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Abstract: There are several engineering applications in which the assumptions 
of homogenisation and scale separation may be violated, in particular, for 
metallic structures constructed through additive manufacturing. Instead of 
resorting to direct numerical simulation of the macroscale system with an 
embedded fine scale, an alternative approach is to use an approximate 
macroscale constitutive model, but then estimate the model-form error using a 
posteriori error estimation techniques and subsequently adapt the macroscale 
model to reduce the error for a given boundary value problem and quantity of 
interest. We investigate this approach to multiscale analysis in solids with 
unseparated scales using the example of an additively manufactured metallic 
structure consisting of a polycrystalline microstructure that is neither periodic 
nor statistically homogeneous. As a first step to the general nonlinear case, we 
focus here on linear elasticity in which each grain within the polycrystal is 
linear elastic but anisotropic. 
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1 Introduction 

In engineering practice, modelling the macroscale response of a structure requires the use 
of a material constitutive model that approximates the effective behaviour of the 
underlying material microstructure over a desired range of loading conditions. However, 
in many cases a macroscale material model is only an approximation to the true response 
of the material, especially in regimes of loading that differ significantly from the 
calibration regime. There are also fundamental limitations in defining an effective or 
homogenised material, in particular for materials whose microstructure is neither periodic 
nor statistically homogeneous. Typical examples include welded regions of a metallic 
structure, structures resulting from a casting process or metal additive manufacturing 
(AM), and certain composite material systems. Furthermore, typical structures possess 
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numerous stress concentrations that can invalidate the separation-of-scales assumption 
when local stress gradients occur on the same length scale as the material grains or 
individual constituents of a composite. For these examples, there is no longer a clear 
demarcation of ‘material’ with well-defined properties and the structural system 
comprised of the material; rather, features and properties of the local microstructure will 
determine the behaviour. 

Figure 1 Grain morphology and crystal orientation of 304L stainless steel, (a) wrought material 
(b) AM material (see online version for colours) 

 
(a) 

 
(b) 

Note: Reproduced with permission from Bishop and Brown (2018). 

Our motivation for this work is the quantification of model-form errors present in the 
simulation of AM structures (Adams et al., 2019; Johnson et al., 2018; Li et al., 2010; 
Denlinger et al., 2014; Pal et al., 2014; Markl and Körner, 2016; Smith et al., 2016). Due 
to the nature of the manufacturing process, these materials may not possess a  
separation-of-scales. This makes the use of homogenisation (Cioranescu and Donato, 
1999; Zohdi and Wriggers, 2008; Christensen, 2005; Torquato, 2002), e.g., through 
representative volume elements (Kanit et al., 2003) or self-consistent methods 
(Lebensohn and Tomé, 1993; Yaguchi and Busso, 2005; Wang et al., 2010), an 
approximation (Bishop et al., 2015, 2016). An example material microstructure for 
stainless steel resulting from a laser engineered net shaping (LENS) process (Griffith  
et al., 1996; Adams et al., 2019) is shown in Figure 1. The microstructure of a traditional 
wrought material is shown for comparison. The materials/structures resulting from AM 
can exhibit significant polycrystalline texture, even by design (Dinda et al., 2012; 
Antonysamy et al., 2013; Parimi et al., 2014; Dehoff et al., 2015; Wei et al., 2016). Thus, 
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the typical assumption of mechanical isotropy in these materials is an approximation 
whose error must be quantified (Hendrix and Yu, 1998; Tang and Pistorius, 2017). 
Similar types of errors exist in the macroscale representation of welds (Bouche et al., 
2000; Unnikrishnan et al., 2014; Brown and Bishop, 2019), composite materials 
(Christensen, 2005), random heterogeneous media (Torquato, 2002; Zohdi and Wriggers, 
2008), and whenever approximate material models are used at the macroscale. 

If a sufficiently accurate representation of the fine-scale microstructure existed, along 
with an appropriate constitutive model at the fine scale, direct numerical simulation could 
be used to model the macroscale response of a structure comprised of unseparated scales 
(Bishop et al., 2015, 2016; Rodgers et al., 2018). However, given current computing 
resources, this approach is clearly not tenable for most engineering structures, even if 
using an optimal geometric multigrid solver with computational complexity O(N), where 
N is the number of degrees of freedom in the model (Yushu and Matouš, 2020; Liu et al., 
2020; Miehe and Bayreuther, 2007). An alternative approach is to seek an approximate 
macroscale solution and then quantify the error or uncertainty in the solution using 
techniques from the field of multiscale model-form a posteriori error estimation. The 
resulting model-form error is in addition to the discretisation error. In this approach, the 
approximate coarse-scale (macroscale) model is solved first, followed by an offline 
recovery of an approximate fine-scale solution through one of several methods. The 
model-form error can then be assessed using both the solution to the approximate  
coarse-scale model and the recovered fine-scale solution. This methodology has been 
developed extensively in both single and multiscale contexts by Oden and collaborators 
(Zohdi et al., 1996; Oden and Zohdi, 1997; Moës et al., 1998; Oden and Vemaganti, 
1999; Oden et al., 1999; Oden and Vemaganti, 2000; Vemaganti and Oden, 2001; Oden 
et al., 2001; Romkes et al., 2006). Recently, this model-form a posteriori error estimation 
methodology has been used to assess the single scale error in simplified representations 
of welded and AM structures (Bishop and Brown, 2018; Brown and Bishop, 2019). In 
this work, we investigate the multiscale error-estimation methodology using an example 
of an AM metallic structure consisting of a polycrystalline microstructure that is neither 
periodic nor statistically homogeneous. The AM microstructure is realised using a kinetic 
Monte-Carlo (KMC) methodology (Rodgers et al., 2018). A traditional wrought 
microstructure with equiaxed grains is also used for comparison. The wrought 
microstructure is statistically homogeneous and readily homogenisable using standard 
techniques. Several methods are investigated for recovering the fine-scale fields, given 
the coarse-scale solution. 

Once a local-error indicator is obtained for the approximate macroscale solution, the 
error may be reduced through various adaptive techniques. Previous approaches for 
reducing the modelling error have emphasised replacing the less accurate macroscale 
material model with the true microstructural model in regions where the local-error 
indicators were relatively large (Oden and Zohdi, 1997; Oden and Vemaganti, 1999, 
2000; Vemaganti and Oden, 2001; Oden et al., 2001). In contradistinction, we reduce the 
modelling error by adapting the material parameters in the approximate macroscale 
constitutive model. These adapted parameters may vary spatially. 

Although we are ultimately interested in assessing errors in engineering quantities of 
interest (Oden and Vemaganti, 2000; Vemaganti and Oden, 2001), in this work, we focus 
only on error assessments in the energy norm. As a first step to nonlinear boundary-value 
problems (Oden et al., 2001; Larsson and Runesson, 2004, 2006, 2008), we consider here 
only linear elasticity. Section 2 reviews linear elasticity, establishing notation and 
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solution norms, and provides a short note on homogenisation theory. Section 3 reviews 
the multiscale error-estimation framework. Several methods for recovering the fine-scale 
solution from an approximate macroscale solution are given in Section 4. Section 5 
provides a detailed example demonstrating the fine-scale recovery process and the 
multiscale error estimation process for a synthetic AM structure. An algorithm for 
adapting the macroscale material parameters and reducing the model-form error is given 
in Section 6. A summary is provided in Section 7. Key equations are included in a box 
for clarity throughout the text. 

2 Problem formulation 

In this section, we review the governing equations for linear elasticity, define several 
solution norms, and provide a short note on homogenisation theory. 

2.1 Governing equations 

Consider a body   with boundary Γ and interior Ω. The body is subjected to surface 
tractions t per unit area. The position of a material point in the original configuration is 
denoted by X and in the current configuration by x. The displacement vector u is given 
by u := x − X. In the absence of body forces, static equilibrium is governed by the vector 
equation 

:∂ =
∂
σ I 0
x

 (1) 

with boundary conditions 

on and on= Γ = Γu tu u σn t  (2) 

Here, σ is the Cauchy stress tensor, I is the identity tensor, n is the outward unit normal 
on Γt, Γ ∪ Γ = Γu t  and Γu ∩ Γt = ∅. Along with vector notation, indicial notation is also 
used. For example, σ is written as σij with subscripts i, j = 1, 2, 3. Summation is implied 
on repeated indices unless otherwise noted. For example, σn = σijnj and σ: σ = σijσij. 

2.2 Linear elasticity 

For linear elastic materials, ,σ =   where : ( )sym= ∇u  is the linear strain tensor, and 
  is the fourth-order stiffness tensor. For heterogeneous bodies,   will be spatially 
varying. We assume that   satisfies the uniform ellipticity conditions 

( ), 0 such that : : ( ) :l u l u∃ > ≤ ≤ ∀xα α α α        (3) 

for almost every x ∈ Ω. The inverse of   is the compliance tensor 1.−=   
Due to the major and minor symmetries of ,  there exist only 21 independent elastic 

constants for general anisotropy. For cubic symmetry, there are three independent elastic 
constants whereas for an isotropic material there are only two (Bower, 2010). The 
example problem presented in Section 5 considers a polycrystalline material in which 
each grain possesses a cubic symmetry with a crystal orientation distribution that is 
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uniformly random and thus has no preferred orientation (no texture). The approximate 
macroscale material model for the example is taken to be isotropic and homogeneous. 

For isotropic materials, there are only two independent elastic constants, the shear 
modulus μ and the bulk modulus K. In this special case, the stiffness tensor may be 
written in the form (Moakher and Norris, 2006), 

(3 ) (2 ) .iso K μ= +    (4) 

Here,   and   are fourth-order tensors defined as 

1( ) and
3ijkl ij klδ δ= = −     (5) 

where 1( ) ( )
2ijkl ij jl il jkδ δ δ δ= +  is the fourth-order identity tensor and δij is the  

second order identity tensor (Kronecker delta). The tensor   returns the hydrostatic 
portion of a symmetric second-order tensor, while   returns the deviatoric, 

1 1( ) and ( )
3 3ij kk ij ij ij kk ijδ δ= = −      (6) 

with .+ =    Additionally,   and   possess the multiplicative properties ,=   
,=   and ,= =    where   is the fourth-order zero tensor. Further 

properties of these tensors are described in Moakher and Norris (2006). Using these 
properties, the inverse of equation (4) is simply 

1 1 .
3 2

iso

K μ
= +    (7) 

Note that .iso iso iso iso= = + =        

2.3 Weak form and solution norms 

The weak form of equation (1) is given by the following variational problem (Ciarlet, 
2002; Bonet and Wood, 2008): find the trial functions u ∈ H1(Ω), where H1(Ω):= 
[H1(Ω)]3, with =u u  on Γu such that 

( ): d d d
Ω Ω Γ

∂ ∂ Ω = ⋅ Ω + ⋅ Γ   t
σ v x f v t v  (8) 

for all test functions 1
0 ( ).∈ Ωv H  Here, H1(Ω) is the Sobolev function space of degree one 

containing functions that possess square-integrable weak derivatives, and the Sobolev 
space 1 1

0 ( ) : { ( ) : 0 on }.Ω = ∈ Ω = ΓuH v H v  With the assumption of uniform ellipticity for 
  in equation (3) and the assumption of regularity of the domain boundary Γ provided 
by Lipshitz continuity, a unique solution of equation (8) exists (Ciarlet, 2002). Numerical 
approximations to this solution will be obtained using a standard displacement-based 
finite element method (Hughes, 2000). 

For the linear elastic system of interest here, from equation (8) we can identify the 
symmetric bilinear form B(u, v), 
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( ) ( )( )( , ) : :B d
Ω

= ∂ ∂ ∂ ∂ Ωu v u x v x  (9) 

and the linear form F(v) as 

( ) : .F d d
Ω Γ

= ⋅ Ω + ⋅ Γ  t
v f v t v  (10) 

Thus, the variational boundary value problem becomes: find the trial functions u ∈ H1(Ω) 
with =u u  on Γu such that 

( , ) ( )B F=u v v  (11) 

for all test functions 1
0 ( ).∈ Ωv H  We also define the potential energy functional Π of the 

system as 

1( ) : ( , ) ( ).
2

B F∏ = −w w w w  (12) 

The energy norm (natural norm) ||·||E of u is given by, 

( )1/2
: ( , ) : ( )E B d

Ω
= = Ωu u u    (13) 

where u represents a kinematically admissible displacement field within H1(Ω) so that 
||u||E = 0 implies u = 0 almost everywhere. The Frobenius norm of a second-order tensor 
σ at a given material point is defined as 

: : .ij ijσ σ= =σ σ σ  (14) 

Similarly, for a second-order tensor field σ(x), the norm is defined as 

( ) ( )1/2 1/2
: ( ) : ( ) ( ) ( ) .ij ijd σ σ dΩ

Ω Ω
= Ω = Ω σ σ x σ x x x  (15) 

2.4 Note on material homogenisation 

Homogenisation is the process of substituting a heterogeneous material with a fictitious 
homogeneous material whose macroscale response is energetically equal to that of the 
true heterogeneous material (Cioranescu and Donato, 1999; Bishop and Lim, 2016). The 
resulting properties of the fictitious homogeneous material are called the effective or 
homogenised material properties (Huet, 1990). These properties are well defined (they 
exist and are unique) if the microstructure is either periodic or statistically homogeneous 
(Cioranescu and Donato, 1999; Tran et al., 2012; Jikov et al., 1994; Bensoussan et al., 
2011). Note that the effective properties are deterministic, even for random 
microstructures (Papanicolaou and Varadhan, 1979). Their use in a boundary value 
problem implicitly assumes that there is a ‘scale separation’ in which the microstructural 
length scale is infinitesimally small compared to those of the macroscale problem. When 
the necessary conditions for material homogenisation do not exist within a material, then 
the sampled material properties are referred to as apparent material properties by Huet 
(1990). Their use in a boundary value problem merely provides an approximation of the 



   

 

   

   
 

   

   

 

   

   336 J.E. Bishop et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

true structural response, although a very good approximation for conventional 
engineering materials. 

Homogenisation theory provides the fundamental result that the displacement field of 
the macroscopic boundary value problem containing the true heterogeneous material 
converges strongly to the displacement field of the macroscopic boundary value problem 
containing the homogenised material (Cioranescu and Donato, 1999). However, the stress 
and strain fields of the macroscopic boundary value problem containing the 
heterogeneous material converge only weakly. Equivalent results hold for random 
microstructures using probabilistic definitions of convergence (Papanicolaou and 
Varadhan, 1979). If the assumptions of homogenisation theory hold, then the fine-scale 
solution can be recovered in a post-processing step (localisation or submodelling) 
(Cioranescu and Donato, 1999). 

For finite periodic microstructures, additional terms arise in the balance of linear 
momentum for a finite microstructure. These additional terms involved gradients of strain 
(Tran et al., 2012; Boutin, 1996; Yuan et al., 2008; Smyshlyaev and Cherednichenko, 
2000), and higher-order material properties exist as well. Surface effects on the order of 
the microstructural length scale also exist for both periodic and random microstructures 
(Auriault and Bonnet, 1987; Dumontet, 1987). 

For AM metallic structures, the microstructure is neither periodic nor statistically 
homogeneous (see Figure 1, for example). Thus, there is not a well defined effective 
medium. Questions then arise regarding the magnitude of the error induced in macroscale 
quantities of interest by using an approximate effective material. The accuracy of 
homogenisation theory for structures containing finite polycrystalline microstructures has 
been studied using direct numerical simulations in both the elastic and plastic regimes by 
Bishop et al. (2015, 2016), respectively, and for synthetic AM structures by Rodgers  
et al. (2018). Generalised finite element methods could also be used to efficiently solve 
for the fine-scale solution by using a multiscale finite element basis derived using a priori 
computed local solutions (Chamoin and Legoll, 2021; Målqvist and Peterseim, 2021; 
Efendiev and Hou, 2009; Strouboulis et al., 2001). 

3 Estimation of multiscale material model-form error 

Let u represent the exact displacement from equation (1) based on the true heterogeneous 
microscale stiffness tensor ( ).x  In typical applications, this solution is computationally 
intractable by direct simulation or through conventional homogenisation techniques. 
Instead, an approximate solution is obtained by solving an approximate boundary-value 
problem, thus inducing an error. We seek to bound this induced error. To this goal, an 
approximate macroscale material model is used with stiffness tensor 0 ,  possibly 
spatially varying but with a length scale much larger than that of the fine scale. The 
associated displacement solution is denoted by u0 with associated stress σ0 and strain 0  
fields. 

The total approximation error e may be decomposed into contributions from the 
model form error emodel and the discretisation error e0,h of the coarse scale boundary-value 
problem, 

model 0, .h= +e e e  (16) 
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The modelling error emodel is given by 
model 0: .= −e u u  (17) 

The finite element method is used to obtain a discrete solution of the approximate 
macroscale boundary-value problem. This discrete solution is denoted by u0,h, where h 
denotes the element size. The discretisation error of this approximate boundary-value 
problem is given by 

0, 0 0,: .h h= −e u u  (18) 

The total approximation error e is then 
0,: .h= −e u u  (19) 

An application of the triangle-inequality property of norms gives 
model 0, model 0, .h h

E E E E= + ≤ +e e e e e  (20) 

In practice, either the modelling error or the discretisation error can dominate the total 
error. The model-form error emodel is our primary concern. Thus, we assume through the 
use of highly refined discretisations that ||e0,h||E << ||emodel||E. 

The primary objective of a posteriori error estimation is to estimate, and preferably 
bound, the solution error using the approximate solution, here u0. The following bound 
on ||emodel||E has been obtained by Zohdi et al. (1996), 

( ) ( )2model 0 0 0 0: .E d
Ω

≤ − − Ωe σ σ    (21) 

Note that this bound uses the known quantities, σ0, 0 ,  and .  Since the integrand in 
equation (21) is non-negative, a local error indicator, denoted by ζ is defined as 

( ) ( )2 0 0 0 0: :ζ = − −σ σ    (22) 

The bound is then given by 

2 2:Z ζ d
Ω

= Ω  (23) 

so that 
2model 2.E Z≤e  (24) 

We may partition Ω into a finite number of subdomains ΩM, M = 1, 2, …, N. Then, Z2 in 
equation (23) may be written as 

2 2

1

N

M
M

Z Z
=

=  (25) 

where 

2 2

M
MMZ ζ d

Ω
= Ω  (26) 
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is the contribution of subregion M to the error bound. Due to pollution effects, the  
local-error indicator ζ can be small while the local error is still large (Ainsworth and 
Oden, 2011). The energy norm of the error field is bounded in equation (24), but not the 
local point-wise error. For example, ζ is identically zero if 0 =   locally. 

Figure 2 Partition of a domain into subdomains and definition of patches for use in the fine-scale 
recovery process, (a) example domain of a hole in a plate (b) partition of the domain 
into subdomains using a standard quadrilateral mesh (c) definition of three types of 
patches (see online version for colours) 

 
(a) (b) (c) 

Notes: A type-1 patch is simply a subdomain. A type-2 patch is the union of the 
subdomains attached to a subdomain vertex. A type-3 patch is the union of 
subdomains attached to a given subdomain. 

The model-form a posteriori error bound given by equation (21) has been used recently 
to assess the single scale error in simplified representations of welded and AM structures 
(Bishop and Brown, 2018; Brown and Bishop, 2019). However, as noted by Brown and 
Bishop (2019), the bound can become too conservative in the case of multiscale analysis 
due to the fluctuating stress and strain fields at the fine scale. Oden and Zohdi (1997) 
proposed a tighter bound that requires the recovery of an approximate fine-scale solution, 
denoted here by w, using the coarse-scale approximation u0. To establish this bound, note 
that for any kinematically admissible w 

( )2 2 ( ) ( )E− = ∏ − ∏w u w u  (27) 

which can be derived using the definition of Π given in equation (12), noting the identity 
2 ( , ),Ew u B− = − −w u w u  and using equation (11) noting that 1

0 ( ).− ∈ Ωw u H  Using 
equation (27) and noting that u0 is kinematically admissible, we have 

( ) ( ) 220 0 01 1( ) ( ) ( ) ( )
2 2E E∏ − ∏ = ∏ − ∏ + ∏ − ∏ = − − −w u w u u u w u u u  (28) 

so that 
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( )( ) 22 0 02 ( ) .E E− = ∏ − ∏ + −w u w u u u  (29) 

The last term on the right can be bounded using equation (21) resulting in 

( )( )2 0 22 ( ) .E Z− ≤ ∏ − ∏ +w u w u  (30) 

This bound uses only known (computable) quantities. Note that the fine-scale 
approximation w is more accurate than coarse scale approximation u0 in the fine-scale 
energy functional Π. Thus, we expect that Π(w) < Π(u0) so that equation (30) is a tighter 
bound than just using equation (24) alone. Unfortunately, it is not as straight forward to 
identify a local-error indicator as with ζ2 in equation (22). Finally, define β2 as the 
negative of the first term in the right hand side of equation (30), 

( )2 0: 2 ( ) ( )= ∏ − ∏u wβ  (31) 

so that equation (30) becomes 

2 2 2 2: .E Z ψ− ≤ − =w u β  (32) 

4 Localisation (submodelling) 

In order to use the error bound in equation (32), we need to recover a fine-scale 
approximation w ∈ H1(Ω) that is kinematically admissible. This recovery is similar to the 
localisation process in homogenisation theory or submodelling in commercial finite 
element software, e.g., Abaqus (2021). We first partition the domain Ω into a set of 
simply connected open subsets (subdomains) {ΩM, M = 1, …, NS} as shown in Figure 2 
such that, 

1
SN

MM =Ω = ∪ Ω  (33) 

where Ω  denotes the closure of the domain Ω. Each local subdomain ΩM is then 
discretised with a fine-scale mesh to resolve the microstructure. Local patches of 
subdomains are then formed by combining several subdomains as described below. 
Appropriate boundary conditions inherited from the approximate coarse-scale solution u0 
will then be applied to the boundary of each patch. The local solutions obtained within 
each patch are then combined to obtain a continuous and kinematically admissible 
displacement field w. 

There are several possibilities for defining boundary conditions for each patch. We 
could prescribe u0 independently to each patch boundary and then use a partition of unity 
[e.g., using the coarse-scale finite element basis or using reproducing kernel methods 
(Chen et al., 2017)] to construct a continuous and kinematically admissible displacement 
field. This approach has the advantage that the solution on each patch is independent of 
the other patches and thus perfectly parallel. Alternatively, a sequential recovery 
approach can be used by first partitioning the set of patches into disjoint subsets. This 
sequencing of patches can be obtained using any of a variety of graph colouring 
algorithms (Lewis, 2016). The first subset of patches in the sequence gets boundary 
conditions directly from u0. Each subset of patches in the sequence inherits the boundary 
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conditions from the combined solution of the previous set of patches. In this way, a 
compatible and kinematically admissible displacement field is obtained for each step in 
the sequence. The final step in the sequence provides w. This approach is used herein. 

For the example presented in Section 5, we compare three sequential recovery 
methods distinguished by the amount of overlap in the patches. These three recovery 
methods will be referred to as type-1, type-2, and type-3 and are illustrated in Figure 2(c). 
Type-1 recovery is the special case in which each patch consists of only one subdomain 
and there is no overlap between the patches. For this case, u0 is applied independently to 
each subdomain ΩM. This recovery method is also referred to as the homogeneous 
Dirichlet projection method (HDPM) by Zohdi et al. (1996). This recovery process is 
embarrassingly parallel, but is expected to be the least accurate of the three recovery 
methods studied here. 

Type-2 and type-3 recovery methods entail constructing a set of overlapping patches. 
For type-2 recovery, each patch is formed by taking the union of subdomains connected 
to a vertex of the initial partition. For type-3 recovery, each patch is formed by taking the 
union of subdomains connected to a given subdomain of the initial partition. Thus, the 
patches are increasingly larger in progressing from type-1 recovery to type-3 recovery. 
We expect the recovered local solution w to be more accurate the larger the patch size, 
but also more computationally expensive. Of course, the patch size also depends on the 
size of the initial partition. In the limit of a patch size becoming the size of the original 
domain Ω then the recovery process becomes the original fine-scale problem. Note that 
type-2 and type-3 recovery methods can be viewed as one iteration within a  
domain-decomposition iterative solver (Dolean et al., 2015). Additional iterations could 
be performed to recover increasingly more accurate fine-scale solutions. These recovery 
methods can also be viewed as a prolongation step within a multigrid method (Briggs  
et al., 2000). 

For type-2 and type-3 recovery methods, several types of graph colouring schemes 
can be used. The use of an optimisation-based colouring scheme would minimise the 
number of steps in the sequential recovery sequence. Here, however, we use the simple 
greedy algorithm that is not necessarily optimal (Lewis, 2016). Also, with a greedy 
algorithm the recovery sequence will depend on the ordering of the initial subdomains. 
The number of patches and length of the recovery sequence for each type of recovery 
method is given in Section 5 for the presented example problem. The type-2 and type-3 
recovery methods are sequentially parallel, unlike type-1 which is perfectly parallel. 

5 Example 

We present an example demonstrating the fine-scale solution recovery and multiscale a 
posteriori error estimation in the energy norm. The boundary-value problem consists of a 
small tube subjected to tension. Two holes are present on the side of the tube.  
Subsection 5.1 describes the geometry and boundary conditions. The material is chosen 
to be AISI 304L stainless steel. Error estimation results are obtained as described in 
Subsection 5.2 by considering two different types of microstructure as the reference or 
‘exact’ material. The first is an idealised equiaxed microstructure obtained through a 
special type of Voronoi tessellation (Bishop et al., 2015, 2016). The second 
microstructure results from a simulated laser-based AM process. This AM microstructure 
is obtained through a KMC process (Rodgers et al., 2018). The partition of the tube into 
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subdomains is described in Subsection 5.3. The fine-scale recovery process is given in 
Subsection 5.4. Additionally, the exact solution with each microstructure is computed via 
direct numerical simulation and used to calculate the exact error for the approximate 
solutions obtained with each recovery method. Error estimates are given in  
Subsection 5.5. 

Figure 3 Dimensions of the tube with two side holes used in the example problem 

 

Note: Reproduced with permission from Bishop and Brown (2018). 

Figure 4 Isometric view of the example geometry, a tube with two side holes (see online version 
for colours) 

 

The approximate macroscale material model for each of the studied microstructures is 
chosen to be homogeneous and isotropic with Young’s modulus E = 197.5GPa and 
Poisson’s ratio ν = 0.294. These values are the true homogenised values for the equiaxed 
Voronoi microstructure in the limit of infinitesimally small grain size and no texture 
(Bishop et al., 2015). The finite-element software Sierra (Shaw et al., 2017) was used for 
the simulations. The Sierra software is massively parallel, allowing for a brute-force 
calculation of the exact solution and assessment of the true error. Special-purpose 
software was developed to setup the local patch boundary-value problems, run the 
simulations, and to combine the individual results from each patch into a global fine-scale 
approximation w. 

5.1 Tube geometry, boundary conditions, and coarse-scale solution 

The dimensions of the tube are shown in Figure 3, and an (x y z) coordinate system is 
identified. The dimension units are millimetres (mm) so that the stress/traction units are 
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megapascals (MPa). Figure 4 shows a three-dimensional view of the tube. The software 
Cubit (2021) was used to create both the geometry, domain partition, and hexahedral 
mesh of each subdomain. The partition and fine-scale finite element discretisation are 
described in Subsection 5.3. The full finite element model consists of 29.8 M hexahedral 
elements with 32 elements through the thickness of the tube. This full model is used to 
obtain the exact fine-scale solution with embedded microstructure. For simplicity, this 
same mesh is also used to calculate the macroscale solution using the approximate 
material model, although a much coarser mesh could be used in practice. 

Figure 5 von Mises stress field in the tube with side holes subjected to uniaxial tractions at the 
ends using a homogeneous and isotropic elastic material model (units are MPa)  
(see online version for colours) 

 

Unit normal tractions of 1 MPa (tension) are applied to the surface of the tube at z = 15 
and z = −15. Minimal displacement boundary conditions are given in order to prevent 
rigid body motion. The resulting von Mises stress field in the tube is shown in Figure 5 
for the homogeneous and isotropic elastic material model with Young’s modulus  
E = 197.5 GPa and a Poisson’s ratio ν = 0.294. Note the stress concentration and stress 
gradients around the side holes, as expected. 

5.2 Microstructure 

Fine-scale recovery and error bounds are presented for two types of microstructure for 
the 304L stainless steel material: 

1 equiaxed (equal axes) polycrystalline microstructure representative of traditional 
wrought materials 

2 a non-equiaxed irregular polycrystalline microstructure modelled after the LENS 
AM process (see Figure 1). 

For both cases, the crystal structure of each grain is austenitic (γ-Fe) with a face-centred 
cubic (FCC) crystal system and three independent elastic constants C11 = 205 GPa,  
C12 = 138 GPa, and C44 = 126 GPa (Ledbetter, 1984). The anisotropy ratio A for this 
crystal is A = 2C44 / (C11 − C12) = 3.8, which is relatively large. For an isotropic material, 
A = 1. For simplicity, the three dimensional orientation distribution of the grains is taken 
to be uniformly random (no preferred orientation and texture). This is a reasonable 
approximation for a wrought material, but much less so for an additive material (Brown 
and Bishop, 2019). Thus, only grain size, morphology, and spatial distribution 
differentiates the two cases, wrought and additive. 
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Figure 6 Tube with imprinted equiaxed grain structure induced by an overlayed Voronoi 
tessellation (see online version for colours) 

 

Notes: The number of grains is 51 750 with approximately four grains through the tube 
thickness (grain colouring is random). 

5.2.1 Wrought microstructure 
For the wrought microstructure, a Voronoi tessellation with a specific cell seeding 
resulting in equiaxed Voronoi cells is used to define the grains. The Voronoi seeding is a 
random close packing realised through a maximal Poisson sampling as described by 
Bishop et al. (2015, 2016). The Voronoi structure is first created within a bounding box 
of the tube. This structure is then projected through voxelation (direct injection) onto the 
underlying finite element mesh. Figure 6 shows the tube example with the voxelated 
Voronoi microstructure imprinted on the finite element mesh. There are 51,750 grains 
with approximately four grains through the thickness of the tube. For the finite element 
discretisation described in Subsection 5.3, there are 32 finite elements through the 
thickness of the tube. Thus, there are approximately eight finite elements per grain 
dimension. Note that this Voronoi-based microstructure is obtained using a stochastic 
process, and is thus just one realisation. 

For infinitesimally small grain sizes, the equiaxed Voronoi microstructure is 
statistically homogeneous and can be homogenised using standard techniques (Bishop  
et al., 2015). If there is no preferred orientation in the crystalline grains (no texture), then 
the homogeneous material is isotropic. For the given stainless steel austenitic grains, the 
homogenised material has a Young’s modulus E = 197.5GPa and a Poisson’s ratio  
ν = 0.294 (Bishop et al., 2015). For the given tube example with only four grains through 
the thickness of the tube, the assumption of infinitesimally small grains relative to the 
structural length scale is clearly violated. 

5.2.2 AM microstructure 
The second microstructure results from a simulated laser-based additive-manufacturing 
process known as LENS (Griffith et al., 1996; Adams et al., 2019). An example 
microstructure representing AM materials produced by the LENS process is shown in 
Figure 1. This microstructure is obtained through a KMC model as described by Rodgers 
et al. (2018). The KMC model simulates grain growth through a Monte-Carlo process  
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with a time-varying temperature field as input. The KMC model uses a rectilinear 
structured grid and typically assumes an idealised double-ellipsoid-based heat source to 
represent the laser moving across the material. The resulting grain structure is mapped to 
the finite element mesh of the tube using a direct insertion (voxelation). Figure 7 shows 
the tube example with the voxelated LENS/KMC microstructure imprinted on the finite 
element mesh. There are 29,949 grains. Note that this KMC-based microstructure is 
obtained using a stochastic process and is thus just one realisation as with the Voronoi 
microstructure. 

Figure 7 Tube with imprinted grain structure resulting from a KMC simulation of the LENS 
metal additive-manufacturing process (see online version for colours) 

 

Notes: The tube is built up circumferentially using two laser passes per layer. The 
number of grains is 29,949 (grain colouring is random). 

Figure 8 von Mises stress field of the tube with embedded equiaxed microstructure (Voronoi) 
subjected to uniaxial tractions (units are MPa) (see online version for colours) 

 

Figures 8 and 9 show the exact fine-scale von Mises stress field for the tubes with 
embedded equiaxed (Voronoi) and AM (KMC) microstructures, respectively. The  
fine-scale stress fluctuation is apparent and distinctly different between these two 
microstructures. These results can be compared with the homogeneous isotropic solution 
given in Figure 5 in which the fine-scale stress fluctuations are effectively filtered out. 
The differences are more apparent in the side view of the tubes shown in Figure 10. For 
simplicity, the full finite element mesh of the tube with 29.8 M elements was used for all 
three cases including the homogeneous case. Of course, in practice a much coarser mesh  
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would be used for the homogeneous case. Since these microstructures are obtained using 
a stochastic process, these stress fields represent just one realisation of a random field. 
Figure 11 shows a linear trace of the von Mises stress along the outside of the tube, 
midway between the holes (x = 0, y = 5) for both microstructures. Results for three 
realisations are given along with the homogeneous isotropic solution. The stress 
fluctuations are similar between the two types of microstructures, although greater 
variations are seen for the AM microstructure. The homogeneous isotropic solution 
provides a reasonable approximation of the local mean behaviour. 

Figure 9 von Mises stress field of the tube with embedded AM microstructure (KMC) subjected 
to uniaxial tractions (units are MPa) (see online version for colours) 

 

Figure 10 Comparison of the von Mises stress fields of the tube subjected to uniaxial tractions,  
(a) homogeneous and isotropic material (b) embedded equiaxed microstructure 
(wrought) (c) AM microstructure (units are MPa) (see online version for colours) 
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Figure 11 Comparison of the von Mises stress fields of the tube along a linear trace (z direction) 
on the outside of the tube, midway between the holes (x = 0, y = 5), (a) embedded 
equiaxed microstructure (wrought) (b) AM microstructure (see online version  
for colours) 

 
(a) 

 
(b) 

Notes: Three realisations of each microstructure are given along with the homogeneous 
and isotropic solution (stress units are MPa). 

Figure 12 (a) Partition of the tube into 904 subdomains (random colours) (b) Finite element mesh 
of one subdomain consisting of 85 = 32,768 hexahedral elements (c) Subdomain with 
imprinted (voxelated) equiaxed grain structure shown in Figure 6 (see online version 
for colours) 
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5.3 Domain partition 

In this section we discuss the partition of the tube domain into subdomains and 
subsequent assembly into patches as described in Section 4 for use in the fine-scale 
recovery process given an approximate macroscale solution. Taking advantage of 
symmetry, the tube was first sectioned along the three symmetry planes into eight equal 
subpieces. A coarse hexahedral mesh was constructed for one of these octants consisting 
of 113 elements. This mesh was then reflected to construct the full mesh of the tube 
consisting of 904 elements. This initial mesh provided the structure of the partition of the 
domain. This coarse mesh was subsequently refined hierarchically using a 1-to-8 uniform 
refinement strategy. After each mesh refinement, surface nodes were projected back to 
the surface of the tube. After five refinements, each subdomain contained 85 = 32,768 
finite elements. The total fine-scale mesh consisted of 29.8 M elements and is the same 
mesh that was used to obtain the ‘exact’ fine-scale solutions shown in Figures 8 and 9. 
The resulting partition is shown in Figure 12(a). The fine-scale mesh of one subdomain in 
shown in Figure 12(b) along with the imprinted equiaxed grain structure (Voronoi) in 
Figure 12(c). 
Table 1 Number of patches for each step in the type-2 fine-scale recovery sequence obtained 

using the greedy colouring algorithm 

Step 1 2 3 4 5 6 
Number of patches 236 220 236 210 32 16 

Note: The length of the sequence is six (colours), and the total number of patches is 950. 

Table 2 Number of patches for each step in the type-3 fine-scale recovery sequence obtained 
using the greedy colouring algorithm 

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Num. 96 92 92 90 92 88 85 78 77 43 29 26 10 3 2 1 

Note: The length of the sequence is 16 (colours), and the total number of patches is 904. 

For the type-1 fine-scale recovery sequence, the patches are simply the subdomains 
themselves. The boundary-value problem for each patch then can be solved 
independently. This is the original HDPM method proposed by Zohdi et al. (1996). For 
type-2 fine-scale recovery, the total number of patches is 950. This number does not 
differ much from the number of subdomains (904). This is due to the nature of the 
partition of the tube, which for the given number of subdomains, is two-dimensional in 
nature and surface dominated. A finer partition of the tube would be three dimensional in 
nature and volume dominated. Since type-2 recovery is based on subdomains attached to 
vertices of the initial decomposition, each patch consists of approximately four 
subdomains, except near the boundary. The greedy colouring algorithm results in a 
recovery sequence consisting of six sets of patches. The number of patches for each step 
in the sequence is given in Table 1. For type-3 fine-scale recovery, again the total number 
of patches is the same as the number of subdomains, since each patch is based on 
subdomains attached to a given subdomain. The greedy colouring algorithm results in 
recovery sequence consisting of 16 sets of patches. The number of patches for each step 
in the sequence is given in Table 2. 
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5.4 Fine-scale recovery and exact error 

In this section, we recover the approximate fine-scale solution using the three recovery 
methods, given the approximate macroscale solution obtained using the homogeneous 
isotropic material (Figure 5). The recovered approximate stress fields are then compared 
with the exact solution computed from direct numerical simulation to obtain the exact 
error. Figure 13 shows the recovered von Mises stress field using the three recovery 
methods for the tube with equiaxed microstructure. The exact stress field shown in Figure 
8 is shown again here for comparison. The stress fields for the type-2 and type-3 recovery 
methods are nearly indistinguishable and very similar to the exact stress field. Note that 
the type-1 recovered stress field exhibits significant stress noise at the subdomain 
boundaries. Figure 14 shows the recovered von Mises stress field using the three recovery 
methods for the tube with AM microstructure. Unlike for the equiaxed microstructure, the 
stress fields for each recovery method are distinctly different and significantly different 
than the exact stress field. Again, the type-1 recovered stress field exhibits significant 
stress noise at the subdomain boundaries. 

Figure 13 von Mises stress field for the tube example with equiaxed microstructure,  
(a) approximate macroscale stress field using a homogeneous isotropic material  
(b) (c) (d) fine-scale stress fields recovered from Figure 13(a) (e) exact stress field 
computed by direct numerical simulation of the full microstructure (units are MPa) 
(see online version for colours) 

 

Figure 15 shows the magnitude of the stress error ||σ − σex|| using the three recovery 
methods for the tube with equiaxed microstructure. Note that a smaller scale is used for 
type-2 and type-3 recovery methods in order to show more detail. The stress error for the 
type-2 and type-3 recovery methods is significantly less than that for the type-1 recovery 
method. The stress error for type-3 recovery is less than the error to type-2 recovery. For 
the type-1 recovery, there is significant stress error along the subdomain boundaries. The 
stress error at the patch boundaries is much less apparent for the type-2 and type-3 
recovery methods. 
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Figure 14 von Mises stress field for the tube example with AM microstructure, (a) approximate 
macroscale stress field using a homogeneous isotropic material (b) (c) (d) fine-scale 
stress fields recovered from Figure 14(a) (e) exact stress field computed by direct 
numerical simulation of the full microsctructure (units are MPa) (see online version  
for colours) 

 

Figure 15 Local exact stress error (magnitude) for the tube example with equiaxed microstructure 
for each of the three fine-scale recovery methods (units are MPa) (see online version 
for colours) 

 

Note: The smaller scales used for type-2 and type-3 recovery. 
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Figure 16 Local exact stress error (magnitude) for the tube example with AM microstructure for 
each of the three fine-scale recovery methods (units are MPa) (see online version  
for colours) 

 

Table 3 Error norms for the tube with equiaxed microstructure for each fine-scale recovery 
method 

Recovery type ||σ||Ω ||||Ω 
Ω

Ω

− ex

ex

σ σ
σ

 Ω

Ω

− ex

ex

 


 E

E

−w u
u

 

Exact 34.6 1.96 × 10−4 – – – 
Homogeneous 32.1 1.76 × 10−4 0.37 0.40 0.28 
Type-1 35.7 1.87 × 10−4 0.21 0.22 0.15 
Type-2 34.1 1.92 × 10−4 0.029 0.031 0.021 
Type-3 34.1 1.96 × 10−4 0.20 0.021 0.014 

Notes: Results are also given for the homogeneous isotropic solution. Values are 
normalised by the exact value (w is a recovered fine-scale solution). 

Figure 16 shows the magnitude of the stress error using the three recovery methods for 
the tube with AM microstructure. As with the equiaxed case, the stress error is 
significantly less for the type-2 and type-3 recovery methods. Also, the stress error for 
type-3 recovery is less than the error to type-2 recovery. The stress error at the patch 
boundaries is less apparent for type-2 recovery and much less so for type-3 recovery. In 
general, the stress error is greater for the additive microstructure compared to the wrought 
microstructure. This observation is consistent with the fact that the approximate 
macroscale solution is using the true homogenised material properties for the equiaxed 
microstructure. But, the homogenised material properties are obtained in the limit of 
infinitesimal microstructure. Since the grain structure in the tube is relatively large (four 
grains through the tube thickness), this result demonstrates errors induced when the 
length scale of the microstructure approaches the characteristic length scale of the 
structure itself. 
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Figure 17 Local exact error in the energy norm (squared) for the tube example with equiaxed 
microstructure for each of the three fine-scale recovery methods (units are MPa)  
(see online version for colours) 

 

Notes: The scale used for type-2 and type-3 recovery is an order of magnitude less than 
that used for the type-1 recovery. 

Figure 18 Local exact error in the energy norm (squared) for the tube example with AM 
microstructure for each of the three fine-scale recovery methods (units are MPa)  
(see online version for colours) 
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Figures 17 and 18 shows the exact local error in the energy norm (squared) for the 
equiaxed and AM microstructures, respectively. Note that a smaller scale is used in 
Figure 17 for type-2 and type-3 recovery methods in order to show more detail. For both 
cases, the error is greater for the type-1 recovery method than the type-2 and type-3 
recovery methods. In general, the error is greater for the additive microstructure 
compared to the wrought microstructure. 

The global norms of the exact error in stress and strain are summarised in Tables 3 
and 4 for the equiaxed and AM microstructures, respectively, for each of the three 
recovery methods. The exact error in the energy norm is also given. The errors are 
normalised by the exact values of each quantity of interest (e.g., the global norm of the 
exact stress field). Each error decrease monotonically progressing from type-1 to type-3 
recovery methods. The error is greater for the AM microstructure than the wrought 
microstructure for each recovery method. These results for the global error norms are 
consistent with the local spatial variations shown in the previous figures. 
Table 4 Error norms for the tube with AM microstructure for each fine-scale recovery method 

Recovery type ||σ||Ω ||||Ω 
Ω

Ω

− ex

ex

σ σ
σ

 Ω

Ω

− ex

ex

 


 E

E

−w u
u

 

Exact 34.3 2.04 × 10−4 – – – 
Homogeneous 32.1 1.76 × 10−4 0.35 0.44 0.30 
Type-1 36.9 1.84 × 10−4 0.30 0.33 0.22 
Type-2 34.0 1.94 × 10−4 0.13 0.14 0.096 
Type-3 33.7 1.96 × 10−4 0.10 0.11 0.072 

Notes: Results are also given for the homogeneous isotropic solution. Values are 
normalised by the exact value (w is a recovered fine-scale solution). 

5.5 Error bound in the energy norm 

Tables 5 and 6 give the multiscale error bound ψ in the energy norm defined in  
equation (32), for the equiaxed and AM microstructures, respectively, for each fine-scale 
recovery method. The exact error in the energy norm ||w − u||E is given as well. The 
contributions Z and β to ψ are also given. Recall that Z is the coarse-scale error bound 
and depends only upon the coarse-scale approximate solution and the fine-scale material 
properties, while β is the contribution from the fine-scale recovery acting to decrease the 
error bound. The bound ψ decreases by approximately 15 to 30% when including the 
effect of the recovered fine-scale solution w, with the greatest decrease when using the 
type-2 and type-3 recovery methods. There is little difference between the bound ψ using 
the type-2 and type-3 recovery methods for the wrought microstructure, unlike for the 
additive microstructure. It is interesting that the bound ψ is similar between the two 
microstructures for the type-2 and type-3 recovery methods, but the exact error is much 
smaller for the wrought microstructure. Unfortunately, there is not a clear local-error 
indicator for multiscale bound ψ, unlike for the coarse-scale bound Z. 

Finally, note that the presented results for the tube example are for one realisation of 
the microstructures, both equiaxed and AM. The error estimation process could be 
repeated for a large number of microstructural realisations to build up statistical bounds 
as noted in Romkes et al. (2006) and performed for idealised AM microstructures with 
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property variations that could be represented at the coarse scale by Brown and Bishop 
(2019). 
Table 5 Multiscale model-form error bound ψ for the wrought microstructure for each fine-

scale recovery method 

Recovery type Z2 β2 ψ ||w – u||E 

Homogeneous 2.00 × 10−3 – 0.0447 0.0289 
Type-1 2.00 × 10−3 6.38 × 10−4 0.0369 0.0156 
Type-2 2.00 × 10−3 8.69 × 10−4 0.0336 0.00219 
Type-3 2.00 × 10−3 8.64 × 10−4 0.0337 0.00146 

Notes: The contributions Z and β to ψ are also given, with ψ2 = Z2 − β2 from  
equation (32). The exact error ||w − u||E is also provided. 

Table 6 Multiscale model-form error bound ψ for the AM microstructure for each fine-scale 
recovery method 

Recovery type Z2 β2 ψ ||w – u||E 

Homogeneous 1.98 × 10−3 – 0.0445 0.0316 
Type-1 1.98 × 10−3 4.91 × 10−4 0.0386 0.0232 
Type-2 1.98 × 10−3 9.35 × 10−4 0.0323 0.00992 
Type-3 1.98 × 10−3 9.79 × 10−4 0.0316 0.00747 

Notes: The contributions Z and β to ψ are also given, with ψ2 = Z2 − β2 from  
equation (32). The exact error ||w − u||E is also provided. 

6 Macroscale material model adaptivity 

A goal of a posteriori estimation of discretisation error is to not only estimate the error 
but to also reduce it through adaptation of the discretisation. Similarly, for a posteriori 
estimation of model-form error, we seek to reduce the error by adapting the physical 
model. For the present case of multiscale structural modelling, we can adapt the physical 
model in several ways. One approach to reducing model-form error is to directly embed 
the fine-scale microstructure in the macroscale model in locations in which the local-error 
indicator ζ2 is relatively large as proposed by Oden and Zohdi (1997), Oden and 
Vemaganti (1999, 2000), Vemaganti and Oden (2001) and Chamoin and Legoll (2021). 
Alternatively, we can adapt the approximate material model by adjusting the local 
material parameters as proposed by Bishop and Brown (2018) for the single-scale case. In 
that work, the local material parameters were adapted in post-processing step by 
assuming either a strain-fixed or stress-fixed state and then solving for local material 
parameters that minimised the local-error indicator ζ2. Here, we adopt a similar approach 
in that we adapt the approximate macroscale material parameters, but instead of using the 
error estimates ζ2 or ψ2 we use local averages of the recovered fine-scale solution. The 
local macroscale parameters that relate the locally averaged stress and strain values are 
then chosen to reduce the constitutive modelling error. 

There are several possibilities for obtaining a locally averaged stress or strain field 
including the use of a convolution as explored by Bishop et al. (2015). Here, we simply 
average the recovered fine-scale fields over the subdomains ΩM within the domain 
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partition (Subsection 5.3). The mean stress Mσ  and mean strain M  tensors are defined 
as 

1 1:   and  :
M M

M M
M M

d d
V VΩ Ω

= Ω = Ω σ σ    (34) 

where σ and   are the recovered approximate fine-scale stress and strain tensors, 
respectively, and VM is the volume of the averaging domain ΩM. 

We then search for macroscale material parameters that minimise the constitutive 
relationship between the mean stress Mσ  and the mean strain M  tensors. For the case of 
elasticity, we search for an optimal elasticity tensor M  in each local region by 
minimising an appropriate error functional. There are several possible error functionals. 
For example, we can minimise the squared norm of the difference between Mσ  and M  
times ,M  denoted by Fσ, 

2: .σ
M M MF = −σ   (35) 

Conversely, we can minimise the squared norm of the difference between M  and M  
times ,Mσ  denoted by ,F   

2: .M M MF = − σ    (36) 

We can also minimise the strain energy of the stress and strain difference, denoted by FW, 

( ) ( ): : .W
M M M M M MF = − −σ σ    (37) 

For each of these error functionals, the optimal stiffness tensor, opt
M  is given by 

: arg min
M

opt
M F

∈
=


  (38) 

where F is one of the three error functionals, and   is the vector subspace of possible 
stiffness tensors. Note that this optimisation process does not involve the exact solution 
of the fine-scale problem. 

In general,   includes anisotropic stiffness tensors. For simplicity, we choose   to 
be the space of isotropic stiffness tensors. Thus, from equation (4), we can write any  
  ∈   in the form 

a b= +    (39) 

where a = 3K and b = 2μ. Here, K and μ are the apparent bulk and shear moduli, 
respectively, since they depend on the given boundary value problem. Also, from 
equation (7) 

1 1 .
a b

= +    (40) 

Necessary conditions for a local extremum in the error functionals are provided by 

0 and 0.F F
a b

∂ ∂= =
∂ ∂

 (41) 
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Since the error functionals are quadratic in a and b, we can derive explicit expressions for 
a and b, and thus KM and μM. These expressions are given in the following subsections for 
each error functional. We omit the subscript M for these derivations for clarity. 

6.1 Optimal M  using Fσ 

We show the derivation of the optimal macroscale material parameters using the error 
functional Fσ. Substituting equation (35) into equation (41) (a) gives 

( ) : 0.
a

 − = ∂ 
σ  

  (42) 

From equation (39), a∂ ∂ =   so that ( ( ) ) : ( ) 0.a b− + =σ      Expanding this 
equation and noting that ( ) : ( ) 0=    gives 

( )
( )3 kk

kk

hyd σa K
hyd

= = =σ


 (43) 

where hyd(·) denotes the hydrostatic part of the given second order tensor. Similarly, 
substituting equation (35) into equation (41) (b) gives 

( ) : 0.
b

 − = ∂ 
σ  

  (44) 

From equation (39), b∂ ∂ =   so that ( ( ) ) : ( ) 0.a b− + =σ      Expanding this 
equation results in 

( ) ( )
( ) ( ) 2

1
: 32 1:

3

ij ij kk kk

ij ij kk

σ σdev devb μ
dev dev

−
= = =

−

σ  

  


 

 (45) 

where dev(·) denotes the deviatoric part of the given second order tensor. 

6.2 Optimal M  using F  

Using a similar derivation, but with the error functional ,F   we obtain the following 
expression for the optimal shear modulus, 

( ) ( )
( ) ( )

21
: 32 .1:

3

ij ij kk

ij ij kk kk

σ σ σdev devμ
dev dev σ σ

−
= =

−

σ σ
σ  

 (46) 

The result for optimal bulk modulus is the same as equation (43). 
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Figure 19 Variation of the adapted shear modulus for the tube with equiaxed microstructure 
obtained by minimising the energy functional FW for each of the three fine-scale 
recovery methods (units are GPa), (a) type 1 (b) type 2 (c) type 3 (see online version 
for colours) 

 
(a) (b) (c) 

Note: For reference, the homogenised shear modulus obtained for a statistically 
homogeneous and isotropic microstructure is 76.4 GPa.  

Source: Bishop et al. (2016) 

6.3 Optimal M  using FW 

Using a similar derivation, but with the error functional FW, we obtain the following 
expression for the optimal shear modulus, 

( ) ( )
( ) ( )

2

2

1
: 32 .1:

3

ij ij kk

ij ij kk

σ σ σdev devμ
dev dev

−
= =

−

σ σ

   
 (47) 

The result for optimal bulk modulus is the same as equation (43). 

6.4 Tube example 

Figure 19 shows the variation in the adapted shear modulus using the energy functional 
FW for the tube example with equiaxed microstructure for each fine-scale recovery 
method. The adapted shear modulus for the type-1 recovery method has a range of over 
20% of the nominal (homogenised) value of 76.4 GPa obtained for a statistically 
homogeneous and isotropic microstructure (Bishop et al., 2016). The observed variation 
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is smaller for the type-2 and type-3 recovery methods. The adapted shear modulus has 
little spatial structure due to the relatively small grain structure (see Figure 6) and no 
texture (uniformly random orientations). 

Figure 20 shows the variation in the adapted shear modulus using the energy 
functional FW for the tube example with AM microstructure for each fine-scale recovery 
method. The adapted shear modulus for the type-1 recovery method has a range of over 
90% of the nominal (homogenised) value of 76.4 GPa. This variation is somewhat 
smaller for the type-2 and type-3 recovery methods. Unlike for the equiaxed case, the 
adapted shear modulus for the AM material has significant spatial patterning due to the 
relatively large grain sizes (see Figure 7). Larger grains lead to larger spatial areas with 
similar adaptive properties since the entire area of each (large) grain has the same 
orientation, and thus the same mechanical behaviour. 

Figure 20 Variation of the adapted shear modulus for the tube with AM microstructure obtained 
by minimising the energy functional FW for each of the three fine-scale recovery 
methods (units are GPa), (a) type 1 (b) type 2 (c) type 3 (see online version for colours) 

 
(a) (b) (c) 

Notes: For reference, the homogenised shear modulus obtained for a statistically 
homogeneous and isotropic microstructure is 76.4 GPa (the difference in scale 
compared to Figure 19). 

Source: Bishop et al. (2016) 

Results for the adapted shear modulus using the energy functionals Fσ and F   are similar 
and are not shown. Interestingly, since the grains in the example microstructures have a 
cubic symmetry, the bulk modulus is spatially uniform (constant) for all possible 
microstructures. It follows that the mean of the hydrostatic stress and strain over each 
subdomain is constant throughout the domain. Thus, the use of equation (43) results in no 
change of value. However, since Young’s modulus and Poisson’s ratio are nonlinear 
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functions of μ, their adapted values will both vary spatially. Note again that the adapted 
values are not material properties per se, but will depend on the given boundary-value 
problem. Indeed, a highly textured microstructure with anisotropic effective behaviour 
would result in adaptive isotropic properties with much more spatial dependence (Bishop 
and Brown, 2018). 

Finally, the updated material parameters could be used in an iterative scheme to 
reduce the model-form error as reported in Bishop and Brown (2018) for the single-scale 
case. For the examples considered there, the material parameters were observed to 
converge very quickly. This will not be explored here, however. 

7 Summary 

In this work, a multiscale error-estimation methodology was investigated for assessing 
the model-form error in the energy norm for elastic deformations in both wrought and 
AM steel structures. An approximate macroscale (coarse scale) solution was used to 
recover an approximate fine-scale solution. The recovered fine-scale solution was then 
used to calculate quantitative bounds on model-form error in the energy norm. Three 
methods were investigated for recovering the approximate fine-scale field, given the 
coarse-scale approximate solution. The first method consisted of a direct projection using 
non-overlapping subdomains, while the second and third methods involved using a 
sequence of overlapping patches differing in the degree of overlap. An example of the 
error-estimation methodology was presented for an AM metallic structure consisting of a 
highly non-uniform polycrystalline microstructure. A traditional wrought microstructure 
with equiaxed grains was also used for comparison. The two recovery methods that used 
overlapping patches were found to be superior to the one recovery method using  
non-overlapping patches, but little difference was seen between the two  
overlapping-patch recovery methods. For the wrought microstructure, the error of the 
solution in the energy norm was reduced by a factor of ten when using the overlapping-
patch recovery methods compared to the error when using the non-overlapping patch 
recovery. For the AM microstructure, the error of the solution in the energy norm was 
only reduced by a factor of two to three when using the overlapping-patch recovery 
methods compared to the error when using the non-overlapping patch recovery. A 
methodology was also proposed for locally adapting the approximate macroscale material 
parameters to reduce the modelling error. The locally adapted shear modulus was seen to 
be much more structured for the AM microstructure compared to the wrought 
microstructure and exhibited larger variations in magnitude. 
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