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Abstract: Pest outbreak is a major threat to agricultural resources and
livestock. Integrated pest management is widely being used nowadays
to control the pest population. Natural enemies are immensely beneficial
to control the outbreak of pests. To achieve the same, in this paper,
microbial and biological pest control techniques are applied simultaneously
by impulsively releasing natural enemies and infected pests. Therefore a
SIN (prey-predator) model considering infection in prey with two classes
(susceptible-infected) and stage structure in predator is investigated for the
cause of integrated pest management. Prey acts as pest and predator plays
the role of a natural enemy. Firstly, local and global stability of pest
extinction periodic solution is carried out, then condition for the permanence
of system is derived using Stroboscopic map, comparison analysis technique
and Floquet theory of impulsive differential equations. Further, it is observed
that there exists a threshold value of the impulsive period which plays an
important role in the dynamics of the system. Finally, for validating the
established results, numerical simulation is done using MATLAB.
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1 Introduction

Eradication of agricultural pests is a matter of great concern over the past few decades.
Many times their outbreak has resulted in production loss because of the destruction
of crops and economic impoverishment due to spending on measures to avert these
losses. Therefore, with the advancement in agricultural technology, farmers are acquiring
the best pest control techniques. One such widely used technique is chemical control
consisting of spraying pesticides. Also, biological control using specific living organisms
as natural enemies of pests is implemented on a large scale nowadays. Other techniques
include physical control by killing and removing pests with hand using manpower and
remote sensing. Big achievements have been made by eminent researchers in this regard.
Although, Hong et al. (2007) and Mcewen (1979) observed that pesticides are proved
to be very effective to eradicate pests. But they are contributing a lot to environmental
pollution, identified as a paramount health hazard to mankind and also harmful for
certain beneficial pests such as pollinators as described in Kalmakoff and Longworth
(1980). Several pest species have become resistant to pesticides due to long term use.
Cherry et al. (1999) also studied that due to high cost, small scale farmers are finding
it hard to use chemical pesticides.

Therefore, biological control is the best alternative. It is executed in two ways.
Freedman (1976) explained that the first way includes some specific natural enemies and
these act as predators for the targeted pests. Second is the microbial control that involves
spreading of some infectious diseases in pests using viruses. These are bacteria, fungi,
nematodes and protozoa. Again, there are two ways to insert these insect pathogens
in the targeted pest community. In the first method, to create an epidemic in the pest
population, a marginal amount of pathogens is introduced in the pest population. In
the second method, pathogens are used as biopesticides. In this approach, the pathogen
is applied when the targeted pests reach at an economically significant level and the
pathogen cannot survive for a long time in the environment as explained in Burges
and Hussey (1971) and Falcon (1976). Therefore, these organisms are capable of
creating an epidemic in the pest population by interfering with their biological process.
One such example is given in Lacey et al. (2015) that entomopathogenic bacteria
Bacillus thuringiensis acts as a strong microbial control agent against many species
of Lepidopteran pests (Cotton Bollworm, Pink Bollworm). Moreover, biological pest
control is considered as a boon for both open crop fields and greenhouses. Lanteren
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and Woets (1988) stated that more than fifty percent of the world’s greenhouse area is
covered by the Netherlands and the UK. Biological control had been a great success in
these countries as the parasitoid Encassia formosa is widely used to control tomato pest
Trialeurodes vaporariorum.

Mary and Robert (1981) explained that integrated pest management is to suppress
the pest population below the acceptable range which is called economic injury level
(EIL) in order to avoid major economic and yield loss. Because complete eradication
of pests is very expensive, so integrated pest management (IPM) is emerging as a topic
of broad interest for the past few years. Many researchers are working in this area and
they have provided different strategies to hinder the growth of the targeted pests using
a combination of chemical and biological control. Nandi et al. (2015) developed an
ecological model consisting of predator-prey interaction with two-stage infection in prey
for pest management using ordinary differential equations. The authors have analysed
the dynamics of the system at five different equilibria. They found that there was rapid
increase in the pest population below some critical value of the carrying capacity in the
absence of natural enemy and infection.

Further, the dynamics of pest control models using biological and chemical control
techniques is studied effectively with the help of impulsive differential equations as
these techniques involve the instantaneous implication of viruses or natural predators
of specified pests. Impulsive differential equations have a plethora of applications in
modelling in ecology, population dynamics and other applied sciences described in
Lakshmikantham et al. (1989), Bainov and Simenov (1993) and Dishlieva (2012). These
act as a good mathematical tool to represent several real-life phenomena that undergo
short term perturbations, see Liu and Chen (2003), Dong et al. (2005), Jiao et al. (2009),
Tan et al. (2012) and Kalra and Kaur (2019). Liu et al. (2005) have studied the dynamics
of the prey-dependent consumption model with linear impulsive control strategy. The
authors have established that the pest population can be suppressed by taking an
impulsive period greater than the specified threshold value to prevent an outbreak.
Similarly, valuable results in terms of threshold impulsive period and the release amount
of infected pests and natural enemies are obtained in Jiao et al. (2009), Su et al. (2008),
Shi et al. (2009); Shi and Chen (2010), Zhao et al. (2012) and Huang and Wang (2013)
to check pest population. It is also found that nonlinear impulsive control measures can
also be used to control the pest population where periodic release amount of natural
enemies and pests depend on their amount already present in the field. Tian et al.
(2019) studied nonlinear impulsive control actions which are based on the density of
the natural predator. They opined that these measures could develop complex switching
pattern which warns about the possibility of an epidemic of the prey population because
of ecological challenge. In order to make these impulsive pest control models more
effective and realistic, many scholars have also incorporated the concept of delay factor
(time delay and gestation delay). Kumar et al. (2019) analysed plant-pest-natural enemy
model assuming gestation delay time in natural enemies as well as pest population.
They proved boundedness of the system and carried out the bifurcation analysis. Kumari
et al. (2020) studied integrated pest management approach with time delay which
significantly suppresses pest population and prevents pest resistance to yield. They
opined that these control measures are proved to be more effective in reducing pest
population if these are applied in combination. This approach also led to positive
economic and environment outcomes. Recently, the researchers have paid more attention
in the implementation of microbial pest control by dividing the pest population into
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two or three parts as susceptible-infected (SI), susceptible-exposed-infected (SEI) and
susceptible-exposed-infected -natural enemy (SEIN) models. Wang and Song (2010)
have studied an impulsive SEI model for pest management considering nonlinear
incidence rate and established threshold impulsive period which was the key parameter
for the permanence of the system. Extending this work, Mathur and Dhar (2018)
analysed an eco-epidemiological SEIN model considering impulsive control and have
observed that natural enemies play an important role to calculate the threshold value of
the impulsive period.

Furthermore, a good biological understanding of different life stages of pests and
natural enemies must be there for the effectiveness of biological pest control. It is easy to
identify different life stages (such as eggs, larva and moult) of insects. Many researchers
have studied stage-structuring in prey-predator dynamics considering immature and
mature population of one or both the species involved. One such model is proposed by
Ma et al. (2010). The authors have taken two stages of predator, immature larvae and
mature adults. The mortality rate of both immature and mature predator population is
taken as same. Motivated by this, Jatav and Dhar (2014) considered a stage-structured
plant-pest-natural enemy (food chain) model for impulsive pest control strategy. Again,
Bhanu et al. (2020) extended the work done in Mathur and Dhar (2018) by analysing
stage- structure in susceptible pest population. The authors examined that impulsive
control method has acquired special significance in the extinction and permanence of
pests. The results of the study brought out that the annihilation of susceptible pests
(immature or mature) and exposed preys completely leans on the pulse releasing amount
and impulsive period. The study further pointed out that biological control methods
which include releasing of predators or infected pests are very effective to suppress the
pest population. Kumari et al. (2018) proposed and examined a plant-pest-natural enemy
model with hybrid impulsive control strategy. They have considered Holling type II
functional response for plant-pest interaction which incorporates the time taken by pests
to process the food. They have established threshold value of impulsive period for the
extinction of pest population.

In this paper, therefore, a stage-structured predator-prey model is taken into
consideration by acknowledging infection in prey for IPM. Prey acts as pest and predator
plays the role of a natural enemy. Also, the functional response of the prey population
to predator plays a significant role in predator-prey interactions. This refers to the intake
rate of the predator as a function of prey density. It can be prey dependent or predator
dependent. Most of the work done in this field subsumed Holling type I and II functional
responses for interactions between prey and predator population. However, in this paper,
the functional response of susceptible pest population to the predator is taken as Holling
type IV. It incorporated the situation of group defence by prey species that makes the
model more realistic. Thus, there is decrease in predation rate because the ability of
prey species to defend themselves get enhanced in a group resulting decrease in the
threshold value of the impulsive period for the permanence of the system.

2 Mathematical model

In this modelling process, stage structuring in the predator population is considered by
categorising predator into two stages, immature larvae and mature adults. The mortality
rate of both immature and mature predator population is taken as same. Therefore, the
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following predator-prey model is proposed and examined in this paper by taking an
immature and mature class of predator and infection in prey.

dxs(t)

dt
= αxs

(
1− xs

β

)
− βixsxi

1 + γ4xs
− αnxsyea

1 + γ2xs + γ3x2s
,

dxi(t)

dt
=

βixsxi
1 + γ4xs

− δ1xi,

dyem(t)

dt
=

γ1αnxsyea
1 + γ2xs + γ3x2s

− µemyem − δ2yem,

dyea(t)

dt
= µemyem − δ2yea,


t ̸= nτ,

∆xs(t) = 0,

∆xi(t) = e1,

∆yem(t) = e2,

∆yea(t) = e3,

 t = nτ, n ∈ Z+.

(1)

where xs(t), xi(t), yem(t), yea(t) be the population densities of susceptible prey,
infected prey, immature and mature natural enemies population respectively at time t
with initial conditions xs(0) > 0, xi(0) > 0, yem(0) > 0 and yea(0) > 0. The model
is formulated under some assumptions as follows:

a The logistic growth of prey population is taken in the absence of infection.

b The infected prey population is neither able to reproduce nor recover. Also they
do not contribute towards carrying capacity of the total prey population.

c Mature predator only catch susceptible pest and immature predator is not capable
of predation. So, their growth mainly depends on mature predator.

d There are four different kinds of Holling type functional responses are available
depending on the situation. In this paper, the crowding effect of the susceptible
pest population is incorporated. Therefore, Holling II type incidence rate is
considered for transmission from susceptible to infected pest population.

e Functional response of prey population to predator is taken as Holling type IV.

f For the integrated pest control, infected pests, immature and mature natural
enemies are released periodically at time t = nτ with intensities e1, e2, e3
respectively. ∆xs(t) = xs(t

+)− xs(t), ∆xi(t) = xi(t
+)− xi(t), ∆yem(t) =

yem(t+)− yem(t), ∆yea(t) = yea(t
+)− yea(t), where τ is the impulsive period.

The different parameters used in system (1) are defined as follows:

1 α > 0 is the internal growth rate of susceptible pests and β > 0 is the carrying
capacity

2 αn > 0 measures the efficiency of the prey to avoid predator’s attack

3 γ2 > 0, γ3 > 0, γ4 > 0 are the half saturation constants from Holling type IV
and II functional responses

4 µem is the conversion rate from immature to mature predator
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5 βi is the transmission rate from susceptible to infected pest and δ1 is the death
rate of infected prey

6 δ2 is the death rate of immature and mature natural enemies

7 γ1 represents the fraction of prey available to immature predator.

3 Preliminaries

Let R+ = [0, ∞), R4
+ =

{
x ∈ R4 : x ≥ 0

}
, Ω = intR4

+. The map defined by the
right hand of the system (1) is given as g = (g1, g2, g3, g4)

T . Let S0 ={V : R+ ×
R4

+ 7→ R+, continuous on (nτ, (n+ 1) τ ]×R4
+ and lim(t, y)→(nτ, x), t>nτ S (t, x) =

S (nτ+, x) exits}.

Definition 3.1: S ∈ S0, then for (t, x) ∈ (nτ, (n+ 1)τ ]×R4
+, the upper right derivative

of S(t, x) with respect to the impulsive differential system (1) is defined as

D+S(t, x) = lim sup
h→0+

1

h
[S(t+ h, x+ hf(t, x))− S(t, x)]. (2)

Definition 3.2: Consider that P (t) = (xs(t), xi(t), yem(t), yea(t))
T be the solution of

equation (1). It is piece-wise continuous function from R+ to R4
+ because solution

changes its behaviour only at moments of impulse. Therefore, P (t) is continuous
in the interval (nτ, (n+ 1)τ), n ∈ Z+ and limt→nτ+(P (t)) = P (nτ+) exists also
limt→nτ−(P (t)) = P (nτ)).

The required system (1) is said to be permanent if ∃Q ≥ q > 0 such that q ≤
xs(t), xi(t), yem(t), yea(t) ≤ Q for sufficiently large t and P (0+) > 0.

Our main aim here is to suppress the pests in a targeted region beneath a tolerable
limit so that it does not cause major production loss. To achieve the same, we need the
following lemma:

Lemma 1: Consider the following impulsive system:
ψ′(t) = −cψ(t), t ̸= nτ,

ψ(t+) = ψ(t) + d, t = nτ,

n ∈ Z+.

(3)

It has periodic solution ψ(t) and for any solution ψ(t) of equation (3)

| ψ(t)− ψ(t) |→ 0 as t→ ∞ where ψ̄(t) =
d exp(−c(t− nτ))

1− exp−cτ
.

Thus ¯ψ(t) is globally stable.
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4 Boundedness and global stability

4.1 Upper bound of all the variables

Here, in this section, firstly, upper bound for all the variables of system (1) are obtained
in the coming lemma:

Lemma 2: For sufficiently large t, ∃Q0 > 0 such that xs(t) ≤ Q0, xi(t) ≤ Q0, yem(t) ≤
Q0, yea(t) ≤ Q0 . That is there is an upper bound for every solution of equation (1).

Proof: Consider X(t) = (xs(t), xi(t), yem(t), yea(t)) as any solution of equation (1).
Let W (t, X(t)) = xs(t) + xi(t) + yem(t) + yea(t) for t ̸= nτ,

D+W (t) + θW (t) = αxn(t)−
αxn(t)

2

β
− βixn(t)xi(t)−

αnxn(t)yea(t)

1 + γ2xn(t)

+ βixn(t)xi(t)− δ1xi(t) +
γ1αnxn(t)yea(t)

1 + γ2xn(t)
− δ2yem(t)

+ µemyem(t) + θ(xn(t) + xi(t) + yem(t) + yea(t))

− µemyem(t)

= αxn(t)−
αxn(t)

2

β
− (δ2 − θ)(yem(t) + yea(t))

− (1− γ1)
αnxn(t)yea(t)

1 + γ2xn(t)
− (δ1 − θ)xi(t)

≤ (α+ θ)xn(t)−
αxn(t)

2

β
(γ ≤ 1)

≤ β(α+ θ)2

4α
= L0

W (t+) =W (t) + e1 + e2 + e3, for t = nτ.

Therefore by Theorem 1.4.1 of Lakshmikantham et al. (1989),

W (t) ≤ W (0) exp
(∫ t

0

(−θ)
)
ds+ (e1 + e2 + e3)

∑
0<nτ<t

exp
∫ t

nτ

(−θ)ds

+

∫ t

0

(
L0 exp

∫ t

s

(−θdσ)
)
ds

≤ W (0) exp(−θt) + (e1 + e2 + e3)
∑

0<nτ<t

exp(−θ(t− nτ))

+
L0

θ
(1− exp(−θt))

≤ W (0) exp(−θt) + L0

θ
(1− exp(−θt))

+
(e1 + e2 + e3)(exp(−θ(t− τ)))

1− exp(−θτ)

+
(e1 + e2 + e3)(exp(θt))

exp(θτ)− 1
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→ L0

θ
+

(e1 + e2 + e3)(exp(θτ))
exp(θτ)− 1

= Q0 as t→ ∞

Thus, W(t) is uniformly bounded. Hence, ∃ the constant Q0 such that xs(t) ≤
Q0, xi(t) ≤ Q0, yem(t) ≤ Q0, yea(t) ≤ Q0. This completes the proof. �

Lemma 3: If V (t) be any solution of system (1) with V (0) ≥ 0 then V (t) ≥ 0 for all
t ≥ 0. Also V (t) > 0 for all t ≥ 0 if V (0) > 0.

After using microbial and natural pest control, when pest population becomes extinct,
then xs(t) = 0, the impulsive system (1) reduces to

dxi(t)

dt
= −δ1xi(t),

dyem(t)

dt
= −µemyem(t)− δ2yem(t),

dyea(t)

dt
= µemyem(t)− δ2yea(t),


t ̸= nτ,

∆xi(t) = e1,

∆yem(t) = e2,

∆yyea(t) = e3,

 t = nτ, n ∈ Z+.

(4)

From first and third equations of system (4) and using Lemma 1, we get globally
asymptotically stable periodic solution x̄i(t) as :

x̄i(t) =
e1 exp((−δ1)(t− nτ))

1− exp(−δ1τ)
; x̄i(0

+) =
e1

1− exp(−δ1t)
. (5)

Similarly, applying Lemma 1 on second and fourth equations of system (4), we have

ȳem(t) =
e2 exp(−(µem + δ2)(t− nτ))

1− exp((−µem + δ2)τ)
;

ȳem(0+) =
e2

1− exp((−µem + δ2)τ)
.

(6)

Now substituting the value of ȳem(t) in third equation of system (4), we get the
following subsystem

dyea(t)
dt = µemȳem(t)− δ2yea(t), t ̸= nτ,

∆yea(t) = e3, t = nτ,

n ∈ Z+.

(7)

Integrating first equation of system (7) on t ∈ (nτ, (n+ 1)τ),

yea(t) =
e2(exp(−δ2(t− nτ)))− exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)

+ yea(nτ+) exp(−δ2(t− nτ)),
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where nτ < t ≤ (n+ 1)τ . After solution is effected by impulse at time (n+ 1)τ , the
stroboscopic map is given as

yea(t) =
e2(exp(−δτ)− exp(−(µem + δ2)τ)

1− exp(−(µem + δ2)τ)
+ yea(nτ+) exp(−δ2τ) + e3

= h(yea(nτ+)) ; nτ < t < (n+ 1)τ.

(8)

The above map (8) has a unique fixed point y∗ea. Therefore,

h(y∗ea) = y∗ea ⇒ y∗ea =
e2(1− exp(−µemτ)) exp(−δ2τ)

(1− exp−(δ2 + µem)τ)(1− exp(−δ2τ))

+
e3

1− exp(−δ2τ)
.

As from equation (8), h(yea) is an increasing function, therefore 0 < yea < y∗ea ⇒
yea < h(yea) < y∗ea and yea > y∗ea ⇒ y∗ea < h(yea) < yea. Thus by Cull (1981), y∗ea is
globally stable. Hence, the corresponding periodic solution of system (7) is

ȳea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)
, (9)

where

ȳea(0
+) = y∗ea

=
−e2

1− exp(−δ2 + µem)τ
+

e2 + e3
1− exp(−δ2τ)

; t ∈ (nτ, (n+ 1)τ),
(10)

which is globally asymptotically stable.

Theorem 4: There exists a threshold value (τmax) of the impulsive period such that if
τ ≤ τmax, then the susceptible pest eradication solution (0, x̄i(t), ȳem(t), ȳea(t)) is
locally asymptotically stable and if τ > τmax, it is unstable where

τmax =
1

α

[
βie1
δ1

− αne2
δ2 + µem

+
αn(e2 + e3)

δ2

]
.

Proof: Here, we use small perturbation method to prove the local stability of the required
solution. Let ζ1(t), ζ2(t), ζ3(t), ζ4(t) be the small perturbations in the periodic solution
(0, x̄i(t), ȳem(t), ȳea(t)) respectively. Then

xs(t) = ζ1(t), xi(t) = x̄i + ζ2(t), yem(t) = ȳem(t) + ζ3(t),

yea(t) = ȳea(t) + ζ4(t).

Putting these values in system (1), it reduces to
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dζ1(t)

dt
= αζ1(t)− βix̄i(t)ζ1(t)− αnȳea(t)ζ1(t),

dζ2(t)

dt
= βix̄i(t)ζ1(t)− δ1ζ2(t),

dζ3(t)

dt
= γ1αnȳea(t)ζ1(t)− µemζ3(t)− δ2ζ3(t),

dζ4(t)

dt
= µemζ3(t)− δ2ζ4(t),


t ̸= nτ,

ζ1(t
+) = ζ1(t),

ζ2(t
+) = ζ2(t),

ζ3(t
+) = ζ3(t),

ζ4(t
+) = ζ4(t),

 t = nτ, n ∈ Z+.

(11)

The above system represents system of linear differential equations, which can be
written in matrix form. Hence for t ̸= nτ , the coefficient matrix is given as

B =


α− βix̄i(t)− αnȳea(t) 0 0 0

βix̄i(t) −δ1 0 0
γ1αnȳea(t) 0 −(µem + δ2) 0

0 0 µem −δ2

 ,
and for t = nτ,

ζ1(t
+)

ζ2(t
+)

ζ3(t
+)

ζ4(t
+)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ζ1(t)
ζ2(t)
ζ3(t)
ζ4(t)

 .
Let Φ(t) be the fundamental solution of system (11), then

dΦ(t)

dt
= BΦ(t), (12)

Φ(τ) = Φ(0) exp(
∫ T

0

B dt),

with Φ(0) = I , the identity matrix. Solving, we have

Φ(τ) =


e(

∫ τ
0

α−βix̄i(t)−αnȳea(t)dt) 0 0 0

e(
∫ τ
0

βix̄i(t)dt) e(
∫ τ
0

−δ1dt) 0 0

e(
∫ τ
0

γ1αnȳea(t)) 0 e(
∫ τ
0

−(µem+δ2)dt) 0

0 0 e(
∫ τ
0

µemdt) e(
∫ τ
0

−δ2dt)

 ,
which is upper triangular matrix. Now according to Floquet theory of impulsive
differential equations [Theorem 3.1 and 3.5 of Bainov and Simenov (1993)], if absolute
values of all the eigenvalues of Monodromy matrix M are less than one, then the
required solution is globally stable where

M = [Φ(0)]−1Φ(τ).

Since M is an upper triangular matrix, therefore, eigenvalues of M are
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λ1 = exp
(∫ τ

0

α− βix̄i(t)− αnȳea(t)dt

)
,

λ2 = exp
(∫ τ

0

−δ1dt
)
,

λ3 = exp
(∫ τ

0

−(µem + δ2)dt

)
,

λ4 = exp
(∫ τ

0

−δ2dt
)
.

(13)

Now, it is obvious from equation (13), that | λ2 |< 1, | λ3 |< 1, | λ4 |< 1 and | λ1 |< 1
if τ ≤ τmax. Hence the required result. �

4.2 Global stability

Theorem 5: There is a threshold value (τ̌) of the impulsive period such that if τ <
τ̌ , then the susceptible pest extinction solution (0, x̄i(t), ȳem(t), ȳea(t)) is globally
asymptotically stable, where

τ̌ =
1

α

[
βie1

δ1(1 + γ4β)
−
(

1

1 + γ2β + γ3β2

)(
αne2

δ2 + µem
+
αn(e2 + e3)

δ2

)]
.

Proof: Let (xs(t), xi(t), yem(t), yea(t)) be an arbitrary solution of equation (1). Given
that τ < τ̌ , so, it is possible to find sufficiently small ὲ > 0such that∫ τ

0

(
α− βi(x̄i(t)− ὲ

1 + γ4β
− αn(ȳea(t)− ὲ)

1 + γ2β + γ3β2

)
dt = ϱ1 < 0. (14)

From equation (1),
dxi(t)
dt ≥ −δ1xi(t), t ̸= nτ

∆xi(t) = e1, t = nτ,

n ∈ Z+.

(15)

Consider the corresponding comparison impulsive system of equation (15) as{
dwi(t)

dt = (−δ1wi), t ̸= nτ

∆wi(t) = e1, t = nτ.
(16)

Applying Lemma 1, system equation (16) has periodic solution

w̄i(t) =
e1 exp((−δ1)(t− nτ))

1− exp(−δ1τ)
, t ∈ (nτ, (n+ 1)τ ],

which is globally asymptotically stable. Therefore by Theorem 1.4.1 of Lakshmikantham
et al. (1989), xi(t) ≥ wi(t) → w̄i(t) and w̄i(t) = x̄i(t). Hence, ∃ a positive integer κ
such that xi(t) > x̄i(t)− ὲ ∀ t ≥ κτ . Again from equation (1){

dyem(t)
dt ≥ −(µem + δ2)yem(t), t ̸= nτ,

∆yem(t) = e2, t = nτ.
(17)
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Consider the following comparison system of equation (17){
dwem(t)

dt = −(µem + δ2)wem(t), t ̸= nτ,

∆wem(t) = e2, t = nτ.
(18)

Similarly, by using Lemma 1 and comparison analysis technique of impulsive
differential equations, it is obtained that yem(t) ≥ wem(t) → w̄em(t) and w̄em(t) =
ȳem(t). Hence, ∃ a positive integer κ1 such that yem(t) > ȳem(t)− ὲ ∀ t ≥ κ1τ . Now,
from fourth equation of equation (1), we have,{

dyea(t)
dt ≥ µem(ȳem(t)− ὲ)− δ2)yea(t), t ̸= nτ,

∆yea(t) = e3, t = nτ.
(19)

Consider its corresponding comparison impulsive system{
dwea(t)

dt = µem(ȳem(t)− ὲ)− δ2)wea(t), t ̸= nτ,

∆wea(t) = e3, t = nτ.
(20)

So, by applying Lemma 1, we get periodic solution of system (20)

w̄ea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)

+
(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)
− µemὲ

δ2
.

Applying comparison theorem of IDE, yea(t) ≥ wea(t) → w̄ea(t). Hence, ∃ a positive
integer κ2 such that yea(t) > ȳea(t)− ὲ ∀ t ≥ κ2τ (κ2 > κ1 > κ). Therefore, for t ≥
κ2τ , first equation of (1) gives

dxs(t)

dt
≤

[
α− βi(xi − ὲ)

1 + γ4β
− αn(yea − ὲ)

1 + γ2β + γ3β2

]
xs. (21)

Integration of equation (21) on (κ2τ, (κ2 + 1)τ ] gives

xs((κ2 + q)τ) ≤ xs(κ2τ) exp(qϱ1) → 0 as t→ ∞ (∵ ϱ1 < 0). (22)

This implies, there exists a positive integer κ3 > κ2 and sufficiently small ὲ1 > 0 such
that xs(t) < ὲ1 for t ≥ κ3 and ὲ1 < δ1

βi
. Using maximum value of xs(t) in the second

equation of system (1), we get{
dxi(t)
dt ≤ (βiὲ1 − δ1)xi, t ̸= nτ,

∆xi(t) = e1, t = nτ.

Analysing again its comparison impulsive system{
dui(t)

dt = (βiὲ1 − δ1)xi, t ̸= nτ,

∆ui(t) = e1, t = nτ.
(23)
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Applying Lemma 1, system (23) has periodic solution

ūi(t) =
e1 exp((βiὲ1 − δ1)(t− nτ))

1− exp(βiὲ1 − δ1τ)
, t ∈ (nτ, (n+ 1)τ ],

which is globally asymptotically stable. Therefore by Theorem 1.4.1 of Lakshmikantham
et al. (1989), x1(t) ≤ ui(t) → ūi(t). Hence, ∃ a positive integer κ4 such that

xi(t) < ūi(t) + ὲ ∀ t ≥ κ4τ. (24)

From third equation of system (1){
dyem(t)

dt ≤ (γ1αnὲ1Q0)− (µem + δ2)yem(t), t ̸= nτ,

∆yem(t) = e2, t = nτ.

Applying the same argument, ∃ a positive integer κ5 such that

yem(t) ≤ ūem(t) + ὲ∀t ≥ κ5τ, (25)

where

ūem(t) =
γ1αnὲ1Q0

µem + δ2
+
e2exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)
.

Now, from fourth equation of system (1), we have{
dyea(t)

dt ≤ µem(ūem(t) + ὲ)− δ2)yea(t), t ̸= nτ,

∆yea(t) = e3, t = nτ.
(26)

Similarly, as above ∃ a positive integer κ6 such that

yea(t) ≤ ūea(t) + ὲ2∀ t ≥ κ6τ, (27)

where

ūea(t) =
−e2 exp((−δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)

+
µem

δ2

(
γ1αnὲ1Q0

µem + δ2
+ ὲ

)
.

(28)

As ὲ > 0, ὲ1 > 0 and ὲ2 > 0 are sufficiently small, therefore ūem(t) → ȳem(t) and
ūea(t) → ȳea(t) as t→ ∞ (ὲ1 → 0). Hence it is established that xs(t) → 0, xi(t) →
x̄i(t), yem(t) → ȳem(t), andyea → ȳea(t) as t→ ∞. This completes the proof. �
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5 Permanence

The required condition for the system to be permanent is established as follows:

Theorem 6: The system (1) is permanent if τ > τmax.

Proof: Upper bound of xs(t), xi(t), yem(t), yea(t) of the system is already been
obtained in Lemma 2. Also in the above section, it is proved that

xi(t) > x̄i(t)− ὲ = q1 ∀ t ≥ κ4τ,

yem(t) > ȳem(t)− ὲ = q2 ∀ t ≥ κ5τ,

yea(t) > ȳea(t)− ὲ = q3 ∀ t ≥ κ6τ.

(29)

Thus, for permanence of the system (1), there must exists a constant q4 < min
(
β, δ1βi

)
such that xs(t) ≥ q4 for sufficiently large t. This is done in two steps as follows

Step 1: To start with, assume that xs(t) ≥ q4 is not true ∀ t. Thus ∃ a positive
integer l1 such that xs < q4 ∀ t ≥ l1τ . Considering this assumption, from system (1),
we have{

dxi(t)
dt ≤ −(δ1 − βiq4), t ̸= nτ,

∆xi(t) = e1, t = nτ.

Consider the following impulsive system{
dŭi(t)

dt = −(δ1 − βiq4)ŭi, t ̸= nτ,

∆ŭi(t) = e1, t = nτ.
(30)

Applying Lemma 1, equation (30) has periodic solution

ŭi(t) =
e1 exp(−(δ1 − βiq4)(t− nτ))

1− exp(−(δ1 − βiq4)τ)
, t ∈ (nτ, (n+ 1)τ ].

which is globally asymptotically stable. Therefore by Theorem 1.4.1 of Lakshmikantham
et al. (1989), xi(t) ≤ ui(t) → ŭi(t). Hence, ∃ a positive integer l2 such that

xi(t) ≤ ŭi(t) + ὲ3 ∀ t ≥ l2τ. (31)

From the third equation of the system (1){
dyem(t)

dt ≤ (γ1αnq4Q0)− (µem + δ2)yem(t), t ̸= nτ,

∆yem(t) = e2, t = nτ.

Now, consider the following impulsive system{
dvem(t)

dt = (γ1αnq4Q0)− (µem + δ2)yem(t), t ̸= nτ,

∆vem(t) = e2, t = nτ.
(32)
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Applying the same argument, ∃ a positive integer l2 such that

yem(t) ≤ v̄em(t) + ὲ3 ∀ t ≥ l2τ, (33)

where

v̄em(t) =
γ1αnq4Q0

µem + δ2
+
e2exp(−(µem + δ2)(t− nτ))

1− exp(−(µem + δ2)τ)
, (34)

vem(0+) =
γ1αnq4Q0

µem + δ2
+

e2
1− exp(−(µem + δ2)τ)

. (35)

Now, from fourth equation of system (1), we have{
dyea(t)

dt ≤ µem(v̄em(t) + ὲ3)− δ2)yea(t), t ̸= nτ,

∆yea(t) = e3, t = nτ.

Considering again its comparison system as below{
dvea(t)

dt = µem(v̄em(t) + ὲ3)− δ2)vea(t), t ̸= nτ,

∆vea(t) = e3, t = nτ.
(36)

Applying Lemma 1 and comparison theorem, ∃ a positive integer l3 such that

yea(t) ≤ v̄ea(t) + ὲ3∀ t ≥ l3τ, (37)

where

v̄ea(t) =
−e2 exp(−(δ2 + µem)(t− nτ))

1− exp(−(δ2 + µem)τ)
+

(e2 + e3) exp(−δ2(t− nτ))

1− exp(−δ2τ)

+
µem

δ2

(
γ1αnq̀4Q0

µem + δ2
+ ὲ3

)
.

(38)

Therefore, for t ≥ l2τ , first equation of system (1) gives

dxs(t)

dt
≥

[
α− αq4

β
βi(ŭ− ὲ3)− αn(v̄ea + ὲ3)

]
xs(t)

Integration of above equation on (l2τ, (l2 + 1)τ ] gives

xs((l2 + 1)τ)

≥ xs(l2τ)exp
(∫ (l2+1)τ

l2τ

[
α− αq4

β − βi(ŭ+ ὲ3)− αn(v̄ea + ὲ3)
]
dt
)

≥ xs(l2τ) exp(ϱ2).

where

ϱ2 =

∫ (l2+1)τ

l2τ

[
α− αq4

β
− βi(ŭ+ ὲ3)− αn(v̄ea + ὲ3)

]
dt.
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Because τ > τmax, so it is possible to find q4 > 0 and ὲ3 > 0 such that ϱ2 > 0. This
implies

xs[(l2 + l)τ ] ≥ xs(l2τ) exp(lϱ2) → ∞

as l → ∞ This is in contradiction to our assumption that xs < q4 ∀ t ≥ l1τ, (l2 > l1).
Hence ∃ t̊ > l1τ such that xs(̊t) ≥ q4.

Step 2: There is nothing to prove if xs(t) ≥ q4 ∀t > t̊. But if this is not true,
let t̊1 = inf{t | xs(t) < q4; t > t̊}. Thus xs(t) ≥ q4∀t ∈ [̊t, t̊1], t̊1 ∈ (ň1τ, ( ˇn1 + 1)τ ].
xs(t̊1) = q4, because of continuity of xs(t). Let τ∗ = (ň2 + ň3)τ where ň2 = ň21 +
ň22 + ň23 and ň21, ň22, ň23, ň3 satisfying the following conditions:

(ň21)τ > −
(

1

δ1 − βiq4

)
ln

ὲ3
Q0 + e1

,

(ň22)τ > −
(

1

µem + δ2

)
ln

ὲ3
Q0 + e2

,

(ň23)τ > −
(

1

µem + δ2

)
ln

ὲ3
Q0 + e3

,

exp(ň3ϱ2 − υ(ň2 + 1)τ) > 1, υ =

(
αq4
β

+ βiQ0 + αnQ0

)
.

(39)

Now, we will prove that ∃ t̊2 ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ∗] such that xs(t̊2) ≥ q4.
Suppose this is not true, then xs(t) < q4∀t ∈ ((ň1 + 1)τ, (ň1 + 1)τ + τ∗]. If system
(30) is considered with ŭi((ň1 + 1)τ+) = xs((ň1 + 1)τ+), then using Lemma 1 for
t ∈ ((ň1 + 1)τ, ( ˇn1 + 1)τ + τ∗], we have

ŭi(t) =

[
ŭi(ň1 + 1)τ+)− e1

1− exp(−(δ1 − βiq4)τ)

]
exp(−(δ1 − βiq4)(t− (n+ 1)τ)) + ŭi(t)

This implies

| ŭi(t)− ŭi(t) | ≤ (Q0 + e1) exp(−(δ1 − βiq4)(t− nτ))

≤ ὲ3.

which depicts that xi(t) ≤ ŭi(t) < ŭi(t) + ὲ3, (ň1 + ň21 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ∗.
Now consider the system (32) with vem((ň1 + ň21 + 1)τ+) = yem((ň1 + ň21 + 1)τ+),
then using Lemma 1, we have,

vem(t)
[
vem((ň1 + ň21 + 1)τ+)− vem(0+)

]
exp(−(µem + δ2)(t− (ň1 + ň21 + 1)τ))vem(t).

|vem(t)− vem(t) | ≤ (Q0 + e2) exp(−(µem + δ2)(t− (ň1 + ň21 + 1)τ))

≤ ὲ3∀(ň1 + ň21 + ň22 + 1) ≤ t ≤ (ň1 + 1)τ + τ∗
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which concludes that yem(t) ≤ vem(t) + ὲ3. Finally, consider equation (36)
with vea((ň1 + ň21 + ň22 + 1)τ+) = yea((ň1 + ň21 + ň22 + 1)τ+) ≥ 0, then using
Lemma 1, we have,

vea(t) = (vea(ň1 + ň21 + ň22 + 1)τ+ − vea(0
+))

exp(−(µem + δ2)(t− (ň1 + ň21 + ň22 + 1)τ) + vea(t)

⇒ |vea(t)− vea(t) |
≤ (Q0 + e3) exp(−(µem + δ2)(t− (ň1 + ň21 + ň22 + 1)τ))

≤ ὲ3∀(ň1 + ň2 + 1)τ ≤ t ≤ (ň1 + 1)τ + τ∗

Therefore, yea(t) ≤ vea(t) + ὲ3. Hence

dxs(t)

dt
≥

[
α− αq4

β
βi(ŭ− ὲ3)− αn(v̄ea + ὲ3)

]
xs(t).

Integrating on [(ň1 + ň2 + 1)τ, (ň1 + ň2 + ň3 + 1)τ ], we get

xs((ň1 + ň2 + ň3 + 1)τ) ≥ xs((ň1 + ň2 + 1)τ) exp(ϱ2ň3). (40)

Further, for t ∈ [t̊1, (ň1 + 1)τ ], two possibilities are there.
Case 1: If xs(t) < q4∀ t ∈ [t̊1, (ň1 + 1)τ ], then from above assumption xs(t) < q4 ∀t ∈
[t̊1, (ň1 + 1)τ + τ∗]. This implies

dxs(t)

dt
≥

(
−αq4

β
− βiQ0 − αnQ0

)
xs(t). (41)

Integrating equation (41) in [t̊1, (ň1 + ň2 + 1)τ ], we have

xs((ň1 + ň2 + 1)τ) ≥ xs(t̊1) exp(−υ(ň2 + 1)τ). (42)

Using equation (40) in equation (42)

xs((ň1 + ň2 + ň3 + 1)τ) ≥ xs(t̊1) exp(ϱ2ň3) exp(−υ(ň2 + 1)τ) > q4.

But this contradicts our assumption. Therefore, xs(t) ≥ q4 in [t̊1, (ň1 + ň2 + ň3 + 1)τ ]
for some t. Let t̊3 = inf{t | xs(t) ≥ q4; t > t̊2}. Due to continuity of xs(t), xs(t̊3) =
q4. Now integration of equation (41) on the interval [t̊2, t̊3] gives

xs(t) ≥ xs(t̊2) exp((−υ)(t− t̊2)

≥ q4 exp((−υ)(t− t̊2)

≥ q4 exp(υ(ň2 + ň3 + 1)τ) = q4.

Since xs(t̊3) ≥ q4, so similar process can be continued for t > t̊3. Hence xs(t) ≥
q4∀t > t1.

Case 2: if ∃ t̊4 ∈ [t̊1, (ň1 + 1)τ ] such that xs(t̊4) ≥ q4, then let t̊5 = inf{t | xs(t) ≥
q4; t > t̊2}. Therefore, xs(t) < q4 for t ∈ [t̊2, t̊5] and xs(t̊5) = q4. Now, integration of
equation (41) on the interval [t̊2, t̊5] gives

xs(t) ≥ xs(t̊2) exp((−υ)(t− t̊2)) ≥ q4 exp(υτ) = q4.
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Because xs(t̊5) ≥ q4, so, similar argument can be followed for t > t̊5. Hence, it is
concluded that xs(t) ≥ q4 ∀t > t̊.

Step 3: Let a = min{q1, q2, q3, q4},Θ = {R3
+ : a ≤ xi(t), xs(t), yem(t), yea(t) ≤ Q0}.

Thus, from above steps and Lemma 2, it is proved that each solution of system (1) will
always remain in region Θ. Therefore, by Definition 3.1, system (1) is permanent. �

6 Numerical analysis and discussion

In this paper, a prey-predator model, with stage structure in predator and infection
in prey, is constituted and investigated to control the outbreak of pest population.
Susceptible prey is considered as a pest and predator acts as the natural enemy. Here,
the main aim is to substantiate the theoretical findings and to numerically investigate
that how the period of impulsive perturbations and releasing amounts of infected pests
and natural enemies population is beneficial for integrated pest management. For this, a
set of parametric values of the system (1) in biologically feasible range are chosen per
week as given in Table 1.

Table 1 Parametric values chosen for numerical simulation of SIN model (1)

Parameter Representation Its value (per week)

α Reproduction rate of susceptible pest 1.7
β Carrying capacity 3
βi Contact rate of susceptible pest per unit time infected pest 2.6
αn Rate of predation by mature natural enemy 0.3
γ2 half saturation constant by Holling IV 0.1
δ1 Death rate of infected pest 0.5
γ1 Conversion rate of pest to immature natural enemy 0.7
µem Conversion rate of immature to mature natural enemy 0.4
δ2 Death rate of mature and immature natural enemy 0.3
e1 Impulsive releasing amount of infected pests 0.5
e2 Impulsive releasing amount of immature natural enemy 2
e1 Impulsive releasing amount of mature natural enemy 4
γ3 half saturation constant 0.2
γ4 half saturation constant 0.1

It is analysed that in the absence of impulsive release of infected pests and natural
enemies, stable limit cycles exist for susceptible pest and infected pest population while
immature and mature predator is driven towards extinction as shown in Figure 1. The
global stability of pest-free equilibrium point is established and then it is derived that
the system (1) is permanent. For ensuring the same, the threshold value of the impulsive
period is calculated that depends on amount of infected pests and natural enemies.

The initial values of population densities of susceptible prey, infected prey, immature
and mature predator are xs(0) = 0.5, xi(0) = 0.8, yem(0) = 0.8, yea(0) = 4. Therefore,
by using all these numerical values, it is observed that if there is no impulsive release
of infected pests, immature and mature natural enemies, that is e1 = e2 = e3 = 0, then
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there exist stable limit cycles for susceptible and infected pest population. But immature
and mature predators become extinct as shown in Figure 1. Further from Theorems 5
and 6, we get τ̌ = 1.836 and τmax = 4.55. Therefore, it is obtained that susceptible pest
free solution is globally stable if τ > τ̌ as depicted in Figure 2. Also, phase portrait
of susceptible pest verses infected pest in Figure 2(e) shows that stable limit cycle
moves towards chaotic behaviour. But complete extinction of pests is not encouraged
biologically. Thus, Theorem 6 implies that if τ > τmax system (1) is permanent as
shown in Figure 3 and exhibit chaotic behaviour [see Figures 3(e) and 3(f)].

Figure 1 Stable limit cycles of susceptible pests and infectious pests when
e1 = e2 = 2 = e3 = 0 and xs(0) = 0.5, xi(0) = 0.8, yem(0) = 0.8, yea(0) = 4
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Figure 2 Global stability of pest extinction periodic solution (0, xi(t), yem(t), yea(t)) of
system (1) at τ < τ̌(= 4.7) with e1 = 0.5, e2 = 2, e3 = 4 (see online version
for colours)
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Apart from this, it is also analysed that if e1 = 0, that is only natural enemies are
released then τmax = 3.02511. As shown in Figure 4, the system is again permanent
and shows chaotic behaviour but threshold value of impulsive period decreased which
means that natural enemies are to be released at a fast pace. But this is not always
feasible specially when natural enemies are not native species and are being reared.
Similarly, if e2 = 0 then τmax = 3.88. Permanence and chaotic behaviour of the system
is shown graphically in Figure 5. If e3 = 0, then τmax = 2.20168 and permanence of
the system (1) is shown in Figure 6. In all these situations, permanence of the system
is achieved but at relatively low values of τmax than the situation when we released
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both infected pests and natural enemies (immature and mature) simultaneously. Also
numerical simulation is performed to examine the effect of impulsive releasing of natural
enemies and infected pest population on the extinction of susceptible pest population.
It is observed that susceptible pest population moves towards extinction as impulsive
release is increased as shown in Figure 2(f). Thus it is concluded that combination of
microbial and natural control is very effective for pest control.

Figure 3 Permanence of the system (1) at τ > τmax(= 4.55) with xs(0
+ = 0.5),

xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 with e1 = 0.5, e2 = 2, e3 = 4
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Figure 4 Permanence of the system (1) at τ > τmax(= 3.02511) with xs(0
+) = 0.5,

xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0, e2 = 2, e3 = 4
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6.1 Comparison with other results

A similar SIN model is considered by Shi and Chen (2010) for integrated pest
management. However, the researchers ignored the concept of stage structuring and
mutual interference between natural enemies and did not verify the results numerically.
But here extensive numerical simulation is performed to depict that how stable limit
cycles shift towards chaotic behaviour with the impulsive release of natural enemies and
infected pests. The results obtained in this paper also support those obtained by Mathur
and Dhar (2018). But the model (1) incorporates the concept of stage-structure in natural
enemies that makes it more realistic. Additionally, crowding effect of susceptible pest
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population and mutual interference between natural enemies is considered with the help
of Holling II and Holling IV functional responses. As a result the threshold value of
the impulsive period for complete eradication of susceptible pests τ̌ is decreased while
the threshold value for the coexistence of pest and natural enemies population τmax

is increased. Thus infected pests and natural enemies are to be release dafter longer
period which enhance the effectiveness of pest control model (1) in terms of economic
reduction.

Figure 5 Permanence of the system (1) at τ > τmax(= 3.88) with xs(0
+) = 0.5,

xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0.5, e2 = 0, e3 = 4
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Figure 6 Permanence of the system (1) at τ > τmax(= 2.20168) with xs(0
+) = 0.5,

xi(0
+) = 0.8, yem(0+) = 0.8, yea(0

+) = 4 and e1 = 0.5, e2 = 2, e3 = 0
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7 Conclusions

The war between pests and humans is going on from several decades. From time
to time, different pest control techniques are acquired by mankind. Working on the
same path, here, we investigated a stage structure predator-prey model for the purpose
of integrated pest management. It is found that instead of using pesticides, microbial
control agents along with natural enemies are more efficient in pest control. In Theorem
3, the threshold value of impulsive period (τmax) is obtained and it is established that
susceptible pests can coexist with infected pests and natural enemies if τ > τmax. Also,
the effect of releasing the number of infected pests and natural enemies is discussed and
found that greater releasing amount supports pest eradication.
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