely and efficiently approach large
amount of problems, which was also proved within this paper. Moreover, this study

 Secondary structure prediction of RNA 63

intentionally avoids prediction of the pseudoknots for the purpose of avoiding low
accuracy rates that usually occur within such a type of models.

Additionally, for advancement of this study a transfer learning approach may be
considered that will furthermore add up some missing parts, which came as
complementary intention from recent studies (Lu et al., 2019), showing up great results
with this approach too.

Finally, this may be defined as a good starting point for more efficient and accurate
network with additional work over it.

5.3 Future work

First and foremost, as advancement of the proposed method, different type of NN can be
considered for the same purpose as well as addition to the already existing, CNN model,
which is discussed in similar studies with the RNN and combination of RNN (Lu et al.,
2019) and CNN models (Wang et al., 2019).

Secondary, a hybrid version of NNs may also find purpose in the implementation for
increasing the speed up and accuracy, when considering different NNs in combination.
Since this thesis considered only one type of activation and regulation function, whereas
there are a large amount of them present, this could be seen as another possible
implementation.

Finally, the addition of more features that would shift the sensitivity and accuracy
levels to even higher value may be evaluated and implemented.

Moreover, this paper suggests usage of modern type of CNN known as ResNet for the
purpose of avoiding diminishing gradient as well as for avoiding very DNN that add to
the complexity but they lack the amount of accuracy needed. This can be a crucial point
for development of additional models for even better performance, yet it may be qualified
as a very competitive approach considering the already established time complexity and
accuracy level as one of the highest compared to the already existing method which
consider the approach of NNs.

Competitiveness of the suggested method is high, yet any method being suggested
may acquire additional changes which may better the results. Moreover, this method
lacks the ability to predict some complex structures such as pseudoknots, which is
intentionally avoided within the network for the purpose of avoiding high levels of
inaccuracy that may occur with such structures. Therefore, ability for their prediction
may be considered with addition of transitional learning model or with some
complementary NN that will add more value to the already exiting model.

Future work may also consider advancement in multiple levels of RNA structure
detection, such as the possibility to add over the secondary structure detection the
detection of tertiary structure of the RNA.

6 Conclusions

After the testing and obtaining the F-score (Zhang et al., 2019b), with the benchmark
formula applied over true and predicted pairs in the RNA models, above 75% of F1
values has been proved. However, running time also proved that time complexity taken
from training and testing of the model with 10,000 sequences, was very good (Danaae
et al., 2018), compared to older and already existing competing algorithms.

 64 B. Chauleva et al.

Working with secondary structure of RNA, as a complex process still lacks the
possibility to detect pseudoknot structures. RNAs taken in consideration for development
of model as well as for testing were free from pseudoknots, mainly due to the possibility
to predict faulty stem areas. This can be seen as a point for advancement since
pseudoknots play important role in overall function of RNA, and their existence cannot
be ignored for extreme accuracy obtaining.

Moreover, the length of sequences differs which also makes possibility to experiment
with different kind of RNA and their length; this is very important when considering the
possible different kinds of RNA available in nature. The main representation being used
is dot bracket representation, which has not been reflected once some faulty of knots was
present.

When working with deep learning methods such as in this case, with consideration of
the CNN modern approach ResNet, the amount of data to be used plays a crucial role in
the prediction process, for a purpose of avoiding overgeneralised models the data was
mostly preserved to be around 1,000 nucleotides long.

Since RNA sequences could be differentiated among different types, to specify, when
functional RNA is present, we may obtain a fixed structure, which is not the case with
some non-functional RNA sequences. And as a matter of fact, around 2%–3% of RNAs
are functional only.

However, RNAs are instable sequences; any factor from aside may have some
impact, which usually can lead to changes in the structure prediction too, so addition of
large amount of prediction characteristics can enlarge the amount of accuracy in the
prediction of secondary structure of RNA.

Nonetheless, introduced algorithm that considers working with CNN approach
modern version defined as ResNet for a purpose of secondary structure prediction of
RNA, obtained the best possible results when considering algorithms in its class, that
does not consider pseudoknots, and has results nearby similar to the one that considers
them. This research gives some possible approaches of incorporating artificial
intelligence (AI) as a new way of solving tedious and redundantly large work that lacks
accuracy and time efficiency of other older approaches.

As a final conclusion to be established, DNN such as CNN (Aarshay, 2016; Thomas,
2019), are an extremely competitive method to be implemented, when accuracy and time
are crucial points to be established.

In the area of bioinformatics where development of a new drug is sensitive work,
time and accuracy is of high importance. Additionally to consider is that implementation
of the CNN for the purpose of secondary structure prediction of the RNA could be done
in a very practical way, with usage of less resources and with a possibility to predict a
structure which would have above 80% accuracy and sensitivity, according to the
benchmark testing (Zhang et al., 2019b).

7 Author contributions

H.A, R.Sh.U, and Gj.S.Lj conceived and directed the project. Ch.B had to obtain data
from bpRNA database, research and contribute to the development of CNN. Also the
conduction of the data, analysis as well as the interpretation of results was task performed
by Ch.B. All of the authors were included in the designing of the study, whereas the
reviewing of the data was performed by Gj.S.Lj. For the writing and editing of the

 Secondary structure prediction of RNA 65

manuscript, all of the authors were employed. Afterwards following with the reviewing
process of the manuscript, before final approval to be send for publication.

8 Lessons learned

Working with secondary structure of RNA, as a complex process still lacks the possibility
to detect pseudoknot structures. RNAs taken in consideration for development of model
as well for testing were free from pseudoknots, mainly due to the possibility to predict
faulty stem areas. This can be seen as a point for advancement since pseudoknots play
important role in overall function of RNA, and their existence cannot be ignored for
extreme accuracy obtaining.

Working with sequences taken from bpRNA database, model was built over 10,318
RNA secondary structures from seven different sources. The length of sequences differs
which also makes possibility to experiment with different kind of RNA and their length;
this is very important when considering the possible different kinds of RNA available in
nature. The main representation being used is dot bracket representation, which has not
been reflected once some faulty of knots was present.

When working with deep learning methods such as in this case, with consideration of
the CNN approach, the amount of data to be used plays a large role in the prediction
process, for a purpose of avoiding overgeneralised models the data was mostly preserved
to be around 1000 nucleotides long, notice must be made, since this can lead to false
predictions.

As a final notice, RNAs are instable sequences; any factor from aside may have some
impact, which usually can lead to changes in the structure prediction too, so addition of
large amount of prediction characteristics can enlarge the amount of accuracy in the
prediction of secondary structure of RNA.

To conclude, introduced algorithm that considers working with CNN approach for a
purpose of Secondary Structure prediction of RNA, obtained the best possible results
when considering algorithms in its class, that does not consider pseudoknots, and has
results nearby similar to the one that considers them.

Acknowledgements

The work in this paper was partially supported by the University of Information Science
and Technology ‘St.Paul the Apostole’, Ohrid, Macedonia and BioInformatics and
Genomic Privacy Laboratory (BIGL).

References
Aarshay, J. (2016) Fundamentals of Deep Learning – Artificial Neural Networks [online]

https://www.analyticsvidhya.com/blog/2016/03/introduction-deep-learning-fundamentals-
neural-networks/ (accessed 2 August 2020).

Anaconda, I.O.A. (2012) Python for Machine Learning Anaconda [online]
https://www.anaconda.com (accessed 20 July 2020).

Beckmann, T., Kerpedjiev and Hofacker (2015) Vienna RNA Package [online]
https://viennarna.github.io/forgi (accessed 1 August 2020).

 66 B. Chauleva et al.

Bienstock, D.G.M. (2018) Principled Deep Neural Network Training, arXiv, p.26.
Bliss, N., Bindweald, E. and Shapio, B.A. (2020) ‘Predicting RNA SHAPE scores with deep

learning’, RNA Biology, Vol. 17, No. 9, pp.1324–1330.
Board, O.A.R. (2018) OpenMP [online] https://www.openmp.org (accessed 3 January 2020]).
Brownie, J. (2020) Softmax Activation function in Python [online] (accessed 2020).
Brownlee, J. (2018) Dropout Regulization of Neural Networks [online] https://machinelearning

mastery.com/dropout-for-regularizing-deep-neural-networks/ (accessed 4 August 2020).
Chauleva, B., Hristov, A. and Sandjakoska, L. (2020) ‘Single RNA secondary structure prediction

based dynamical programming algorithms: to parallelize or not?’, CIIT 2020, Skopje.
Clote, P., Lou, F. and Lorenz, W.A. (2017) ‘Maximum expected accuracy structural neighbours of

an RNA secondary structure’, BMC Bioinformatics, Vol. S6, No. 13, p.13.
Danaae, P., Rouches, M. and Deng, D. (2018) bpRNA – Single Molecule RNA [online]

http://bprna.cgrb.oregonstate.edu/ (accessed 1 August 2020).
He, K., Zhang, X., Ren, S. and Sun, J. (2015) Deep Residual Learning for Image Recognition,

CVPR, p.12.
Hofacker, I. (2017) VienaRNA Package – TBI Uni. [online] https://www.tbi.univie.ac.at/RNA

(accessed 23 June 2020).
Hunter, J.D. (2012) Matplotlib [online] https://matplotlib.org/ (accessed 5 August 2020).
Kong, Q., Liu, Z. and Xiaobing, T. (2018) The Computation of the Barrier Tree for BHG of RNA

Folding Structure, Hangzhou, IEEE.
Lab, F.A.R. (2016) Neural Networks Library PyTorch [online] http://www.pytorch.org (accessed 6

March 2020).
Li, V. and Maki, A. (2018) ‘Feature contraction: new ConvNet’, The British Machine Vision

Conference (BMVC), Newcastle, p.11.
Library, M.O.L. (2020) MIT Open Learning, 2021, Massachusetts Institute of Technology,

Massachusetts.
Liu, Z., Zhu, D. and Dai, Q. (2015) Predicting Algorithm of RNA Folding Structure with

Pseudoknots, RNA, Shenzhen.
Lu, W. et al. (2019) ‘Predicting RNA secondary structure via adaptive deep recurrent neural

networks with energy-based filter’, BMC, Vol. 20, No. 25, p.20.
Mao, K., Wang, J. and Xiao, Y. (2020) ‘Prediction of RNA secondary structure with pseudoknots

using coupled deep neural networks’, Biophys. Rep., Vol. II, No. 6, pp.146–154.
Microsoft (2012) Visual Studio 2017 C/C++ Dev Environment [online]

https://visualstudio.microsoft.com/ (accessed 21 February 2020).
Mujtaba, H. (2020) mygreatlearning [online] https://www.mygreatlearning.com/blog/resnet/

(accessed 24 June 2020).
Mustoe, A.M. and Buasan, S. (2018) Pervasive Regulatory Functions of mRNA Structure Revealed

by High-Resolution SHAPE Probing, s.l., Cell.
Noah Bliss, E.B.B.A. (2020) ‘Graph neural representational learning of RNA secondary structures

for predicting RNA-protein interactions’, RNA Biology, Vol. 17, No. 9, pp.1324–1330.
Palkowski, M. and Bielecki, W. (2016) ‘Parallel tiled Nussinov RNA folding loop nest generated

using both dependance graph transitive closure and loop skewing’, BMC Bioinformatics,
Vol. 18, No. 3, p.290.

Palkowski, M. and Bielecki, W. (2019) ‘Parallel cache efficient code for computing the McCaskill
partition function’, FedCSIS, Vol. 210, p.207.

Pandas (2008) Pandas [online] https://pandas.pydata.org/about/ (accessed 05 August 2020_.
Paszke, A., Gross, S. and Chintala, S. (2019) Pytorch [online] https://pytorch.org/docs/stable

/generated/torch.nn.ReLU.html?highlight=relu#torch.nn.ReLU (accessed 5 August 2020).

 Secondary structure prediction of RNA 67

Perez, F. and Granger, B. (2014) Jupyter Environment [online] https://www.jupyter.org (accessed
25 August 2020).

Python Software Foundation (2001) Python Standard Library [online]
https://docs.python.org/3/library/os.html [Accessed 1 August 2020].

Pytorch (2016) Neural Networks Library PyTorch [online] http://www.pytorch.org (accessed 03
2020).

Pytorch (2019) Pytorch – Torchtext [online] https://pytorch.org/tutorials/beginner/text_sentiment_
ngrams_tutorial.html#sphx-glr-beginner-text-sentiment-ngrams-tutorial-py (accessed 5 August
2020).

Sato, K., Akiyama, M. and Sakakibara, Y. (2020) ‘RNA secondary structure prediction using deep
learning with thermodynamic integrations’, Nature Communications, Vol. 10, No. 4, p.8.

Singh, J., Hanson, J., Kuldip, P. and Zhou, Y. (2019) ‘RNA secondary structure prediction using an
ensemble of two-dimensional deep neural networks and transfer learning’, Nature
Communications, Vol. 5407, No. 9, p.10.

Sorokina, K. (2017) Medium [online] https://medium.com/@ksusorokina/image-classification-
with-convolutional-neural-networks-496815db12a8 (accessed 23 June 2020).

The NumPy community (2008) NumPY [online] https://numpy.org/devdocs/user/quickstart.html
(accessed 05 August 2020).

Thomas, A. (2019) Coding the Deep Learning Revolution, 1st ed., ebook: ebook.
Venkatachalam, B., Gusfield, D. and Frid, Y. (2014) ‘Faster algorithm for RNA folding using the

four Russian method’, Mol. Biol., Vol. 5, No. 2, p.9.
Wang, L. et al. (2019) ‘DMfold: a novel method to predict RNA secondary structure with

pseudoknots based on deep learning and improved base pair maximization principle’,
Frontiers Genetics, Vol. 4, No. 3, p.10, pp.1664–8021, p.143.

Zhang, A., Lipton, Z.C., Li, M. and Smola, A.J. (2019a) Dive Into Deep Learning [online]
https://d2l.ai/index.html (accessed 8 August 2020).

Zhang, H., Zhang, C. and Li, Z. (2019b) ‘A new method of RNA secondary structure prediction
based on convolutional neural network dynamic programming’, Frontiers in Genetics,
Vol. 10, No. 3, p.467.

Zhao, C. and Sahni, S. (2016) ‘Cache and energy efficient algorithms for Nussinov RNA folding’,
BMC Bioinformatics, Vol. 18, No. 15, p.6.

Zhi, J.L.J.W.G. (2009) ‘Improved RNA secondary structure prediction by maximizing expected
pair accuracy’, RNA, Vol. 1805, No. 13, p.10.

