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Abstract: Quantification of the stress field around dislocations is important in 
dislocation theory and can have profound effect on computations involving 
dislocations such as in discrete dislocation dynamics (DDD) simulations. In 
this paper, the original work by Devincre (1995) on the stress field of a linear 
dislocation segment is carefully studied and based on three regions of space,  
a physics-based algorithm is presented to treat any singularity, weak or strong, 
associated with the self-stress of the segment. The paper shows several 
utilisations of this method. Two of these utilisations concern the  
‘collocation-point’ method for capturing free-surface effects on dislocation 
forces and movement. In one, an on-the-fly mesh was utilised, and in the other 
an unstructured mesh was utilised. Results were validated where appropriate 
and both static and dynamic implementations are presented. 
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1 Introduction 

Dislocation theory is a branch of materials science that is focused on the carriers of 
plasticity in crystalline solids or metals. Understanding how and why dislocation moves 
and interact between themselves and other micro-constituents will enable understanding 
of the plasticity phenomenon in crystals (Hirth and Lothe, 1982; Weeterman and 
Weeterman, 1992; Hull and Bacon, 2011). With many developments in dislocation 
theory, which were followed after by experimental evidence, the stage was set for 
developing plasticity models that take dislocations directly into account. Some of these 
models are based on dislocation densities as a field variable, i.e., a continuum approach 
(Acharya, 2003; Schulz et al., 2014; Zhu and Xiang, 2015), and some are based on 
modelling 3D discrete dislocations and their dynamics (Kubin et al., 1992; Zbib et al., 
1998; Khraishi and Zbib, 2001; Khraishi et al., 2004; Leger et al., 2004; Devincre et al., 
2008). 

The latter approach for modelling or simulating the dynamics of discrete dislocations 
was made possible by the ability to discretise a curved dislocation line into segments 
[similar to the finite element (FE) method which discretises space into finite elements of 
different shapes]. Hirth and Lothe (1982) developed the stress field associated with a 
linear dislocation segment using a segment-attached coordinate system, where the z-axis 
coincides with the segment line. Devincre (1995), building on the work of de Wit (1967), 
developed expressions for the stress field of a linear dislocation segment based on an 
arbitrary located coordinate system. Cai et al. (2006) developed the expression for the 
stresses of a dislocation segment using nonlinear elasticity by spreading the Burgers 
vector of the line to avoid the common singularity. The result of this is more complex 
than the prior works, but it reduces to these prior works with no spreading (or zero 
spreading). Ghoniem and Sun (1999) described a dislocation curve using general 
topological functions. All of the above works are within the realm of isotropic elasticity 
and apply to an infinite medium. The line singularity was also treated in the work of 
Jamond et al. (2016) using the discrete-continuous model (DCM) for the simulation of 
3D dislocation dynamics (DD) which is based on a coupling between a DD code and a 
FE code through eigenstrain theory. 

The current paper focuses on the leading work of Devincre (1995) by closely looking 
at the spatial regions around a linear dislocation segment and properly treating the 
segment stresses in order to avoid singularities in the solution. This enables the 
regularisation of the stress field. The space around the segment is divided into  
three distinct regions discussed in Section 2. By correctly placing a field point in the right 
region, the segment stress can then be calculated correctly or appropriately while 
avoiding singular calculations. Such regularisation is important in DD simulations as the 
time-dependent solution can blow up or become unbounded if a field point lies in a 
singularity zone. To illustrate the method, including the accompanying algorithm  
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developed here, a couple of applications are presented in Section 3. The examples 
revolve around the use of the distributed dislocation method, which can be used to solve 
crack problems (Hills et al., 1996; Khraishi and Demir, 2003; Demir and Khraishi, 2005), 
for solving the stress field of dislocations near a flat free surface (Khraishi et al., 2001; 
Khraishi and Zbib, 2002; Yan et al., 2004; Siddique and Khraishi, 2020, 2021a) or near a 
curved surface (Siddique and Khraishi, 2021b). These methods are ‘collocation point’ 
methods where the zero traction physical boundary condition is enforced at a set of 
different surface points instead of an infinite number of them. These collocation points 
represent the centres of elements on a surface mesh whereby each element is represented 
by a multi-polygonal dislocation loop (which by itself is a self-equilibrated source of 
stress in the material). By figuring out the Burgers vectors of these surface 
fictitious/mathematical dislocation loops, the problem is then solved and the stress field 
at any sub-surface field point is the sum of the stress fields of surface loops plus the stress 
fields of the sub-surface dislocations. 

The latest of Siddique and Khraishi (2020) utilised a surface mesh of 
rectangular/square elements with each element composed of four linear dislocation 
segments whereby the whole computations are made in reference to an arbitrary-oriented 
global coordinate system. For this referenced work, the selection of collocation points 
had to be chosen carefully so as not to lie in the singularity zone, even the extended 
singularity zone, of any of the elements’ segments. More specifically, this structured 
surface mesh of elements had to look like a standard finite-element mesh in the sense that 
each element node has to be the node for four dislocation segments. In other words, a 
node for a dislocation segment cannot be a no node for an element. This severely restricts 
the meshing type used for the surface which can have ramifications on things like 
solution time for a static or dynamic problem. Of course, treating free surface problems 
can be attempted analytically (Yoffe, 1961; Chou, 1963; Baštecká, 1964; Bacon and 
Groves, 1970; Groves and Bacon, 1970; Maurissen and Capella, 1974b, 1974a; 
Comninou and Dundurs, 1975; Lothe et al., 1982; Jing et al., 2009; Li and Khraishi, 
2021; Li et al., 2021) but such treatment is severely restricted in scope and breadth since 
it has to be specific to a certain configuration of the domain and of the dislocation near 
the surface. 

In this current work, we utilise the newly proposed non-singular stress field 
associated with a dislocation segment in application to new surface meshing of 
fictitious/mathematical dislocation loops. Specifically, we look at an irregular 
square/rectangular mesh, termed here ‘on-the-fly mesh’ and also at an unstructured (or 
random) triangular-element mesh. Both of these meshes, albeit having their own 
advantages over a structured rectangular-element/square-element mesh, can run into 
singularity issues but are treated here with the newly developed method/algorithm. The 
‘on-the-fly mesh’ is illustrated here for static dislocation problems and the unstructured 
triangular mesh is illustrated here for dynamic dislocation problems. 

In addition to the above, this current work looks closely at the extent of the 
dislocation core radius or size. There are different estimates in the literature for the radius 
of the core, rc (Hirth and Lothe, 1982; Meyers and Chawla, 2009; Hull and Bacon, 2011). 
Based on the regularisation of the segment stress introduced here, a rationale for the 
quantification of rc is provided as well. 
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2 Methods 

As mentioned above, this work builds on the work of Devincre (1995) for the stress field 
of a linear dislocation segment in a linear-elastic isotropic infinite medium. For a segment 
AB of a dislocation line, shown in Figure 1, the stresses at a field point P(x, y, z) 
according to this last reference are provided with respect to a generally-oriented global 
coordinate systems centred at O by: 

( ) ( ) ( )AB AB AB
r OB r OA

σ r σ σ
′ ′= =

= −  


αβ αβ αβ  (1) 

and ABσαβ  is described as: 
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  

αβ αβαβ

αβ α β α β α β α β
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where μ is the isotropic material shear modulus (also given by G in literature), v is the 
Poisson’s ratio and 

R r r′= −
    (3.1) 

L R t= ⋅
 

 (3.2) 

ρ R Lt= −
   (3.3) 

Y R Rt= +
  

 (3.4) 

Here, ( , , )a b c
   is called a ‘scalar triple product’ and is given by: 

( ) ( ), ,a b c a b c= × ⋅
      (4) 

and [ ]sabc
 

αβ  is called a ‘symmetric tensor operator’ and is given by: 

[ ] ( ) ( )( )1
2

s
abc a b c a b c= × + ×
     

β ααβ α β  (5) 

Here, rc is a cut-off radius delineating the core region of the dislocation (also called core 
radius for simplicity) where the self-stress of the dislocation shoots up to infinity under 
the use of linear-isotropic elasticity. The reason for this singular behaviour is that the 
treatments of a dislocation viewed it as line defect experiencing a sudden displacement 
shift equal to the Burgers vector ( , , ).x y zb b b b= =b


 The magnitude of the Burgers 

vector is indicated here as b. This discontinuous shift in the displacement field of the 
dislocation causes a singularity in the strain field, which is carried to the stress field via 
Hooke’s law. The magnitude of rc has been chosen differently in the literature, i.e., it has 
not been agreed upon or is a subject of debate. For example, Hirth and Lothe (1982) took 
rc as 1b, Hull and Bacon (2011) took it as 1b–4b, Meyers and Chawla (2009) took it as 
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5b, and so forth. One of the things provided or contributed by this work, as alluded to 
earlier, is an attempt at quantifying rc in a fundamental way as seen below. 

Figure 1 A dislocation segment AB with three identifiable regions in space (see online version 
for colours) 

 

Notes: The line sense unit vector t


 points from A to B. dislocation segment length: 
.B Al r r AB= − =

   

To better understand the behaviour of stress around segment AB, contour plotting is used 
to give an overall look of stress distribution. Figure 2 shows contour plotting for  
two exemplary stress components σ11 and σ12. Other stress components behave similarly. 
Taking a close look at Figure 2, it is clear that stress values shoot up in value 
(indefinitely) immediately around the segment (labelled Region 2 in Figure 1) and behind 
the segment (from point A opposite to the line sense, which is labelled Region 3 in  
Figure 1). However, one would expect the stress around the mid-plane intersecting the 
segment centre to be symmetric (i.e., Region 3 the mirror opposite of Region 1) or at 
least anti-symmetric which is not the case. This behaviour is due to what equation (1) 
stands for. In equation (1), the stress from a half dislocation line extending from –∞ to 
point B is subtracted from the stress from a half dislocation line extending from –∞ to 
point A. This subtraction yields the stress of a dislocation line segment AB. Due to this 
subtraction process, it is recognised then that the stress at the dislocation line in Region 2 
is strongly singular due to the issues discussed prior. It is also recognised that the stress at 
the dislocation line in Region 3 is expected to be weakly singular and right at the line 
itself due to the effect of the subtraction. Moreover, the stress in Region 1 seems to be 
(for the most part at least) non-singular and well behaving in values/distribution. In fact, 
in Figure 2, a cut-off radius of 0.05b was utilised in Regions 2 and 3 to be able to do the 
plot, otherwise the stress would shoot to infinity there. Even with this implemented  
cut-off, the stress values are significant compared to the shear modulus. 

Although the above was a visual investigation of the stress behaviour, especially 
singularity behaviour, of the dislocation segment, one can carefully examine equation (2), 
which feeds into equation (1), to see where the singularity exactly emanates from. 
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Figure 2 Contour plots around a linear dislocation segment lying in the xy-plane, (a) σ11 (b) σ12 
(see online version for colours) 

  
(a)     (b) 

Notes: These are made before implementing the algorithm in this paper (in the contour 
plots, points with rc < 0.05 were ignored). The coordinates of point a are  
(–100, –50, 0) and for point b are (50, 100, 0). Here, the burgers vector =  
(1/√3, 1/√3, 1/√3) for simplicity. Here, μ = G = 1 and v = 0.33. 

Consider point B of dislocation segment AB. From equation (3.2), one can write: 

( )B P B BL r r t R t= − ⋅ = ⋅
    (6) 

For any field point P, ρ  is given by [equation (3.3)]: 

B Bρ R L t= −
   (7) 

Examining equation (2), it becomes unbounded if and only if either Y or R approaches 
zero. From the definition of Y


: 

Y ρ Lt ρ Lt t= + + +
      (8) 

Y = 0 when, ρ = 0 and LB ≤ 0. This can happen in Regions 2 and 3 only and not in  
Region 1. In Region 1 therefore, there is no worry about singular stress behaviour. 
However, special attention needs to be paid to the domed region around point B (see 
Figure 1). In the following is an algorithm that checks against ρ approaching zero and 
then adjusts the stress calculation procedure accordingly. 

Algorithm 
1 Calculate the quantity ρ per above. If ρ ≥ rc, no additional treatment is needed since point 

P(x, y, z) lies outside the core region of the dislocation and therefore the stress equations 
[equations (1) and (2)] are valid as is. 

2 If ρ < rc: 
 a If LB > 0 [point P(x, y, z) lies in Region 1 (yellow) in Figure 1]: 
  1 If RB ≥ rc, then no additional treatment is required (since Y > rc). 
  2 If RB < rc, then the field point is within the domed area atop of point B. In this case, 

point P location has to be adjusted away from the dislocation line such that ρ  is 
scaled up in magnitude to match rc as shown in Figure 3. Once ρ′  (the new ρ ) is 
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calculated via ,crρ ρ
ρ

 ′ = × 
 

   a new adjusted location for point P (point P′) can be 

determined [using equation (3.3), i.e., R ρ Lt= +
  ]. Now, stress calculations can be 

performed at this new location. 
 b If LB ≤ 0 and |LB| ≤ l [point P(x, y, z) lies in Region 2 (cyan) in Figure 1]: 
  To find the stress at this point, one needs to do a linear interpolation between 0 and 

max .ijσ  More on this linear interpolation is given below in detail. 

 c If LB ≤ 0 and |LB| > l [point P(x, y, z) lies in Region 3 (magenta) in Figure 1]: 
  1 Reverse t


 and calculate segment stress and then multiply the obtained stress value 

by (–1) or a negative sign. In other words, calculate the stress for a directed 
segment from B to A instead of from A to B. 

  2 Alternate to 2.c.1 above, if ρ ≥ ε, where ε could be as small as 10–10 or almost the 
computer machine zero, then one can proceed with normal stress calculations for 
the segment using equations (1) and (2). This is possible due to the weak singular 
behaviour in Region 3. 

The algorithm is shown in Figure 4 as a flowchart. 

Figure 3 Recommended location of P when, (a) LB > 0 and RB < rc (b) Case 2.b in the algorithm 
(see online version for colours) 

 

 

 
(a)     (b) 

Note: (a) Region 1 and (b) Region 2. 

For Case 2.b above, the steps for linear interpolation are as follows [refer to Figure 3(b)]: 

1 First, find the value of ρ for point P using equation (3.3). 

2 Multiply ρ  with the quantity ,cr
ρ

 i.e., crρ ρ
ρ

′ = ×   which extends to the core surface. 

3 Find a new BR


 value as such: .B BR ρ L t′ ′= +
   From this, find a new Y


 value 

[equation 3.4]. 
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4 Substitute back ρ′  and BR ′


 (and the new Y


 value) into equation (2) and then 
equation (1) to find the limiting value of max .ijσ  

5 Now, the interpolated value of the stress is given by: max( ) .ij ij
c

ρσ P σ
r

= ×  

Figure 4 Flowchart of the algorithm (see online version for colours) 

 

Lastly, it was mentioned above about the strong singularity occurring in Region 2. If one 
considers any plane containing the dislocation line segment and then plots any of the 
stress components σij along a coordinate ξ perpendicular to the line, one gets a spatial 
behaviour as shown in Figure 5. In the schematic figure, the stress shoots to infinity as 
the dislocation line is approached. However, according to theory, stress must have a 
maximum theoretical value in a material that cannot be exceeded. According to Hull and 
Bacon (2011), the maximum shear stress (indicated by the symbol taw or τ) is given by 

max .
2
Gτ
π

=  In Meyers and Chawla (2009), the maximum shear stress is given by 

max .
5.1
Gτ =  However, according to Hull and Bacon (2011), a more realistic value for the 

maximum shear stress is given by max .
30
Gτ =  In addition, elementary mechanics of 

materials theory dictates that for the simple case of uniaxial stress, the normal stress σ is 
double the shear stress τ in value, i.e., σmax = 2τmax. Based on these maximum values for 
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the different stress components, one can arrive at a calculated value for rc per this figure. 
Figure 5 also shows that within the core region in Region 2, the stress could be 
interpolated for values as the interpolation (linear interpolation is the most logical in this 
case) passes through zero at the dislocation line (i.e., the core centre) due to the change in 
sign for the stress shown in Figure 5. The zero value at the dislocation centre also makes 
physical sense since the dislocation cannot stress its own self. The exact steps to perform 
the interpolation were listed above. 

Figure 5 Schematic of stress behaviour around a linear dislocation segment versus a coordinate 
traversing perpendicular to the segment (in Region 2) 

 

3 Results and discussion 

Upon implementation of the algorithm above, one can verify the produced results in 
several way. For example, let us take a segment AB of length 150√2 lying in the xy-plane 
for simplicity. The coordinates of points A and B are (–100b, –50b, 0) and (50b, 100b, 0), 

respectively. Let us also take a Burgers vector equal to: 1 1 1, ,
3 3 3

 for simplicity. The 

reason for choosing a Burgers vector with all three components not being zero is to 
elucidate any possible contributions from these components to the different stress 
components. Here, μ = G = 1 and v = 0.33. 

Figure 6 shows plots for three stress components (σ11, σ12, σ13 and σ33) versus 
coordinate ξ (expressed, and any coordinate, in units of b) which is perpendicular to the 
dislocation line and passing through the segment’s centre. The reason these components 
are chosen is that the first one (σ11) is the same plot as σ22 and the third (σ13) is the same 
plot as σ23. In Figure 6, one can notice that all the stress components follow the schematic 
plot for stress distribution in Figure 5. Per Figure 5, the plots in Figure 6 could be used to 
find a good estimate for rc based on the reported values for the maximum shear stress 
provided in the textbooks of Hull and Bacon (2011) and Meyers and Chawla (2009) 
textbook (see above). Based on these three estimates for the maximum shear stress value, 
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Table 1 can be generated and it shows estimates of rc based on maximum shear stress 
values (or correspondingly maximum normal stress values from introductory mechanics 
of materials, see above). Based on the tabulated values, a conservative estimate for the 
core radius rc is 2.75b (or ~3b). Notice that this value is between those reported in the 
literature [for example, Hirth and Lothe (1982) took rc as 1b, Hull and Bacon (2011) took 
it as 1b–4b, Meyers and Chawla (2009) took it as 5b, and so forth]. 

Figure 6 Plots of different stress components, in Region 2, along the ξ direction in an xy-plane 
containing a dislocation segment and passing through the centre of the segment,  
(a) σ11 (b) σ33 (c) σ13 (d) σ12 (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Note: Note that in all these plots, the curve passes through the (0, 0) point. 

In addition to Figure 6, one now can do contour plots for the above dislocation segment 
example which lies in the xy-plane. Now that the above algorithm is implemented,  
Figure 7 shows contour plots for all the stress components. Note that the plot for σ23 is the 
same as for σ13. The plots are done using rc = 3b in Region 2. Notice that the stress levels 
in these contour plots is considerably less than those in Figure 2 since (by employing the 
above algorithm) the stress levels are either capped in Figure 2 based on theoretical 
grounds in Region 2 or the weak singularity completely removed/terminated in Region 3. 
Moreover, notice in these new figures, the perfect symmetry or anti-symmetry alluded to 
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earlier around the plane perpendicular to the segment at is centre. This is another 
indication of the success of the above algorithm in attaining the goals of this work. 

Figure 7 Contour plots around a linear dislocation segment lying in the xy-plane, (a) σ11 (b) σ22 
(c) σ33 (d) σ23 (e) σ13 (f) σ12 (see online version for colours) 

   
(a)     (b) 

  
(c)     (d) 

   
(c)     (d) 

Notes: These are made after implementing the algorithm in this paper. Applying the 
algorithm for the parameters: rc = 3b, the coordinates of point A are (–100, –50, 0) 

and for point B are (50, 100, 0). Here, the Burgers vector = 1 1 1, ,
3 3 3

 
 
 

 for 

simplicity. Here, μ = G = 1 and v = 0.33. 



   

 

   

   
 

   

   

 

   

   298 A.B. Siddique and T.A. Khraishi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 8 Line plots of stress showing the disappearance of the singularity in Region 3 with the 
application of the method in this paper, (a) σ11 (b) σ22 (c) σ33 (d) σ23 (e) σ13 (f) σ12  
(see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

    
(e)     (f) 

Another verification of the efficacy of the employed procedure or algorithm is shown in 
Figure 8 which shows line plots for the different stress components, all for Region 3. All 
of these line plots are for the segment mentioned above which lies in the xy-plane (with b 
equal to unity here for simplicity). Here again, and for this particular segment, the plot σ23 
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is the same as for σ13. The ξ parameter here is also normal to the dislocation line and 
lying in the xy-plane as before but it is perpendicular to the line (or really the line 
extension) in Region 3 and not in Region 2 like the plots in Figure 6. For completeness 
sake, the ξ line was behind point A by 50b although the exact distance behind will only 
influence the values on the plotted stress components but not the shape of the curve. It is 
clear in Figure 8, that by applying the above algorithm, that there are no singularities, not 
even the weak singularity, expected to be found in Region 3. Hence, the above method is 
working well again for eliminating the singularities associated with the core region of the 
dislocation segment. Notice that in Region 3, one can have a similar result to Figure 8 by 
making rc → ε and not just by flipping the line sense. This was pointed out in the 
procedure above. 
Table 1 Calculation of rc, in terms of b, based on the maximum shear stress or normal stress 

values using three different sources for the maximum value 

 
rc based on: max 2

Gτ
π

=  rc based on: max 5.1
Gτ =  rc based on: max 30

Gτ =  

σ11 0.3620 0.2942 1.7423 
σ22 0.3620 0.2942 1.7423 
σ33 0.4299 0.3394 2.0478 
σ23 0.5770 0.4639 2.7492 
σ13 0.5770 0.4639 2.7492 
σ12 0.2828 0.2263 1.3463 

In addition to the above examples on the efficacy of the method or algorithm of this 
paper, another application of the method is presented here. In dislocation problems, both 
static and dynamic, the issue of dealing with the presence of a free surface in the 
computational domain frequently presents itself. Although there are different ways to 
deal with existence of free surfaces that can be found in Canova and Fivel (1999), 
Hartmaier et al. (1999), El-Azab (2000) and Deng et al. (2008), the focus here is on 
works that utilised the ‘collocation point method’ to ensure that such surface is free from 
stress traction (Khraishi et al., 2001; Khraishi and Zbib, 2002; Yan et al., 2004; Siddique 
and Khraishi, 2020). The problem arises because analytical solutions for dislocation 
segments are provided [as in equations (1) and (2) above, Hirth and Lothe (1982) or Cai 
et al. (2006)] for infinite mediums. Such analytical solutions are the basis for discrete 
dislocation dynamics (DDD) simulations alluded to earlier (Zbib et al., 1998; Khraishi 
and Zbib, 2001; Khraishi et al., 2004; Leger et al., 2004). However, such DDD 
simulations are implemented in a finite or confined three-dimensional space or 
computational domain. When this domain contains free surfaces, additional stress terms 
(generally referred to historically as ‘image stresses’) are needed to augment or 
complement the analytical dislocation segment solutions in order for the zero  
stress-traction condition to be met, even if partially, on the free surface. In the collocation 
point method, the zero traction condition is enforced on a collection of N surface points, 
called collocation points. As N → infinity, the solution approaches any analytical solution 
(if one existed). In the collocation point methods presented in Khraishi et al. (2001), 
Khraishi and Zbib (2002), Yan et al. (2004) and Siddique and Khraishi (2020), the free 
surface is meshed by a contiguous uniform mesh or grid [see Figure 9(a)], resulting in 
rectangular/square elements all of equal size, the centre of each such element is a 
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collocation point. Moreover, the extra ‘image stresses’ at any crystal field point beneath 
the planar free surface come from the fact that each surface element in the mesh/grid 
stands for a generally-prismatic dislocation loop whose Burgers vector components are 
yet to be determined. The reason for choosing the elements as dislocation loops (which 
are fictitious or mathematical dislocation loops and not real or crystal ones) is two folds: 

a Each such dislocation loop represents a self-equilibrated source of stress in the 
calculations and hence employing such loops does not disturb the spatial equilibrium 
or even compatibility in the computational domain. 

b Such dislocation loops can provide the extra or complementary stresses representing 
the ‘image stresses’ mentioned above. 

Figure 9 Free surfaces (a) regular mesh and (b) on-the-fly mesh meshed by regular or irregular 
meshes with the dots representing collocation points 

  
(a)     (b) 

Note: Dislocations lie beneath the surface in the material. 

The problem of such mesh-based collocation method boils down to finding the Burgers 
vector components (bx, by, bz) of each loop on the surface. The way to find these Burgers 
vector components is equations that annul the traction T


 ( ,T n=
 σ  where σ is the stress 

state and n  is a unit normal vector) at each of the N collocation points. For Figure 9(a), 
and using elementary continuum mechanics (Khraishi and Shen, 2011), the zero traction 
condition on the collocation points translates to enforcing σzx = σzy = σzz = 0 on each such 
point. Mathematically, the problem is formulated as such: 

1
, 1, 2, ,

N j i AB i
xz xzj
σ σ i N→ →

=
= − =   (9.1) 

1
, 1, 2, ,

N j i AB i
yz yzj
σ σ i N→ →

=
= − =   (9.2) 

1
, 1, 2, ,

N j i AB i
zz zzj
σ σ i N→ →

=
= − =   (9.3) 

where j iσ →
αβ  is the αβ stress component of loop j evaluated or calculated at collocation 

point i (which is the centre of loop i). Also, AB iσ →
αβ  is the αβ stress of segment AB 

evaluated at point i. Here, the stress from all surface loops is counter-acting the stress of 
the subsurface dislocation segment(s) (which is given or provided as if the medium is 
infinite). On the right side of equation (9), although only the stress of one dislocation 
segment is displayed, it can instead be the sum of stresses from multiple dislocation 
segments (M of them) all under the free surface. Moreover, the above equations can be 
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rewritten as in equation (10), where each loop stress is expressed as a linear combination 
of the loop’s Burgers vector components and ‘kernel’ terms which are functions of space 
and elastic constants. This separation of the Burgers vector components is attainable from 
basic linear elasticity dislocation theory (see Hirth and Lothe, 1982; Hull and Bacon, 
2011). The recent work of Siddique and Khraishi (2020) has explicitly provided the 
kernel terms in detail based on analysis of equations (1) and (2) above provided by 
Devincre (1995). 

1
, 1, 2, ,

N j j i j j i j j i AB i
x xxz y yxz z zxz xzj

b K b K b K σ i N→ → → →
=

+ + = − =   (10.1) 

1
, 1, 2, ,

N j j i j j i j j i AB i
x xyz y yyz z zyz yzj

b K b K b K σ i N→ → → →
=

+ + = − =   (10.2) 

1
, 1, 2, ,

N j j i j j i j j i AB i
x xzz y yzz z zzz zzj

b K b K b K σ i N→ → → →
=

+ + = − =   (10.3) 

The above system represents a system of 3N equations, the unknowns of which are the 
Burgers vector components of the N loops. Once the Burgers vectors of the loops are 
solved for, the stress field at any material/field point P in the crystal below the surface 
can be calculated as follows: 

M N jP i
i j

σ σ σ= + αβ αβ αβ  (11) 

where the first sum on the right-hand side is for M dislocation segments under the surface 
and the second sum is for N dislocation loops meshing the free surface. 

In Siddique and Khraishi (2020) paper, and in reference to Figure 9(a), the paper 
presented a rule of thumb based on Saint Venant’s principle, to determine the accuracy of 
the collocation-point method for calculating stress at any given field point. The rule of 
thumb states that the distance (z-distance in this case) below the free surface needs to be 
equal or more than the average spacing between surface collocation points. For example, 
if each side of surface S in Figure 9(a) is 20,000b (where b is the Burgers vector 
magnitude), then if the field point is 400b below the free surface that means that the 
average spacing between the surface collocation points need to be at max. 400b. For the 
contiguous uniform mesh or grid in Figure 9(a), that means that number of 
elements/loops lining up each side of the surface is 50 resulting in a 50 × 50 mesh, i.e., 
2,500 elements/loops minimum covering the surface. 

With the advent of this paper’s method/algorithm above, a different way of meshing 
presented in Figure 9(b) can be utilised that would cut significantly on the computation 
time. Figure 9(b) shows a non-uniform mesh. This mesh is called here ‘on-the-fly’ mesh 
because the idea is that one can start with a coarse (i.e., with few elements) uniform and 
contiguous mesh and then once a dislocation segment of a real crystal dislocation 
approaches the free surface in a dynamic simulation, and it is important to invoke the 
above-mentioned Saint Venant’s rule-of-thumb, then one or more of the large surface 
elements could be split into smaller elements in order to get back into compliance with 
the rule-of-thumb. For the sake of illustration, Figure 9(b) shows that four large 
elements/loops in Figure 9(a) were split into four smaller elements/loops each. Notice 
that in this new mesh, some of the new segments for the smaller loops can intersect, in 
their Region 3, a collocation point in bigger loops. This will cause a numerical issue, as 
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pointed out above, if no proper treatment is utilised for Region 3 as introduced here in 
this work. 

To illustrate the discussion above regarding Saint Venant’s principle, on-the-fly 
meshing and the associated time savings when employing the collocation point method, 
consider a frontal view of Figures 9(a) and 9(b) in Figure 10. 

Figure 10 A segment below a free surface to illustrate the principles used for meshing the surface 
with dislocation loops the centre of each is a collocation point (see online version  
for colours) 

 

 

 

 
 

In Figure 10, a segment (called segment AB) is shown below a free surface. The two end 
points or nodes are labelled A and B. The segment is shown horizontal but could also be 
inclined arbitrarily. The segment, or its closest point to the surface, is at a certain depth 
(z-depth) from the surface. If as Figure 9, one considers a rectangular free surface such 
that each of its sides is 20,000b in length. Then according to Saint Venant’s principle, in 
order for the collocation point method to work accurately it requires a spacing between 
the collocation points (centres of mesh elements/loops) to be equal to or less to the  
z-depth of the segment in Figure 10. Taking the z-depth to be 400b, this means that the 
average spacing of collocation points should be 400b or less. Dividing 20,000b by 400b 
gives 50. Therefore, the size of each of the mesh surface elements/loops in the uniform 
contiguous mesh in Figure 9(a) will be 400b or smaller. In other words, the total number 
of surface elements/loops is 2,500 (50 × 50 mesh) which is also the number of 
collocation points [N in equations (9) or (10)]. 

However, another question begs itself. When the larger elements/loops are divided 
into smaller ones, how big is the size of the area to be divided as such? The authors 
hypothesise that another/second application of Saint Venant’s principle can be made here. 
Specifically, by looking at Figure 10, if the length of the segment is l (or its projected 
length on the free surface) then another length l should be added to each end of the 
surface projection for a total length of 3l (see Figure 10). Now this (3l × 3l) area can be 
divided into smaller elements/loops. This is the guideline to the creation of the  
‘on-the-fly mesh’. To test this new hypothesis, several figures/plots are created to verify 
it. 

Figures 11, 12 and 13 show stress plots for the above-described segment AB which is 
here parallel to the free surface, by being also parallel to the x-axis, with the z-axis 
passing through the segment centre. However, in these plots, the field points (all parallel 
to the x-axis with y = 0) are at a z-depth = 400b. Specifically, the field line is from  
(–1,000b, 0, –400b) to (1,000b, 0, –400b). The z-depth for the segment in Figures 11, 12 

and 13 is 1,000b. Also, the Burgers vector for the segment is taken as 1 1 1, , .
3 3 3

 
 
 

 In 
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Figures 11, 12 and 13, we first start with a coarse mesh (25 × 25 elements/loops =  
625 elements/loops). Secondly, we make the first application of St. Venant’s principle 
and thus have to use a mesh whose elements are at max 400b in size which generates a  
50 × 50 = 2,500 loops/elements in the uniform mesh [see Figure 9(a)]. Third, we do an 
on-the-fly mesh by taking the centre element in the 625 mesh and dividing it into  
four loops/elements [similar to Figure 9(b)] to give a total of 628 loops/elements  
(625 – 1 + 4) in this non-uniform mesh. Fourth or lastly, we do an on-the-fly mesh by 
taking the centre nine elements (3 × 3) and divide each of them into four elements/loops 
[similar to Figure 9(b)]. This results into 652 (625 – 9 + 36) elements/loops total in this 
non-uniform mesh. In all of Figures 11, 12 and 13, the collocation-point method using the 
segment algorithm described above, was compared to a known analytical solution by 
Maurissen and Capella (1974a) for a parallel dislocation segment in an isotropic half 
medium under an infinite surface plane. To make this comparison plausible with the 
finite surface employed in the numerical collocation point method, the dislocation 
segment is placed below the centre of the surface and the surface dimensions or size is set 
to a large value, i.e., 20,000b. 

Consider first Figure 11. Here, Figure 11(a) shows the 625 coarse meshes.  
Figure 11(b) shows the fine 2,500 elements/loops mesh. Figure 11(c) shows a  
non-uniform on-the-fly mesh with 628 elements, and Figure 11(d) shows a non-uniform 
on-the-fly mesh with 652 elements/loops. For Figure 11, we consider a segment with 
length l = 100b [i.e., A coordinates are (–50b, 0, –1,000b) and B coordinates are (+50b, 0, 
–1,000b)]. For the 625 uniform meshes, the average spacing between the collocation 
points is 800b. Since the field points depth is only 400b, the numerical solution is not 
expected to (nor does it) match the analytical solution in accordance with the first 
application of Saint Venant’s principle. This is clearly reflected in Figure 11(a). For the 
2,500 mesh, the average collocation points spacing is 400b, so it is expected that the 
numerical solution matches the analytical solution for this case since the field points 
depth is 400b. Figure 11(b) shows such match. For the 628 non-uniform on-the-fly mesh, 
since the average collocation point spacing in the refined area right above the dislocation 
segment is 400b and the second application of Saint Venant’s principle is valid (i.e., the 
refined mesh size of 800b is at least 3l = 300b here), it is expected to find a match 
between the analytical and numerical solutions. Figure 11(c) shows such match. Lastly, 
for the 652 non-uniform on-the-fly mesh, both applications of the Saint Venant’s 
principle apply here and hence a match is expected between the numerical and analytical 
results. This is shown in Figure 11(d). 

Consider Figures 12(a), 12(b), 12(c) and 12(d) which have 625 elements  
(uniform mesh), 2,500 elements (uniform mesh), 628 non-uniform on-the-fly mesh, and 
652 non-uniform on-the-fly mesh, respectively. For Figures 12(a), 12(b), 12(c) and 12(d), 
we consider a segment with length l = 200b [i.e., A coordinates are (–100b, 0, –1,000b) 
and B coordinates are (+100b, 0, –1,000b)]. Figure 12(a) does not match the analytical 
solution because it fails to meet the first application of Saint Venant’s principle whereas 
Figure 12(b) does for these two uniform meshes. However, if one resorts to non-uniform 
meshing through on-the-fly meshing, then Figure 12(c) also shows disparity with the 
analytical solution since the second application of Saint Venant’s fails here. However, if 
larger elements than one element are sub-divided into smaller ones as in the 652 mesh in 
Figure 12(d) then a match occurs between the analytical and numerical. This is so since 
the second application of Saint Venant’s principle applies here. In Figure 12(d), the finer 



   

 

   

   
 

   

   

 

   

   304 A.B. Siddique and T.A. Khraishi    
 

    
 
 

   

   
 

   

   

 

   

       
 

mesh (i.e., sub-divided mesh) side length is 2,400b (3 × 800b) which is greater than 3l 
(600b). 

Figure 11 Comparison between the numerical collocation point method solution and analytical 
solution of Maurissen and Capella (1974a) for a horizontal segment beneath a  
free surface, (a) uniform surface mesh, 625 elements (b) uniform surface mesh,  
2,500 elements (c) non-uniform on-the-fly surface mesh, 628 elements (d) non-uniform 
on-the-fly surface mesh, 652 elements (see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

Note: Here, segment length l = 100b, i.e., A coordinates are (–50b, 0, –1,000b) and  
B coordinates are (+50b, 0, –1,000b). 

The mismatches above with the 625 mesh and the 628 mesh continue with increased 
segment length l for the rest of the fixed parameters above. Now consider Figures 13(a), 
13(b), 13(c) and 13(d) which also have 625 elements (uniform mesh), 2,500 elements 
(uniform mesh), 628 non-uniform on-the-fly mesh, and 652 non-uniform on-the-fly 
mesh, respectively. For Figures 13(a), 13(b), 13(c) and 13(d), we consider a segment with 
length l = 800b [i.e., A coordinates are (–400b, 0, –1,000b) and B coordinates are (+400b, 
0, –1,000b). According to the first application of Saint Venant’s principle, the 625 and 
628 should not show a match between analytical and numerical solutions and  
Figures 13(a) and 13(c) reflect that. Also, for the 2,500 mesh there should still be a match 
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between the two solutions and Figure 13(b) reflect that. The small mismatch is due to the 
segment now being a significant percentage of the finite surface size of 20,000b which 
causes this situation to deviate even further from the infinite plane situation upon which 
the analytical solution is built. According to the second application of Saint Venant’s, at 
this length l the 652 mesh which has a fine or sub-divided mesh equal to 3l (3 × 800b = 
2,400b) should be a borderline on-the-fly mesh case for seeking a match between 
analytical and numerical solutions. Looking at Figure 13(d), it appears that this 
postulation is correct. Now if the segment length increases beyond 800b, it is expected 
that more mismatch will exist between the analytical and numerical solutions for the  
652 mesh and that is indeed what is observed (figures are omitted here for brevity). 

Figure 12 Comparison between the numerical collocation point method solution and analytical 
solution of Maurissen and Capella (1974a) for a horizontal segment beneath a  
free surface, (a) uniform surface mesh, 625 elements (b) uniform surface mesh,  
2,500 elements (c) non-uniform on-the-fly surface mesh, 628 elements (d) non-uniform 
on-the-fly surface mesh, 652 elements (see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

Note: Here, segment length l = 200b, i.e., A coordinates are (–100b, 0, –1,000b) and  
B coordinates are (+100b, 0, –1,000b). 
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Figure 13 Comparison between the numerical collocation point method solution and analytical 
solution of Maurissen and Capella (1974a) for a horizontal segment beneath a  
free surface, (a) uniform surface mesh, 625 elements (b) uniform surface mesh,  
2,500 elements (c) non-uniform on-the-fly surface mesh, 628 elements (d) non-uniform 
on-the-fly surface mesh, 652 elements (see online version for colours) 

  
(a)     (b) 

   
(c)     (d) 

Note: Here, segment length l = 800b, i.e., A coordinates are (–400b, 0, -1,000b) and  
B coordinates are (+400b, 0, –1,000b). 

The above paragraphs illustrated the first and second applications of Saint Venant’s 
principle in as far as the collocation point numerical method is concerned. Although the 
first application was introduced in prior works (Khraishi et al., 2001; Khraishi and Zbib, 
2002; Yan et al., 2004; Siddique and Khraishi, 2020), the second application introduced 
here was shown to be applicable and thus important for the on-the-fly meshing. The  
on-the-fly meshing was conceptualised in an effort to reduce computational time 
involving the system of equations (9) and (10). To show the amount of time savings in 
the computations, Table 2 lists the time it took to compute the stress field in  
Figures 11–13. Table 2 shows that for the 625, 628 and 652 the computational time is 
similar. However, when employing the on-the-fly meshes (i.e., 628 and 652), a great 
reduction in computing time occurs compared to the fine mesh used in these prior 
references. For example, with the 652 mesh a time reduction from the fine mesh of 
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91.45% which is very significant since the outputted stress results are essentially the 
same. 
Table 2 Comparison of the computational time for on-the-fly meshes with regular uniform 

meshes 

Number of surface elements/loops/collocation points Time (seconds) to compute stress field 
625 32.26 
628 35.88 
652 38.67 
2,500 452.34 

With the new segment algorithm described above, other types of meshes on a free surface 
(besides ones shown in Figure 9) are possible, like unstructured meshes (see Figure 14). 
For such meshes, especially with a high number of elements, it is possible that numerical 
issues stemming from the Region 3 singularity pop up when evaluating the kernel terms 
at collocation points representing the centre of the elements/loops (see discussion above 
on the collocation-point method). For this random or unstructured triangular mesh, one 
can plot figures similar to Figure 11–13, to show that the collocation-point method 
produces the correct surface correction terms (‘image stresses’) in compliance with 
Maurrisen and Capella (1974a) analytical solution. However, such plots are not provided 
here for brevity. For the collocation-point method described above, the term j i

xzσ →  in 

equation (9.1) becomes here equal to 
3

1
,jl i

xzl
σ →

=  where jl i
xzσ →  is the σxz stress 

component of the lth segment of loop j acting at collocation point i. Similarly, for 
equations (9.2) and (9.3). For equation (11), jσαβ  becomes for a triangular mesh with 

triangular loops/elements: 
3

1
,jl

l
σ

= αβ  where jlσαβ  is the σαβ stress component of the lth 

segment of loop j acting at any material/field point P. 
Alternatively, one can illustrate the use of this mesh in 3D DDD simulations using the 

following parameters: constant strain-rate loading in the yz-direction, applied strain-rate 
of 10 s–1, one Frank-Read source lying on the x-axis with end point coordinates of  
(–2,000b, 0, 0) and (2000b, 0, 0), Burgers vector (0, 1, 0),b =


 the computational box (or 

RVE) is 10,000b in each side of the cube, the shear modulus μ = G = 26.32 GPa,  

v = 0.33, mass density = 2,710 kg/m3, and the dislocation mobility equalling 11,000 .
Pa s⋅

 

In these simulations, the unstructured triangular mesh is used on each of the six surfaces 
of the computational box. Figure 15 compares the stress-strain results from the DDD 
simulations for two situations: one not accounting for the free surface effects, and  
one employing the collocation point method using the mesh in Figure 14 to account for 
the effect of free surfaces. As can be seen in Figure 15, the incorporation of correct free 
surface effects reduces the flow stress in the material by about 23%. This amount is 
considerable and its exact number depends on factors such as the source length, the 
surface-to-volume ratio, etc. Additionally to above, the new algorithm can also prevent 
the Region 2 or Region 3 singularities from talking place when an ensemble of 
dislocation segments are interacting in space inside the DDD computational domain/box. 
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Figure 14 An unstructured triangular-element mesh used in the collocation-point method for 
properly treating free-surface problems in the presence of dislocations (see online 
version for colours) 

  

Figure 15 Stress-strain diagrams for a case with no free surface effects (no surface loops) and a 
case with free surface effects (triangular surface loops) (see online version for colours) 

 

Note: The computational box is subjected to constant strain-rate loading. 

Instead of using a constant-strain-rate experiment, as in Figure 15, a creep experiment 
can be performed. If the source is placed parallel and closely beneath a free surface, the 
image stresses should be enough, once overcoming the lattice friction, to pull the  
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dislocation out of the crystal. Figure 16 shows such simulation with the different colours 
showing different time shots or snaps in time. The initially straight dislocation bow outs 
until it gets absorbed in the surface at its middle region. The dislocation line continues to 
sink in the free surface until at the end only two screw segments remain on both ends. 

Figure 16 A dislocation source parallel and close to a free surface (see online version for colours) 

 

Note: The initially edge-character source gets absorbed into the free surface as shown by 
the time stills of the source (shown in dashed lines followed by the final source 
position). 

4 Conclusions 

Based on this research which properly treats the stress field around a dislocation segment 
and its trailing line, i.e., its core region, to regularise it, the following conclusions can be 
made. The space around the segment can be partitioned into three regions: one regular 
region ahead of the segment, and one with a weak singularity in the trail of the segment 
and one immediately around the core of the segment with a strong singularity. Also, the 
rc (cut-off radius or radius of the core region) is found to be 3b which is a 
recommendation stemming out of this work. Another conclusion is that the developed 
algorithm expands the type of surface meshes used in collocation-point methods by 
allowing on-the-fly meshing or unstructured meshes. This could generate time savings in 
the computations. The accuracy of the meshes’ results is subject to St. Venant’s principle. 
Lastly, the research shows the importance of incorporating image-stress effects for a free 
surface as that could significantly impact the calculated flow stress of the material. The 
algorithm also could prevent problems in 3D DDD when dealing with ensembles of 
interacting and time-evolving dislocations in space. 
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