
   

  

   

   
 

   

   

 

   

   28 Int. J. Intelligent Information and Database Systems, Vol. 15, No. 1, 2022    
 

   Copyright © 2022 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Supporting user-centred ontology visualisation: 
predictive analytics using eye gaze to enhance 
human-ontology interaction 

Bo Fu* 
Computer Engineering and Computer Science, 
California State University Long Beach, 
1250 Bellflower Blvd, Long Beach, CA 90840, USA 
Email: Bo.Fu@csulb.edu 
*Corresponding author 

Ben Steichen 
Computer Science, 
California State Polytechnic University Pomona, 
3801 W Temple Ave, Pomona, CA 91768, USA 
Email: bsteichen@cpp.edu 

Abstract: Visualisation is an important aspect to support human-ontology 
interaction, as visual cues amplify cognition and offload cognitive efforts to the 
human perceptual system. While significant research efforts have focused on 
visualisation layouts, adapting to the individual user has been largely 
overlooked in typical ontology visualisation systems. This provides an 
opportunity to potentially seek more personalised support in ontology 
visualisation. As such, this paper utilises a tumbling window analytical 
technique and demonstrates accurate predictions of a user’s likelihood to 
succeed in a given task based on this person’s latest gaze data during an 
interactive session. We show several trial scenarios where statistically 
significant accuracies are achieved for two commonly used ontology 
visualisations in the presence of mixed user backgrounds and task domains. In 
addition, depending on the gaze features that emphasise a user’s search or 
processing activities, or cognitive workload, trial results show earlier 
predictions as well as higher accuracies can be achieved in some cases. 
Furthermore, an investigation of influential gaze features reveals a combination 
of gaze traits is often associated with higher user success. These findings 
motivate and highlight potentially ample opportunities to adapt to the 
individual user throughout various interactive stages in the realisation of 
adaptive ontology visualisation. 
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1 Introduction 

Recent efforts in the field of ontology visualisation have largely focused on developing 
various graphical tools and producing technical advances in interaction design, such as 
improving visual navigational support (Motta et al., 2011), creating visualisations for 
users without semantic technology background (Sabol et al., 2014), and generating 
recommendations of visual renditions (Thellmann et al., 2015). Although individual 
users’ visual preferences, information needs, and cognitive abilities are recognised in 
adaptive and personalised technologies applied to others fields such as information 
retrieval (Steichen et al., 2012), e-learning (Chen, 2008), and recommender systems (Cho 
et al., 2002), the adoption of adaptive and personalised visualisation systems remain 
scarce in ontology visualisation. 

Motivated by prior research in adaptive information visualisation systems that has 
generated promising results and demonstrated valuable benefits of tailoring to individual 
users based on a range of adaptation methods such as the given task at hand (Casner, 
1991; Mackinlay, 1986), user expertise (Grawemeyer, 2006), and real time user 
observation (Gotz and Wen, 2009), this research aims to facilitate adaptive ontology 
visualisation by means of identifying opportunities where personalisation may be 
achieved during human-ontology interaction, i.e. before the user completes a given task. 
To this end, we utilise a tumbling window technique when analysing a user’s eye gaze 
data captured during an interaction, with the overall goal of inferring this person’s likely 
success with a given task in real time. These predictions can then be used to inform the 
underlying ontology visualisation system, which could subsequently make appropriate 
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changes to the visual cues presented to the user. These personalised changes may 
potentially increase a user’s success rate, reduce time needed to complete the given task, 
and improve the overall user experience with the ontology visualisation. 

In this paper, we present predictive modelling of users’ gaze data using established 
machine learning techniques and demonstrate several predictions with higher accuracies 
against those of a baseline classifier. In particular, we present results showing accurate 
predictions of users’ success throughout multiple stages of an interaction and in some 
cases, as early as a few minutes into an interactive session with ontology visualisations. 
Extending findings reported in Fu et al. (2020), we investigate several configurations of a 
tumbling window technique coupled with gaze datasets featuring user activities such as 
search, processing, and cognitive workload, whereby further improvements were found in 
user success predictions such as earlier and higher statistically significant accuracies. 
Finally, we conclude with lessons learned based on additional insights gained from 
investigating the most influential gaze features. These results demonstrate that it is not 
only possible to infer a user’s likely success with a given task at early stages of an 
interaction, but also feasible to generate multiple accurate user predictions throughout 
various stages of a human-ontology interaction. These findings provide further evidence 
that personalised ontology visualisation may be achieved if inferred user success could be 
accounted by the underlying visualisation system in the rendering of visual displays. 

2 Related work 

Ontology visualisation plays an important role in human-ontology interaction, and is a 
thriving research area with continuous development of numerous tools and techniques 
over the years. Examples of recent research emphasis include providing visual summaries 
to support navigation and enhance comprehension of large-scale ontologies (Motta et al., 
2011; Santana-Pérez, 2018), creating visualisations for casual users without significant 
backgrounds in semantic technologies (Sabol et al., 2014; Lohmann et al., 2015; Graziosi 
et al., 2017), visualising ontological changes during editing and evolution (Burch and 
Lohmann, 2015; Lambrix et al., 2016; Ochs et al., 2017), enriching query languages with 
visual representations (Zainab et al., 2015; Haag et al., 2015; Bartolomeo et al., 2018; 
Vargas et al., 2019), as well as recommender systems for ontology visualisation 
(Thellmann et al., 2015; Sváb-Zamazal et al., 2016). The advances in ontology 
visualisation have also prompted efforts to classify and categorise the extensive inventory 
of existing visualisation techniques. For instance, Katifori et al. (2007) define six 
categorisations of ontology visualisation techniques, including indented list,  
node-link and tree, zoomable, space-filling, focus with context or distortion, and 3D 
information landscapes, based on their presentation, interaction, functionality, and 
dimensions used. Dudáš et al. (2018) define five categorisations of ontology visualisation 
techniques, including 1.5D, 2D, 2.5D, 3D, and temporal dimensional visualisations that 
can be presented as indented lists and node-link diagrams with various layouts such as 
force-directed, tree, treemap, radial, circle, and Euler diagrams. A notable observation 
from these classifications is that there are two dominant techniques that are commonly 
employed in ontology visualisation, namely indented lists and node-link diagrams, which 
evidently serve as the foundation of many other renditions in ontology visualisation 
generation. In addition, a second observation is that a ‘one-size-fits-all’ approach has 
dominated most ontology visualisation tools, where the same visualisation is presented to 



   

 

   

   
 

   

   

 

   

    Supporting user-centred ontology visualisation 31    
 

    
 
 

   

   
 

   

   

 

   

       
 

the user regardless of this person’s information needs and visual preferences. This 
highlights a potential research opportunity to design adaptive visual systems that may 
adjust to the user needs in real time, i.e. as the person interacts with a given ontology 
visualisation. To this end, we employ the aforementioned two commonly used ontology 
visualisation techniques in a study that aims to predict user success ahead of task 
completion, in an effort to identify adaptation opportunities where potential visual 
adjustments may be necessary to improve user success. 

Adaptive technologies have been well-studied in related fields such as information 
visualisation, where early systems (Casner, 1991; Mackinlay, 1986) have investigated 
adaptations based on a given task or data properties known a priori, with successful 
results indicating expedited user performance during visual information processing. 
Further studies in dynamic visualisation adaptions such as those discussed in 
Grawemeyer (2006) provide visualisation recommendations based on inferred user 
expertise and preferences from earlier interactions, with evaluation results showing more 
accurate and efficient user performances. Since prior interaction data may not always be 
available in every scenario, later research (Gotz and Wen, 2009) has investigated the 
feasibility of adaptation based on real-time user monitoring, such as data patterns 
generated from mouse clicks. However, direct user input such as mouse clicks may not 
always be available in every interactive scenario. For instance, if the user is simply 
gazing at a visualisation, it would be difficult to provide adaption in that scenario. To 
overcome such issues, recent research has focused on adaptation models based on 
alternative data sources including non-invasive physiological sensors such as eye 
tracking. In cognitive and perceptual psychology, eye tracking has long been established 
as a suitable means to quantify user attention patterns in reading and search activities 
(Rayner, 1995) as well as information processing (Rayner, 1998). In human-computer 
interaction, eye tracking has also been applied to various research topics such as 
identifying pattern variances in different visualisations (Goldberg and Helfman, 2011), 
types of tasks (Iqbal and Bailey, 2004), and cognitive efforts required of the user 
(Plumlee and Ware, 2006). As eye trackers become increasingly affordable over the 
years, coupled with their ubiquitous integration in gaming (Velloso and Carter, 2016) and 
application in computer accessibility for people with physical disabilities (Betke et al., 
2002), it can be envisioned that gaze-based adaptations may soon be part of mainstream 
visualisation systems. In the field of ontology visualisation, eye tracking has been used as 
an evaluation tool to compare the usability of common visualisation techniques (Fu et al., 
2017). Preliminary research using gaze data, mouse clicks, and event logs to infer user 
success has shown promising results in predictive analytics (Fu and Steichen, 2019; Fu  
et al., 2019). However, these approaches are designed to support post hoc adaptations and 
are dependent on direct user input that may not always be available or possible as 
discussed earlier. Thus, in an effort to extend these prior research efforts, this paper aims 
to investigate the benefits of utilising gaze data generated from an interactive session that 
is still in progress. More specifically, we show that it is feasible to predict a user’s 
success with a given task before the session is concluded. It is envisioned that these 
predictions would in turn inform the underlying visual system to adjust/add visual cues as 
appropriate, in an attempt to increase user success and improve the user experience for 
the remainder of an interactive session. We recognise that it may be useful to determine 
in some scenarios if one ontology visualisation may be more optimal than another for a 
given user, although arguably, such a prediction would only allow intrusive adaptations, 
such as changing the visualisation altogether while a user is already deeply engaged in a 
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task. As such, this research thrives for less intrusive adaptations to an ongoing interaction 
between the user and an ontology visualisation, whereby the existing visualisation may 
be accompanied by, e.g. adaptive overlays, and highlighted or modified axes, as proposed 
in Steichen and Fu (2019). 

3 Experiment design 

We designed and executed a controlled eye tracking experiment to simulate a  
human-ontology interaction scenario, whereby participants were asked to evaluate a set 
of class mappings between a given ontology pair assisted by their visualisations. In order 
to evaluate whether mappings are correct and complete, the participants must interact 
with visualisations of the given ontologies in order to understand the semantics within. 
As such, this experimental design provides the necessary means to investigate gaze-based 
predictive analytics. 

We used two different datasets (two ontology pairs and their respective mapping gold 
standards) taken from two tracks at the ontology alignment evaluation initiative (OAEI), 
namely the Conference Track and the Biomedical Ontologies (BioMed) Track1. Both 
tracks cover general knowledge in their respective domains. More specifically, the 
Conference ontologies present broad knowledge of typical conference organisations, and 
the BioMed ontologies are a subset taken from the original dataset (containing over 
70,000 classes) presenting knowledge of the human anatomy. Both ontology pairs used in 
the experiment are similar in size, with approximately 200 classes in total. For example, a 
participant was shown a pair of BioMed ontology visualisations and a list of mappings 
between this ontology pair at the same time, and was asked to answer true/false questions 
such as whether mapping Organism from the source ontology to Metabacteria in the 
target ontology is correct. In addition, the participant was asked to enter the ontology 
classes they believe should have been mapped together but not already included in the 
given mapping list. Participants evaluated class mappings exclusively in the experiments, 
and the visualisations illustrated solely is-a relationships. Inspired by precision, recall, 
and f-measure commonly used in mapping evaluation, we define a participant’s 
correctness success as this person’s accurate identifications of correct mappings in a 
given set. Likewise, we define a participant’s completeness success as this person’s 
correct additions of new mappings to the given set. Finally, we define a participant’s 
overall success as this person’s combined score that includes both correctness and 
completeness success. Correctness, completeness, and overall success scores range 
between 0 and 1, where the closer the value is to 1 the higher a person’s success. 

The visualisations and the ontologies used in the experiment are not intended to be 
exhaustive, but rather as example scenarios to provide the necessary environment for 
human-ontology interaction that is needed to validate the concept proposed in this paper. 
Though the aforementioned example scenarios are sufficient for the purpose of validating 
the feasibility of user success predictions based on gaze data, it is necessary to note that 
there are other potential scenarios and examples of user tasks involving ontology 
visualisations. As such, the findings reported in this paper shall be understood within the 
scope of the scenarios demonstrated in the experimental trials. 

The mapping sets given to the participants were generated based on the OAEI gold 
standards, where we included incorrect and incomplete mapping results to allow scoring 
of user success as discussed earlier. In addition, we recorded the time on task, i.e. the 
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length of time it took a participant to complete a given mapping evaluation task. In both 
domains, the participants would need to identify the same number of correct and incorrect 
mappings, and to add the same number of missing mappings (each task scenario requires 
a participant to identify 13 correct results, 3 incorrect results, and to add 7 new mappings) 
in order to achieve 100% success score. This design aims to minimise potential bias that a 
participant’s time on task is not driven by the number of mappings to be evaluated or to 
be created. 

To demonstrate that user success predictions may be achieved across different 
visualisation techniques, we employed two types of commonly used ontology 
visualisations as identified previously in related work, namely indented list and node-link 
diagrams as shown in Figure 1. An example visualisation of a conference ontology using 
the indented list visualisation is shown in Figure 1(a), where super-subclass relationships 
are illustrated by indentations with arrow directions indicating whether classes can be 
toggled. Another example visualisation of a Biomedical ontology using node-link 
diagram is shown in Figure 1(b), where class relationships are illustrated by connected 
edges, with darker nodes indicating classes that can be further expanded to reveal 
additional child nodes. We used the D3 JavaScript Library2 to generate the node-link 
diagrams and Protégé3 to generate the indented list visualisations in our experiment, 
where the participants were instructed to only interact with the visualisations themselves 
but not any other features in Protégé. 

Figure 1 Ontology visualisation techniques investigated in the controlled experiment,  
(a) indented list visualisation of a conference ontology (b) node-link visualisation of a 
biomedical ontology (see online version for colours) 

  
(a) (b) 

Finally, we used a Tobii 2150 eye tracker with a frame rate of 50Hz against a 21.3” 
monitor with 1600×1200 pixels resolution to capture gaze data. Each recording session 
began with calibration to ensure maximum tracking validity. No additional head mounts 
or sensors were used in our experiment setup, which thereby closely resembles common 
interactions of average users in the real world. Additionally, the eye tracker is able to 
tolerate small head movements and user blinking, although participants were encouraged 
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to minimise large movements once a recording had begun. We seated participants on 
stationary chairs without swivels or wheels to facilitate successful recordings of eye gaze 
data. A total of 36 participants took part in our experiment, who were undergraduate and 
graduate students majoring in Computer Science, Biomedical, Mechanical, and Electrical 
Engineering. Overall, we counterbalanced task orders, domains, and visualisations, 
whereby a participant interacted with the same domain or visualisation type only once, 
and different task orders were issued across all participants. This design therefore aims to 
minimise ordering and learning effects that may potentially impact on users’ success or 
time on task. 
Table 1 Raw eye gaze data generated for a participant in one recording session 

Gaze measure Description 
Fixation count The number of fixation points found in an interaction 
Fixation duration The duration of a fixation, measured in milliseconds 
Saccade count The number of saccades found in an interaction 
Saccade duration The duration of a saccade, measured in milliseconds 
Saccade length The distance between fixations, measured in pixels 
Saccade-to-fixation 
ratio 

The sum of saccadic duration divided by the sum of fixation duration 

Scanpath duration The duration of all fixations and saccades, measured in milliseconds 
Scanpath length The distance of all saccades found in an interaction, measured in pixels 
Convex hull The size of an area defined by the bounding fixations found in an 

interaction, measured in square pixels 
Absolute saccadic angle The gradient of a saccade with respective to the horizontal axis, 

measured in degrees 
Relative saccadic angle The gradient of two consecutive saccades, measured in degrees 
Pupil dilation The widening of the pupils, measured in millimetres 

Based on a set of raw gaze data produced by the Tobii eye tracker, we generated several 
gaze measures as shown in Table 1. Fixations indicate moments when a user’s gaze is 
relatively stationary, e.g. when a person fixates on a point of interest on the screen. An 
example fixation is shown in Figure 2(a). During an eye tracking recording, there are 
many moments where a person’s eyes are relatively still, and the total count of such 
fixations can be generated after a recording session. A low Fixation count may be 
understood as an indicator for effective displays of information, i.e. if given two 
visualisations representing the same amount of information, a lower fixation count may 
entail fewer visual foci needed for the user to perceive the same information (Goldberg 
and Kotval, 1999). Each fixation is also associated with a duration, where a shorter 
fixation duration in a recording may indicate overall faster information extractions and 
consumptions by the user (Goldberg and Kotval, 1999). Saccades refer to the quick eye 
movements between pairs of fixations and are associated with count and duration similar 
to fixations. In addition, we can measure the length of a saccade in pixels as the distance 
between two fixations – an example saccadic length is shown in Figure 2(a). Saccadic 
lengths may be interpreted as rapid redirections of users’ attention, where longer saccadic 
lengths may indicate fewer unnecessary interim fixations (Goldberg and Kotval, 1999). 
Given a user’s total fixation and saccade durations, we can then generate this person’s 
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saccade-to-fixation ratio or search-to-process ratio in other words. These ratios provide 
an overall impression of how users have divided their time during an interaction, i.e. 
whether they spent more time on searching or processing the given visual information. 

The complete sequence of fixations and saccades is known as scanpath, which is 
associated with duration (the sum of all fixation and saccade durations) as well as length 
(the sum of all saccadic lengths in an eye tracking recording). Given two visualisations 
representing the same information and supporting the same tasks, it is likely that the more 
efficient visualisation with superior visual support would lead to generally shorter 
scanpath durations for the user (Goldberg and Kotval, 1999). However, it is also 
important to perceive scanpath durations in the context of its corresponding convex hull, 
which represents the smallest bounding area containing all fixations in the scanpath. An 
example of convex hull is shown in Figure 2(b). In addition, as a user repeats the process 
of searching and processing information during an interaction, there are various 
directional changes throughout a scanpath that may be measured via relative and absolute 
angles. Relative angles measure the saccadic degree between a pair of consecutive 
fixations, and absolute angles measure the degree of a saccade with respect to the 
horizontal axis, as demonstrated in Figure 2(a). Saccades with relative angles greater than 
90° are typically understood as backtrack indicators, suggesting a possible change in the 
user’s goal or mismatched visual representations and the user’s expectations (Goldberg 
and Kotval, 1999). Lastly, pupil dilations may indicate the cognitive workload demanded 
by a user during an interaction (Poole and Ball, 2005), and in particular, increases in 
pupil sizes entail more cognitive effort (Marshall, 2000; Pomplun and Sunkara, 2003). 
During calibration, we collected baseline pupil sizes from each participant. We then 
collected their pupil sizes during interactions with the given ontology visualisations and 
mapping tasks. These pupil sizes collected during task completions were then compared 
to their respective baselines in order to generate pupil dilations for each participant. 

Figure 2 Descriptive gaze measures generated from raw eye tracking data, (a) an example of 
fixation, saccade, saccadic length, absolute and relative angles (b) an example of 
convex hull (see online version for colours) 

  
(a) (b) 

Finally, the gaze metrics shown in Table 1 can be categorised based on the type of 
activities they are perceived to measure. More specifically, fixation and saccade count, 
saccadic length, scanpath length, and convex hull, may be interpreted as measures of 
information search activities, whereby an effective visualisation is likely to direct users’ 
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attention rapidly to relevant visual cues exclusively with optimal scanpath required in a 
given area of interest while minimising unnecessary intermediate steps. Likewise, 
average fixation duration and saccade-to-fixation ratio may be interpreted as measures of 
information processing activities, whereby an effective visual display is likely to support 
rapid information extraction in addition to faster and fewer searches of relevant visual 
cues. Furthermore, pupil dilation, absolute and relative saccade angles may be interpreted 
as measures of cognitive workload, whereby an effective visualisation is likely to demand 
less cognitive effort from users and provide helpful visual cues consistently aligned with 
user goals and expectations leading to minimised backtracks. 

4 Classification experiments using tumbling window predictive analysis 

We conducted classification experiments using the Waikato Environment for Knowledge 
Analysis (WEKA) machine learning toolkit (version 3.8.2) (Frank et al., 2016) to predict, 
using the above gaze measures, each user’s likely success when evaluating a given set of 
mappings. As previously discussed, we generated three types of success for each user, 
namely correctness success, completeness success, and overall success. Using a median 
split for each type of success scores, the classification task was to infer whether a user is 
likely to belong to the high (i.e. above the median success score) or low (i.e. below the 
median success score) group for that success measure. We used 10-fold cross-validation 
(stratified) for model evaluation, and experimented with a total of 44 different classifiers 
with default parameter configurations, and the most notable results of selected classifiers 
are reported in this paper. The predictions are compared to those results generated using a 
baseline classifier, namely ZeroR, which predicts the majority based on the target. ZeroR 
is commonly used as a benchmark that provides a necessary point of reference when 
determining a baseline performance, thus it is sufficient for the purpose of this study. 

Figure 3 Data analysis using the tumbling window technique (see online version for colours) 

 

Since we are interested in investigating the feasibility of predicting a user’s success 
before the person completes a given task, the classification experiments do not use the 
gaze data for the complete user session. Instead, the experiments use a tumbling window 
predictive analysis, which aims to focus on a series of fixed-sized and non-overlapping 
continuous frames in the eye tracking data (see Figure 3 for an illustration of a tumbling 
window). Specifically, given a stream of contiguous gaze data, the analysis window starts 
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with the first few lines of data (such as those numbered as 1, 2, and 3), makes predictions 
based on this data, and then tumbles forward to make subsequent predictions based on the 
subsequent data. The goal of such a tumbling window technique is to focus on the most 
current gaze behaviour of an individual user when predicting this person’s success. In 
particular, as a user interacts with ontology visualisation, this person may experience 
various visual needs such as searching and processing information, assessing whether the 
given information is relevant, redirecting attention and visual focus as needed etc., which 
are likely to be reflected in this person’s gaze data generated throughout various stages 
during an interaction. By focusing on current snapshots of users’ gaze data, the tumbling 
window technique aims to produce the most up-to-date predictions with continuous 
updates of the last known gaze data for each user, which may differ from those generated 
at earlier stages for that person. 

The window size of the tumbling window may be implemented in a number of ways. 
In this paper, we demonstrate two example methods, using either percentiles or absolute 
time intervals. First, the tumbling window by percentage method defines the window size 
as a fixed percentage of the full gaze dataset. For instance, the analysis window may 
begin with the first 20% of a person’s gaze data to make predictions, and tumble to the 
next 20th percentile of the gaze dataset to make another prediction, where this process is 
repeated in the subsequent predictions until the 100th percentile is reached to make the 
final prediction. There are many variations of percentiles that can be applied to 
implement a percentile-based tumbling window, in this paper, we use a 10% interval to 
demonstrate this proposed method in predictive analytics. Such an implementation of the 
tumbling window may be appropriate in scenarios where adaptations are made post 
interaction in retrospect, with the goal to influence future user interactions with a given 
visual system, since percentiles are not yet known in advance during interactions in real 
time. For example, it may be desirable for a visual system to identify those notable 
percentiles during an interactive process that persistently display usage issues, which may 
be best examined in the presence of complete gaze datasets post hoc. 

An alternative implementation of the window size may be defined with a fixed time 
frame using the tumbling window by absolute time method. For instance, the analysis 
window may generate predictions based on the gaze data collected from the first 5 
minutes of interaction, it then tumbles forward to the next 5 minutes, and so on, until the 
user completion of the task. In this paper, we use a 2-minute interval as an example to 
demonstrate the proposed implementation of a tumbling window by absolute time in gaze 
analytics. Such an implementation of the tumbling window may be appropriate in 
scenarios where ad hoc adaptations are desirable, such as a necessity in adapting to users 
during their interactions with a visual system. Finally, the implementations of the 
tumbling window and their respective results presented in this paper are not intended to 
be exhaustive, since there are many other possible instrumentations of the tumbling 
window, but rather, we aim to demonstrate that predictive user success analyses based on 
gaze data is not only feasible, but also may provide a first step towards adaptive ontology 
visualisation. 

5 Results 

This section presents classification results generated using different input gaze features 
sets, i.e. user success predictions that are inferred based on the complete set of gaze 
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features (Section 5.1), or subsets indicating user activities such as information search 
(Section 5.2), information processing (Section 5.3), or cognitive workload (Section 5.4) 
as previously discussed in Section 3. We demonstrate that depending on the feature set 
used, some classifiers have shown additional improvements in various classification 
tasks, such as higher accuracies or even sooner predictions. As discussed in Section 4, 
while we experimented with many more classifiers, only results of those notable 
classifiers are reported in this paper. It is therefore necessary to note that the figures 
presented in the remainder of this section contain selected classifiers in a given 
configuration that may vary across trials. These selected classifiers are not an exhaustive 
list of all classification models that have outperformed the baseline, but are intended to 
demonstrate example usage of a tumbling window in predictive user analyses based on 
gaze data. 

5.1 Trial 1 – predictions using complete gaze feature set 

The classification results generated using the tumbling window by percentage method 
when predicting a user’s likely success in evaluating whether a given mapping set is 
correct or not are shown in Figure 4(a) and Figure 4(c). The baseline classifier achieved 
an accuracy of 54.76% throughout various percentiles, which were outperformed by 
several other classifiers and a few notable examples are shown in Figure 4(a). The 
highest accuracy was achieved by the SimpleLogistic and the logistic model tree (LMT) 
classifiers at the 90th percentile with an accuracy of 69.93%, which was statistically 
significant compared to the baseline classifier at the same percentile [Figure 4(c)]. There 
appears to be two percentiles in particular, namely the 30th and 90th percentiles, where 
relative peak accuracies were generated by a number of classifiers. These results suggest 
that early predictions of users may be possible, although more accurate predictions may 
be achieved at later stages of the interaction when inferring users’ likelihood to assess 
correct mappings in the given scenario. 

Using the tumbling window by absolute time method, we generated classification 
results for users’ correctness success as shown in Figure 4(b) and Figure 4(d). The 
baseline classifier generated its peak accuracy of 59.17% after 18 minutes into the 
interaction [Figure 4(b)]. This is outperformed by a number of classifiers as early as after 
2 minutes into the interaction. The highest accuracy of 81.15% was generated by the 
MultilayerPerceptron classifier after 16 minutes. Furthermore, though a number of higher 
accuracies were reported during early time intervals, the number of statistically 
significant results peaked at 16 minutes [Figure 4(d)]. These findings suggest that in the 
given scenario, there may be an ideal time interval to produce the most accurate 
predictions on users’ correctness success with the highest statistical power, though it may 
be possible to detect the same trend during early stages of the interaction in some cases. 

When predicting users’ success using the tumbling window by percentage method 
when evaluating whether a set of mappings are complete or not, the baseline classifier 
generated an accuracy of 51.43% throughout all percentiles. A number of classifiers 
[Figure 5(a)] generated higher accuracies and with statistically significant results at all 
percentiles [Figure 5(c)]. The highest accuracy was produced by the BayesNet classifier 
with 72.67% accuracy at the 60th percentile. This finding further indicates that it is not 
only possible to predict users’ completeness success throughout all stages of the 
interaction, but it is also feasible to generate accurate predictions as early as the first 10th 
percentile in the given scenario. 
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Figure 4 Classification results of users’ correctness success based on complete gaze datasets 
using two implementation methods of the tumbling window, (a) predictions using 
tumbling window by percentage (b) predictions using tumbling window by absolute 
time (c) statistical significance of predictions using tumbling window by percentage  
(d) statistical significance of predictions using tumbling window by absolute time  
(see online version for colours) 
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Figure 5 Classification results of users’ completeness success based on complete gaze datasets 
using two implementation methods of the tumbling window, (a) predictions using 
tumbling window by percentage (b) predictions using tumbling window by absolute 
time (c) statistical significance of predictions using tumbling window by percentage  
(d) statistical significance of predictions using tumbling window by absolute time  
(see online version for colours) 
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Figure 5 Classification results of users’ completeness success based on complete gaze datasets 
using two implementation methods of the tumbling window, (a) predictions using 
tumbling window by percentage (b) predictions using tumbling window by absolute 
time (c) statistical significance of predictions using tumbling window by percentage  
(d) statistical significance of predictions using tumbling window by absolute time 
(continued) (see online version for colours) 

10 20 30 40 50 60 70 80 90 100

St
at

ist
ica

lly
 S

ig
ni

fic
an

t D
iff

er
en

ce
 

in
 C

la
ss

ifi
ca

tio
n 

Ac
cu

ra
cy

Interaction Observed (%)

BayesNet SMO Bagging, ClassificationViaRegression RandomSubSpace REPTree

Higher than 
Baseline

Lower than 
Baseline

 

2 4 6 8 10 12 14 16 18 20 22 24

St
at

ist
ica

lly
 S

ig
ni

fic
an

t D
iff

er
en

ce
 

in
 C

la
ss

ifi
ca

tio
n 

Ac
cu

ra
cy

Interaction Observed (Minutes)

BayesNet SMO
Bagging ClassificationViaRegression
RandomSubSpace RandomForest
REPTree

Higher than 
Baseline

Lower than 
Baseline

 
(c)     (d) 

Figure 6 Classification results of users’ overall success based on complete gaze datasets using 
two implementation methods of the tumbling window, (a) predictions using tumbling 
window by percentage (b) predictions using tumbling window by absolute time  
(c) statistical significance of predictions using tumbling window by percentage  
(d) statistical significance of predictions using tumbling window by absolute time  
(see online version for colours) 
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The classification results generated for completeness success predictions using the 
tumbling window by absolute time method are presented in Figure 5(b) and Figure 5(d). 
The highest accuracy generated by the baseline classifier was 55% after 24 minutes of 
interaction [Figure 5(b)]. This was outperformed by a number of classifiers as early as 
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after 2 minutes with statistically significant results [Figure 5(d)]. Most notably, a peak 
accuracy at 74.17% was generated by the BayesNet classifier after 22 minutes of 
interaction. Furthermore, a higher number of statistically significant results were reported 
during earlier time intervals, e.g. from the beginning until approximately 12 minutes of 
interaction, compared to later time intervals, e.g. after approximately 20 minutes of 
interaction. These findings suggest that there are not only multiple opportunities to make 
accurate predictions regarding a user’s completeness success in the given scenario, but 
such predictions can also be achieved after just a few minutes into an interaction. 

When predicting users’ overall success in the given task using the tumbling window 
by percentage method, the baseline classifier generated an accuracy of 53.10% at all 
percentiles [Figure 6(a)], which were also achieved by a number of other classifiers  
such as the NaiveBayesMultinomialText classifier, the SGDText classifier, the 
CVParameterSelection classifier, the MultiScheme classifier, the Stacking classifier, the 
Vote classifier, the WeightedInstancesHandlerWrapper classifier, and the InputMapped 
classifier. The highest accuracy of 75.24% was produced by the SimpleLogistic and the 
LMT classifiers at the 90th percentile, which was statistically significantly more accurate 
than that of the baseline [Figure 6(c)]. Relative peak accuracies appeared approximately 
around the 30th, 80–90th percentiles, which is consistent with the aforementioned 
findings of correctness success predictions. These results suggest early inferences of 
users’ overall success may be achieved in some cases, offering additional motivation to 
further validate other implementations of the tumbling window technique. 

Figure 6(b) shows the classification results generated for users’ overall success 
prediction using the tumbling window by absolute time method. The baseline classifier 
achieved its peak accuracy of 61.67% at the 18-minute interval. Several classifiers 
generated higher accuracies, where the highest accuracy of 83.67% was generated by the 
BayesNet classifier after 24 minutes of interaction. Relatively higher accuracies were 
reported by a number of classifiers after approximately 4 minutes of interaction and again 
after 18 minutes of interaction. Different from the predictions on users’ correctness and 
completeness success, several classifiers’ predictions on the users’ overall success were 
less accurate at 16 minutes compared to those of the baseline classifier. The earliest 
statistically significant results that were more accurate than those of the baseline were 
determined after 18 minutes by the bagging and the classification via regression 
classifier [Figure 6(d)]. These findings suggest that early accurate predictions on users’ 
overall success may be possible, though more accurate results with higher statistical 
power are likely to be produced towards later stages of the interaction in the given 
scenario. 

5.2 Trial 2 – predictions using gaze feature subset indicating information 
search activities 

The predictions on users’ correctness success based on gaze measures that indicate 
information search activities are shown in Figure 7. The baseline classifier generated an 
accuracy of 54.76% using both the tumbling window by percentage method and the 
tumbling window by absolute time method. Higher accuracies are shown in Figure 7(a) 
and Figure 7(b), where a peak accuracy of 71.74% was achieved by the LogitBoost 
classifier using the tumbling window by percentage method at the 90th percentile and a 
peak accuracy at 79.17% was generated by the ClassificationViaRegression classifier 
using the tumbling window by absolute time method after 18 minutes into the interaction. 
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In both tumbling window methods, statistically significant predictions were found 
towards the later stages of the analysis as shown in Figure 7(c) (at the 90th percentile) 
and Figure 7(d) (after 16 minutes of interaction). Overall, top-performing classifiers 
generally achieved higher accuracies as well as a greater number of statistically 
significant predictions using the tumbling window by absolute time method. 

When predicting users’ completeness success, the baseline classifier achieved an 
accuracy of 51.43% using the tumbling window by percentage method and a peak 
accuracy of 50% after 14 minutes using the tumbling window by absolute time method. 
More accurate and statistically significant results are shown in Figure 8. A peak accuracy 
at 72.33% was generated by the RandomSubSpace classifier using the tumbling window 
by percentage method at the 80th percentile [Figure 8(a)], and a peak accuracy at 72.95% 
was generated by the Bagging classifier after 8 minutes using the tumbling window by 
absolute time method [Figure 8(b)]. In both tumbling window methods, a greater number 
of statistically significant accuracies were found towards the beginning of the interaction 
[Figure 8(c), Figure 8(d)]. This is most noticeable in the tumbling window by absolute 
time method, where the number of statistically significant predictions fell quickly after 14 
minutes of interaction [Figure 8(d)]. 

Figure 7 Classification results of users’ correctness success based on gaze feature subsets 
indicating information search using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (see online version for colours) 
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Figure 8 Classification results of users’ completeness success based on gaze feature subsets 
indicating information search using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b)predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (see online version for colours) 

40.00

50.00

60.00

70.00

80.00

10 20 30 40 50 60 70 80 90 100

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Interaction Observed (%)

ZeroR BayesNet
SimpleLogistic SMO
Bagging, ClassificationViaRegression RandomCommitee
RandomSubSpace LMT
RandomForest REPTree

  

40.00

50.00

60.00

70.00

80.00

2 4 6 8 10 12 14 16 18 20 22 24

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

Interaction Observed (Minutes)

ZeroR BayesNet SimpleLogistic
SMO Bagging RandomCommitee
RandomSubSpace LMT RandomForest
REPTree

 
(a)     (b) 

10 20 30 40 50 60 70 80 90 100

St
at

ist
ica

lly
 S

ig
ni

fic
an

t D
iff

er
en

ce
 in

 
Cl

as
sif

ica
tio

n 
Ac

cu
ra

cy

Interaction Observed (%)

BayesNet SimpleLogistic
SMO Bagging, ClassificationViaRegression
RandomCommitee RandomSubSpace
LMT RandomForest
REPTree

Higher than 
Baseline

Lower than 
Baseline

 

2 4 6 8 10 12 14 16 18 20 22 24

St
at

ist
ica

lly
 S

ig
ni

fic
an

t D
iff

er
en

ce
 in

 
Cl

as
sif

ica
tio

n 
Ac

cu
ra

cy

Interaction Observed (Minutes)

BayesNet SimpleLogistic SMO
Bagging RandomCommitee RandomSubSpace
LMT RandomForest REPTree

Higher than 
Baseline

Lower than 
Baseline

 
(c)     (d) 

Figure 9 Classification results of users’ overall success based on gaze feature subsets indicating 
information search using two implementation methods of the tumbling window,  
(a) predictions using tumbling window by percentage (b) predictions using tumbling 
window by absolute time (c) statistical significance of predictions using tumbling 
window by percentage (d) statistical significance of predictions using tumbling window 
by absolute time (see online version for colours) 
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Figure 9 Classification results of users’ overall success based on gaze feature subsets indicating 
information search using two implementation methods of the tumbling window,  
(a) predictions using tumbling window by percentage (b) predictions using tumbling 
window by absolute time (c) statistical significance of predictions using tumbling 
window by percentage (d) statistical significance of predictions using tumbling window 
by absolute time (continued) (see online version for colours) 
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(c)     (d) 

When predicting users’ overall success, the baseline classifier generated an accuracy of 
53.10% using the tumbling window by percentage method and a peak accuracy at 61.67% 
after 18 minutes using the tumbling window by absolute time method. These results were 
outperformed by a number of classifiers with statistically significant accuracies as shown 
in Figure 9. A peak accuracy at 76.79% was achieved by the SimpleLogistic and the LMT 
classifier using the tumbling window by percentage method at the 90th percentile  
[Figure 9(a)], and a peak accuracy at 82.17% was generated by the Logistic classifier 
after 24 minutes using the tumbling window by absolute time method [Figure 9(b)]. In 
both tumbling window methods, statistically significant predictions were found towards 
the later stages of the analysis as shown in Figure 9(c) (after the 80th percentile) and 
Figure 9(d) (after 18 minutes of interaction). Overall, top-performing classifiers generally 
achieved higher accuracies as well as a greater number of statistically significant 
predictions using the tumbling window by absolute time method. 

5.3 Trial 3 – predictions using gaze feature subset indicating information 
processing activities 

When predicting users’ correctness success using gaze feature sets indicating information 
processing activities, the baseline classifier achieved an accuracy at 54.76% using the 
tumbling window by percentage method [Figure 10(a)], and a peak accuracy at 59.17% 
after 18 minutes of interaction using the tumbling window by absolute time method 
[Figure 10(b)]. These predictions were outperformed by a number of classifiers in both 
implementations of the tumbling window. Most notably, higher accuracies as well as a 
greater number of statistically significant predictions were found when using absolute 
time to define window size [Figure 10(d)], where a peak accuracy at 78.85% was 
generated after 18 minutes of interaction using the Logistic classifier. 

When predicting users’ completeness success based on gaze features indicating 
information processing activities, the baseline classifier achieved an accuracy of 51.43% 
using the tumbling window by percentage method [Figure 11(a)] and a peak accuracy of 
55% after 24 minutes of interaction using the tumbling window by absolute time method 
[Figure 11(b)]. A number of classifiers generated higher accuracies with statistically 
significant results as shown in Figure 11(c) and Figure 11(d), where the highest accuracy 
found was 77.40% after 12 minutes of interaction using the tumbling window by absolute 
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time method, where a greater number of statistically significant predictions were also 
found towards the beginning of the interaction. 

Figure 10 Classification results of users’ correctness success based on gaze feature subsets 
indicating information processing using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (see online version for colours) 
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Figure 11 Classification results of users’ completeness success based on gaze feature subsets 
indicating information processing using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (see online version for colours) 
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Figure 11 Classification results of users’ completeness success based on gaze feature subsets 
indicating information processing using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (continued) (see online version for colours) 
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(c)     (d) 

Figure 12 Classification results of users’ overall success based on gaze feature subsets indicating 
information processing using two implementation methods of the tumbling window, 
(a) predictions using tumbling window by percentage (b) predictions using tumbling 
window by absolute time (c) statistical significance of predictions using tumbling 
window by percentage (d) statistical significance of predictions using tumbling 
window by absolute time (see online version for colours) 
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When predicting users’ overall success using gaze features indicating information search 
activities, the baseline classifier generated an accuracy of 53.10 % using the tumbling 
window by percentage method [Figure 12(a)] and a peak accuracy of 63.67% after  
24 minutes of interaction using the tumbling window by absolute time method  
[Figure 12(b)]. These results were outperformed by several classifiers using the tumbling 
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window by percentage method, although these predictions were not statistically 
significant. Better results were generated using the tumbling window by absolute time  
method, where the highest accuracy achieved was 80.67% after 20 minutes of interaction 
using the sequential minimal optimisation (SMO) classifier. In addition, we found an 
increased number of statistically significant predictions towards the later stages of 
interactions using the tumbling window by absolute time method [Figure 12(d)]. 

5.4 Trial 4 – predictions using gaze feature subset indicating cognitive 
workload 

The predictions on users’ correctness success using gaze features indicting cognitive 
workload are shown in Figure 13. The baseline classifier generated an accuracy of 
54.76% using the tumbling window by percentage method [Figure 13(a)] and a peak 
accuracy of 59.17% after 18 minutes of interaction using the tumbling window by 
absolute time method [Figure 13(b)]. These results were outperformed by several 
classifiers in both implementations of the tumbling window method, with statically 
significant improvements achieved using absolute time to define the tumbling windows 
[Figure 13(d)]. A notable number of statistically significant results were generated toward 
later interaction stages, where the highest accuracy generated was 80.33% after 18 
minutes. 

Figure 13 Classification results of users’ correctness success based on gaze feature subsets 
indicating cognitive workload processing using two implementation methods of the 
tumbling window, (a) predictions using tumbling window by percentage  
(b) predictions using tumbling window by absolute time (c) statistical significance of 
predictions using tumbling window by percentage (d) statistical significance of 
predictions using tumbling window by absolute time (see online version for colours) 
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Figure 14 Classification results of users’ completeness success based on gaze feature subsets 
indicating cognitive workload processing using two implementation methods of the 
tumbling window, (a) predictions using tumbling window by percentage  
(b) predictions using tumbling window by absolute time (c) statistical significance of 
predictions using tumbling window by percentage (d) statistical significance of 
predictions using tumbling window by absolute time (see online version for colours) 
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Figure 15 Classification results of users’ overall success based on gaze feature subsets indicating 
cognitive workload processing using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (see online version for colours) 
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Figure 15 Classification results of users’ overall success based on gaze feature subsets indicating 
cognitive workload processing using two implementation methods of the tumbling 
window, (a) predictions using tumbling window by percentage (b) predictions using 
tumbling window by absolute time (c) statistical significance of predictions using 
tumbling window by percentage (d) statistical significance of predictions using 
tumbling window by absolute time (continued) (see online version for colours) 
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When predicting users’ completeness success, the baseline classifier achieved an 
accuracy of 51.43% using the tumbling window by percentage method [Figure 14(a)] and 
a peak accuracy of 55% after 24 minutes using the tumbling window by absolute time 
method [Figure 14(b)]. A number of classifiers achieved better results that are 
statistically significant as shown in Figure 14(c) and Figure 14(d). Also, a notably 
increased number of statistically significant results were reported early on during an 
interaction regardless of the specific implementation to define the size of the tumbling 
window. The highest accuracy achieved was 73.58% after the 18 minutes of interaction 
using the BayesNet classifier and the tumbling window by absolute time method. 

When predicting users’ overall success based on gaze features indicating cognitive 
workload, the baseline classifier generated an accuracy of 53.10% using the tumbling 
window by percentage method [Figure 15(a)] and a peak accuracy of 61.67% after 18 
minutes using the tumbling window by time method [Figure 15(b)]. These results were 
outperformed by a number of classifiers with statistically significant differences most 
notably at later stages of the interaction, where absolute time was used to define tumbling 
widow size [Figure 15(d)]. The highest accuracy achieved was 80.50% after 24 minutes. 

5.5 Peak predictions & influential gaze features 

A summary of peak accuracies achieved across all trials when predicting the three types 
of user success are shown in Figure 16, where the x-axis indicates the feature sets used in 
the predictive analysis, the y-axis indicates the accuracy of the predictions, and the z-axis 
indicates the percentiles or the time intervals used to define the tumbling window size. 

In the tumbling window by percentage method [Figure 16(a)], not all peak accuracies 
found were shown to be statistically significant. The earliest statistically significant 
accuracies were generated at the 10th percentile when predicting users’ completeness 
success using the feature subsets indicating either processing or cognitive workload 
activities. The majority of peak accuracies were found at later percentiles across all other 
types of success predictions and feature set combinations. When predicting users’ 
correctness success, the highest accuracy found was 71.74% using the LogitBoost 
classifier and the feature subset indicating search activities at the 90th percentile. When 
predicting users’ completeness success, the highest accuracy found was 72.67% using the 
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BayesNet classifier and the complete gaze feature sets at the 60th percentile. When 
predicting users’ overall success, the highest accuracy found was 76.79% using the 
NaiveBayes classifier and the feature subset indicating processing activities at the 90th 
percentile. 

In the tumbling window by absolute time method (Figure 16b), all peak accuracies 
were shown to be statistically significant. The earliest peak accuracy was found after 8 
minutes when predicting users’ completeness success using the feature subset indicating 
users’ search activities. In addition, peak accuracies achieved by various classifiers were 
found at a number of time intervals throughout the interaction. Furthermore, we found 
that accuracies also increased as more time passed in the interaction. When predicting 
users’ correctness success, the highest accuracy found was 81.15% using the 
MultilayerPerceptron classifier and the complete feature set after 16 minutes. When 
predicting users’ completeness success, the highest accuracy found was 74.17% using the 
BayesNet classifier coupled with either the complete feature set or the feature subset 
indicating search activities after 12 minutes. When predicting users’ overall success, the 
highest accuracy found was 83.67% using the BayesNet classifier and the complete 
feature set after 24 minutes. 

Figure 16 Peak classification results found across gaze feature sets, (a) predictions using 
tumbling window by percentage (b) predictions using tumbling window by absolute 
time (see online version for colours) 
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In addition to examining overall classifier accuracies, we also investigated in more detail 
the most influential gaze features based on the classification models that have achieved 
the highest accuracies, as well as the directionality of these features, i.e. whether a higher 
or lower value for this feature leads to high or low user success. As shown in Table 2, a 
combination of several gaze features were associated with high user success, such as less 
dispersed and longer average fixation durations, less dispersed and larger relative 
saccadic angles, more dispersed but shorter average saccadic lengths, and greater changes 
in pupil dilation. These results suggest that users who are more successful at the given 
tasks are likely to have directed their attention with greater changes, searched for relevant 
visual cues positioned both nearby and further apart, and consistently spent more time to 
fixate on a visual cue once it is found. Furthermore, in the case of completeness success 
using the tumbling window by time method, a distinct directional change was found for 
the pupil dilation feature. More specifically, at the beginning of the interaction (before 
approximately 8 minutes), higher changes in pupil dilation were found to be associated 
with higher user success. However, this directionality would shift to the opposite after 8 
minutes, where higher pupil dilations were found to be associated with lower user success 
throughout the remainder of an interactive session. This finding suggests that if the user 
was not able to comprehend the visual cues at the beginning of an interaction (indicated 
by enlarged pupil dilation), it is unlikely that this person will overcome visual challenges 
despite continued efforts in later interaction. This result further emphasises on the 
importance of timely interventions and highlights early adaptive visual cues as potential 
solutions in the process of better support for the user. 
Table 2 Most influential features to predict user success 

Feature Directionality 
mean Fixation Duration high value → high success 
standard deviation of Fixation Duration low value → high success 
mean Relative Saccadic Angles high value → high success 
standard deviation of Relative Saccadic Angles low value → high success 
mean Saccadic Length low value → high success 
standard deviation of Saccadic Length high value → high success 
Pupil Dilation Change high value → high success 

6 Conclusions and future work 

This paper aims to demonstrate the feasibility of gaze-based predictions in the context of 
human-ontology interaction, where the predictive analytics presented in this paper are 
envisioned to inform the underlying ontology visualisation system to potentially 
intervene either ad hoc or post hoc in an effort to improve user success and enhance user 
experience. This research aims to advance the design and development of adaptive 
ontology visualisation systems in their strategies to tailor to an individual user. If it is 
possible to correctly predict whether a user is likely to succeed or fail (step 1), we can 
then investigate the appropriate means to intervene (step 2). The scope and motivation of 
this paper falls within step I, where the findings aim to inform the realisation of step 2. 
The experimental trials demonstrate several implementations of a tumbling window 
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designed to achieve ad hoc and post hoc user predictions. The experiment results show 
that user success may be inferred with significantly higher accuracies compared to those 
of a baseline classifier at various stages of the interaction with two commonly used 
ontology visualisation techniques. In addition, we demonstrate that accurate user 
predictions can be achieved early and throughout interactive stages, suggesting that there 
may be ample opportunities to potentially intervene with alternative visual suggestions or 
visualisation alterations to better support the user. Furthermore, different gaze feature 
subsets are compared using several configurations, coupled with variations of a tumbling 
window to identify most influential gaze features. This section summarises the 
conclusions and lessons learned. 

1 Observation 1: accurate gaze-based user predictions are possible in the most 
commonly used ontology visualisation techniques including indented lists and  
node-link visualisations. This finding is encouraging as it demonstrates that 
predictive analytics remain accurate while being visualisation-agnostic, since correct 
predictions were generated regardless of the specific ontology visualisation used by 
the user in our trials. This result highlights the approach presented in this paper is not 
visualisation specific and may be transferrable to other ontology visualisation 
techniques. Future research could investigate additional ontology visualisation 
techniques such as those included in Katifori et al. (2007) and Dudáš et al. (2018), as 
well as comparing alternative predictive strategies to determine the most appropriate 
analytics for a given ontology visualisation. 

2 Observation 2: accurate user predictions can be generated despite user and domain 
variations. The experimental trails have demonstrated successful predictions in the 
presence of varied user backgrounds and task domains. Considering a mixture of 
prior knowledge in a given domain is likely to be inevitable in a real-world setting, 
the results shown in this paper are highly motivating in the proposed gaze-based 
predictive approach, where user predictions remain accurate despite possible 
variations of user and domain variables. Future research could include additional 
variables in the experiments to potentially identify whether distinct user groups (e.g. 
novice vs. expert users) may influence prediction accuracies. Likewise, there are 
many other scenarios that can be further explored in future research to compare 
predictive differences based on the given ontological task (e.g. entity search vs. 
entity creation). Furthermore, future research may explore potential influences of 
notable user characteristics [e.g. cognitive styles (Steichen et al., 2020; Steichen and 
Fu, 2020), perceptual and spatial abilities (Conati et al., 2014), domain and 
visualisation expertise (Toker et al., 2012)] on prediction accuracies. 

3 Observation 3: the accuracies of the predictions as well as the number of statistically 
significant accuracies generated using the tumbling window by absolute time method 
are consistently higher than those produced using the tumbling window by 
percentage method, suggesting the former method may be more appropriate when 
defining the tumbling window size in the given task scenario. Although, it may be 
argued that the percentiles used in the trials may not have been optimal, and it is not 
yet known if further improved accuracies using a different percentile may be 
possible. Future research could investigate alternative strategies to determine the 
most optimal percentiles to apply in a given scenario. Likewise, although better 
results were generated using a 2-minute interval, it is unknown whether shorter or 
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longer time intervals may have produced even more accurate results. Future 
experiments could focus on developing automated algorithms to best identify the 
most appropriate time intervals that would lead to the highest possible accuracies in a 
given task scenario. Moreover, future predictions may be classified by additional 
dimensions such as the type of visualisation or the particular order of the tasks, to 
determine whether there may be further improvements of accuracies. 

4 Observation 4: earlier predictions of users’ completeness success were found in a 
number of experimental trials compared to other types of user success. This finding 
suggests that inferring whether users will be successful at evaluating the 
completeness of a mapping set may be achieved much sooner than predicting their 
likely success at evaluating the correctness of the same mapping set. This result 
indicates that the differences may be grounded in the nature of these two types of 
evaluation tasks, and that the visual needs may be intrinsically different prompting 
distinctive gaze activities and the consequent predictions thereof. However, these 
speculations require further experiments to validate. Future research could focus on 
investigating whether certain visual needs demand diverse approaches to generate 
user predictions and adaptations in the process of achieving personalised ontology 
visualisations. Moreover, it may be beneficial to investigate other definitions of 
window-based predictive analysis techniques. For example, research in Steichen  
et al. (2014) demonstrates accurate user predictions using eye gaze data collected 
over time. Future research could investigate whether accumulated windows may lead 
to statistically significant accuracies when predicting the user success. 

5 Observation 5: it may be beneficial to utilise partial gaze data to achieve earlier 
predictions or higher accuracies in some cases. For example, in the tumbling window 
by percentage method, the earliest statistically significant predictions of user’s 
completeness success were reported at the 10th percentile (an accuracy of 71.83% 
using the Bagging and the ClassificationViaRegression classifier) using gaze data 
subsets indicating either users’ processing activities or cognitive workload. Also, the 
highest accuracy generated when predicting users’ overall success (an accuracy of 
76.79% using the SimpleLogistic and the LMT classifier) was achieved by using gaze 
subsets that indicated users’ search activities. These findings suggest that depending 
on the goal of the predictive analysis, gaze subsets may be sufficient to produce more 
desirable results compared to the complete gaze dataset. In other words, an adaptive 
system may be able to achieve its highest accuracies with less computational 
overhead if desired. 

6 Observation 6: an investigation of the most influential gaze features indicates users 
who were successful at the given tasks tend to demonstrate fewer indications of 
undirected visual searches. There is evidence to suggest that greater user success is 
often associated with assertive changes in their visual searches and focused attention 
once a relevant visual cue is found. In particular, increased cognitive workload at the 
earlier stage of an interaction may be perceived as a positive indicator for user 
success, compared to later stages where continued increase was found to be 
associated with user failure. This finding further supports the rationale to adapt to 
individual users early in view of potentially preventing user failures. 
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Lastly, while we have demonstrated the feasibility of employing gaze data in user success 
predictions coupled with a tumbling window analysis technique, we have not investigated 
how these predictions can be integrated in an adaptive ontology visualisation system. 
Future research focusing on designing and evaluating subsequent processes in realising 
adaptations in the form of user intervention or alternative visualisation recommendation 
would be necessary to advance the body of knowledge in adaptive ontology visualisation. 
In particular, future studies may exclusively assess the extent to which users’ success can 
be improved utilising inferred predictions towards achieving adaptive ontology 
visualisation. Moreover, other forms of physiological data may be used in future 
experiments to complement gaze data to provide potentially more accurate or earlier 
detections of likely user success or failure. For example, it may be beneficial to utilise 
electroencephalogram (EEG) responses from users that may provide supplementary data 
when predicting user success. 
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