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Abstract: This paper models the transmission dynamics of coronavirus disease 
2019 (COVID-19) and its treatment based on the cases in India, by extending 
the classic SIR model to include exposed, asymptomatic, and treatment classes 
with a special focus to investigate the effect of ineffective treatment on the 
transmissibility of the infection with variation in the treatment initiation. The 
basic reproduction number was computed to understand the relative effect of 
early treatment initiation from the delayed treatment initiation on the 
transmissibility of the infection. With the estimated parameters obtained by 
faithfully fitting the simulation to the observed data, a global sensitivity 
analysis carried out indicated the treatment initiation to be one of the most 
influential parameters to infection control. With this concept, a further analysis 
revealed that an early treatment initiation can be a helpful control strategy on 
the transmissibility of the infection. However, for it to happen, an intervention 
such as proactively doing case finding is deemed important. 
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1 Introduction 

The ongoing pandemic commonly known as coronavirus disease 2019 (COVID-19) is a 
contagious disease caused by the virus called severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) (Mandal et al., 2020). The disease was first detected in the 
Chinese city of Wuhan, the capital of Hubei Province, China, towards the end of 2019 
(Ndairou et al., 2020). Since then the coronavirus has spread like a wildfire declaring as a 
global pandemic by the World Health Organization (WHO). As of 8th August 2020, the 
WHO reports that the total cases stand at 19,187,943, and total death at 716,075 
worldwide (Organization, 2020). Based on the current research report the virus is rapidly 
transmitted from person to person through droplets when a person is in close contact with 
someone who has respiratory symptoms, fomite when a person is in the infected 
environment (Ong et al., 2020), and through faeces (Zhang et al., 2020). The recent 
development was that airborne transmission may also be possible but under certain 
circumstances (Ndairou et al., 2020). 

Presently there is no cure or vaccine for COVID-19. It is still under development. 
Currently, the treatment for the infected people receive is not a pharmaceutical treatment 
but a symptomatic treatment that manages the disease by reducing the symptoms when 
the virus runs its course (Ginot et al., 2006). So, this means that the treatments provided 
are not fully effective. Amid this shortcoming, different countries have put up  
non-pharmaceutical interventions such as handwashing with soap, face mask in public 
places, social distancing, and imposing of lockdown (Gomero, 2012). 

Many mathematical models have been developed to understand the behaviour of this 
infectious disease as it is one of the powerful tools to better understand the 
epidemiological processes (Omame et al., 2020; Kizito and Tumwiine, 2018). Modelling 
can help in understanding: 

1 the transmissibility of the disease 

2 predict the peak time of the disease 

3 the effectiveness of the interventions (Kizito and Tumwiine, 2018). 

Thus, WHO has recognised the importance of the mathematical model especially a timely 
developed model where it can play a crucial role in informing policymakers by giving 
evidence-based information (Tang et al., 2020a). Ndairou et al. (2020) has modelled a 
transmission dynamics of the COVID-19 by extending the classic SIR model to the 
SEAIRF model to include a super-spreader and hospitalised classes, where the later is 
similar to the treatment class which is of interest to this paper. A hospitalised class is a 
class where symptomatic people and super-spreaders get transitioned to at a certain rate. 
It reports that the number of hospitalised people is relevant to give an estimate of the 
intensive care unit needed (Ndairou et al., 2020). 
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In this study, the researcher will study the transmission dynamics of the COVID-19 
with treatment as the control strategy when the treatment is ineffective, which is a status 
of currently available treatment for the disease. This paper is organised as follows. In 
Section 2, the model is formulated with the special introduction of the treatment class. 
Under the qualitative analysis of the model, the subsections include the estimation of 
basic reproduction number, a sensitivity analysis using the partial rank correlational 
coefficient method and local stability analysis at disease-free equilibrium is done under 
Section 3. In Section 4, the numerical simulation includes the fitting of the model to the 
observed data and the effect of treatment on disease transmission with graphical 
illustration. The discussion is presented in Section 5. 

2 Mathematical formulation of the model 

In this section, a SEAITR model is being modelled. To formulate the model 
mathematically the total population at the time t is given by N(t) which is divided into 
seven exclusive classes based on the disease status of the individuals. Those are 
susceptible S(t), exposed E(t), infectious but asymptomatic A(t), infectious and 
symptomatic I(t), treatment T(t) and recovered R(t), mathematically expressed as  
N(t) = S(t) + E(t) + A(t) + I(t) + T(t) + R(t): individuals are recruited into the susceptible 
class through birth or immigration. But in the context of India recruitment rate , through 
only birth is considered as the country was under lockdown with no immigration during 
the pandemic spread. When the susceptible individuals have effective contact with 
infectious individuals the force of infection from symptomatic, asymptomatic, and 
treatment classes act on the susceptible class and work to turn them into infective at a 
rate: 

 ( + ) + T
S

A I T
N

  l  (1) 

The asymptomatic class is infected individuals who are infectious but without symptoms, 
while symptomatic are infectious with symptoms. Both of these classes are untreated. A 
separate class is built for people who are hospitalised and are on treatment. People on 
treatment in the hospital remain ill but with reduced symptoms as treatment is a 
symptomatic treatment that is not fully effective. That is why even people on treatment 
are infectious but less infectious than asymptomatic and symptomatic individuals.  
Figure 1 is a schematic representation of the model SEAITR with different compartments 
interacting with each other in a human population. It shows the disease status of 
individuals in the population. Each of the class is governed by the parameters attached to 
each class. Their interactions are indicated by the arrows between them. The model 
assumes a homogeneous mixing of the individuals in the population where every 
individual is equally likely to get exposed or infected with the disease. As of now, it is 
not yet clear if the recovered individuals would gain a lifelong immunity or wane its 
immunity over the period (Zeb et al., 2020), so this model assumes that the recovered 
individual does not fall back again to the susceptible class. It also assumes that 
individuals on treatment receive treatment that is not fully effective to cure the disease. 
However, as most of the infected individuals on treatment would remain hospitalised 
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their effective contact rate with susceptible would be very minimal contributing less to 
the disease transmission. 

Figure 1 Schematic representation of the model SEAITR with different compartments interacting 
with each other in a human population 

 

The rate of change of population in each class at any instant of time t is described by the 
following nonlinear autonomous system of ordinary differential equations: 
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 (2) 

With the initial conditions: 

     
     

0 0 0 0 0 0

0 0 0 0 0 0

, ,

, ,

S t S E t E A t A

I t I T t T R t R

   


  
 (3) 

In the model (2),  represent the transmission coefficient per unit day per person due to 
asymptomatic and symptomatic individuals and T the transmission coefficient per unit 
day per person due to individuals on treatment. Here,  is the rate at which exposed 
individuals become infectious by becoming asymptomatic or symptomatic;  is the rate at 
which the asymptomatic individual becomes symptomatic; h is the rate at which the 
treatment is initiated which is the reciprocal of the average day the treatment starts from 
the onset of the symptom. The constant p(0 < p < 1) is the proportion of progression from 
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the exposed class to the symptomatic class while the other constant 1 – p is the proportion 
of progression from the exposed class to the asymptomatic class. The demographic effect 
is considered in the model by including  the rate of recruitment through birth only to the 
susceptible population and µ as the natural mortality rate leaving from each of the six 

classes. Symbols gI and gT symbolises recovery rate from symptomatic and treatment 

compartment respectively while disease induced mortality rate from symptomatic and 
treatment compartment is symbolised by µI and µT respectively. 

3 Qualitative analysis of the model 

3.1 Basic reproduction number 

A basic reproduction number is the average number of secondary infections a single 
infection can cause during its infectious period in a completely susceptible population 
(Wang et al., 2020; Van den Driessche and Watmough, 2000). Sarkar et al. (2020) asserts 
that it is a crucial parameter that determines if the disease would persist or die out in a 
population. Further, Tang et al. (2020b) stress that the basic reproduction number can 
help in determining the potential and severity of the outbreak and provide important 
information for identifying the type of diseases intervention and intensity. Only if the 
basic reproduction number is above the threshold value will the disease spread in 
susceptible population (Krämer et al., 2010). As outlined in Diekmann et al. (1990),  
Van den Driessche and Watmough (2002), the basic reproduction number can be 
computed using a next-generation matrix approach to model (2). It considers below 
mentioned the non-negative matrix  and the non-singular M-matrix  (Sarkar et al., 

2020) which are associated with the appearance of new infections and the corresponding 
transition part respectively for the system (2) is described by: 

 
 

( + )( + ) +

( + ) (1 )
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+ +
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+ +
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At disease-free equilibrium, E = A = I = T = R = 0, the generation matrices that are 
Jacobian matrices associated with  and  are given by: 
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The inverse of the above matrix V exists, then the next generation matrix FV–1 is: 
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 (5) 

The basic reproduction number R0 is obtained as the spectral radius of the next generation 
matrix (Roser et al., 2020). Thus, the basic reproduction number for the model (2) is: 

     2 2 5 3 4 2 3 41
0

1 3 5 1 3 5 6

+ + +
+ T h

R ρ FV  
   w w w w w w w w

w w w w w w w
 (6) 

In interpreting the basic reproduction number, the first term represents the average 
number of secondary infections generated by the asymptomatic and symptomatic 
individuals, and the second term the average number of secondary infections generated 
by the individuals on treatment. Using the parameters estimated from the simulation  
(see Table 1), the basic reproduction number is computed to be R0 = 1.3667. This 
indicates that the outbreak of the epidemic in India is not under control and is going to 
persist in the population. 

3.2 Sensitivity analysis using partial rank correlation coefficient (PRCC) 
method 

The goal of the sensitivity analysis is to identify the most influential parameters to the 
model variables (Saltelli et al., 2010; Ziyadi and Yakubu, 2016) in this case to the 
infection variables (I + A + T). It allows measuring the relative importance of the 
parameters (Blower and Dowlatabadi, 1994; Cacuci et al., 2005; Ginot et al., 2006). 
Knowledge of the relative importance of the parameters can help guide in developing 
efficient intervention strategies during COVID-19 transmission (Chitnis et al., 2008). 
Here the primary model variable of interest for sensitivity analysis is the infected states  
(I + A + T) against all the parameter values. A global sensitivity analysis is considered for 
this purpose. Global sensitive analysis (GSA) examines the change in the model variables 
which results from the change in all model parameter values that are within the ranges 
(Wu et al., 2013; Marino et al., 2008). 
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Table 1 Parameters estimate of SEAITR model (2) for which R0 = 1.3667 

Parameter Parameter meaning Values Units 

 Rate of recruitment through birth 77575 day–1 

 Transmission coefficient due to asymptomatic 
and symptomatic individuals 

0.23156 day–1 

T Transmission coefficient due to people on 
treatment 

0.0017268 day–1 

 Rate at which expose become infectious 1.9545 day–1 

p Proportion of progression from exposed to 
symptomatic I 

0.79443 Dimensionless 

 Rate at which asymptomatic become 
symptomatic 

2.5999 day–1 

h Rate of initiation of treatment from the day of 
symptom 

0.077772 day–1 

gI Recovery rate of symptomatic individuals 0.0003047 day–1 

gT Recovery rate of treated individuals 0.11837 day–1 

µI Disease induced mortality rate from 
symptomatic individual 

0.094245 day–1 

µT Disease induced mortality rate from individuals 
on treatment 

0.038901 day–1 

µ Natural mortality rate 0.000039638 day–1 

Here, for sensitivity analysis, Latin hypercube sampling (LHS) with PRCC technique was 
adopted (Gomero, 2012; Helton and Davis, 2002; Legrand et al., 2008). PRCC is an 
efficient and reliable sampling-based sensitivity analysis method that provides a 
nonlinear but monotonic relationship between the parameters and model variables by 
removing the linear effects of all parameters except the parameters of interest (Wu et al., 
2013; Gomero, 2012). Using LHS, 150 samples from a uniform distribution of the 
parameter ranges for the output model was taken. For simulation, the PRCC values vary 
between +1.0 to –1.0 with absolute values closer to 1 indicating the parameter has a 
strong influence on the model variables (Wu et al., 2013). The sign indicates a qualitative 
relationship between the parameters and model variables. Negative and positive signs 
indicate the parameters being inversely and directly proportional to the output measures, 
respectively (Gomero, 2012). The result of the PRCC as shown in Figure 2 using 
parameters value estimates represents that the highly positively correlated parameters are 
the transmission coefficient due to infected individual  and the transmission due to 
people on treatment T whereas the highly negatively correlated parameters are the rate of 
treatment initiation from the day of symptom h, the recovery rate of treated individuals 

gT, the proportion of progression of individuals from exposed to symptomatic p and 

disease-induced mortality rate of the individuals on treatment µT. Therefore, the most 

influential parameters to the model variable are , h, T, gT, p and µT from out of 11 

parameters. Therefore, the interventions should target more in dealing with all of these 
influential parameters. 
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Figure 2 Parameter sensitivity (see online version for colours) 

 

Note: PRCC illustrating the sensitivity indices of the estimated parameters (see Table 1) 
of SEAITR model against the model output (I + A + T). 

3.3 Local stability analysis at diseases free equilibrium (DFE) 

For the model (2), the sixth equation being an uncoupled equation from the rest of the 
coupled system can be separated to find its analytical solution through direct integration 
as follows: 

0 0 0
( ) ( ) + ( ) ( )

t t t

I TR t I s ds T s ds μ R s ds   g g  (7) 

The local stability of the model (2) at DFE can be studied using the remaining coupled 
system of equations of five state variables such as S, E, A, I and T. The Jacobian matrix 
associated with the model (2) at DFE is: 
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where w1, w2, w3, w4, w5, and w6 are defined in (4). Matrix J has eigenvalue l = –µ while 

other eigenvalues are obtained from the characteristic equation (8). 

     4 3 2
1 2 2 3 3 4 4 5 6( ) + + + + + + 0T Tf a a b a b b a b b          l l l l l  (8) 
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 (9) 

Now, if R0 < 1, and if b2 < a2, b3 + Tb4 < a3 and b5 + Tb6 < a4, then by Descarte’s 
rule of signs, the characteristic equation (8) will have four real negative (or complex 

negative real parts) eigenvalues in addition to l = –µ. In conclusion, we just proved the 

following result: 

Theorem: If R0 < 1, and if b2 < a2, b3 + Tb4 < a3, b5 + Tb6 < a4, then the disease-free 
equilibrium is locally asymptotically stable. Otherwise, it is unstable. 

4 Numerical simulation 

In this section of numerical simulation, the simulated model results are compared with 
the observed data to validate the simulated model. The starting day for the simulation is 
30th January 2020 (day 0) where the first infected case was reported and up to 20th 
August 2020 (day 202), which is a simulation of 203 days. The observed data were 
retrieved from the dataset published by our world in data (Roser et al., 2020) and the 
parameters related information from worldometers (Zhu et al., 2020). As part of the 
validation of the simulated model, a curve fitting of the simulated model was done to the 
observed daily new cases as is depicted in Figure 3. The curves correspond to the number 
of confirmed cases per day. The black curve corresponds to the model simulated for the 
infection (I + A + T) while the red curve corresponds to the observed daily new cases. It 
is observed in Figure 3 that the simulated model fits quite well to the observed data. 
Since the disease is still at an early stage of the epidemic, there is not enough data to get a 
full blown-out data curve fitting to the simulation model. However, the calibration done 
here is modest. Once the model was calibrated to the observed data the parameters were 
estimated (see Table 1). These estimated parameters were used for calibration. 

As obvious, India’s population is very huge and dense, hence the daily new cases 
picked up ever since the infection begun in the country. The total population of India is 
about 1.38 billion. The initial conditions fixed for the simulation are: N = 1,380,004,385, 
S0 = N – 1, E0 = 0, A0 = 0, I0 = 1, T0 = 0, R0 = 0. 

4.1 Effect of treatment on the disease transmission 

As is evident from the sensitivity analysis Section 3.2, the treatment initiation has the 
maximum negative parameter influence on the model output. In this section, the influence 
of control strategies such as a treatment that is ineffective on the disease transmission 
dynamic is investigated by varying the treatment initiation h which in turn depends 
inversely on the day of onset of symptom. Considering this, people on ineffective 
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treatment in coming in contact with the susceptible would act with the force of infection 

T
S

T
N

  in converting them into infected in addition to the force of infection from other 

two infectious classes. With this intuition, subsequent conclusions are drawn. 

Figure 3 Number of confirmed cases per day (see online version for colours) 

 

Note: The red line corresponds to observed data obtained from the dataset (Roser et al., 
2020) of 203 days and the black line to the model simulated for infection  
(I + A + T). 

Figure 4 Effect of ineffective treatment initiation, (a) ineffective treatment initiated can help in 
controlling the disease transmission R0 < 1 if initiated latest by or within the seventh 
day of the appearance of the symptom, (b) ineffective treatment initiated beyond the 
seventh day would have less effect on the disease transmission R0 > 1 although it may 
help in delaying the peak of the epidemic (see online version for colours) 

  

(a)    (b) 

The contribution of ineffective treatment in controlling disease transmission is studied as 
shown in Figure 4. Using the estimated parameters (see Table 1) and varying the rate of 
treatment initiation h, Figure 4 is obtained. Figure 4(a) illustrates that when the 
ineffective treatment is initiated within the seventh day of the onset of the symptom it can 
help in controlling the disease transmission, R0 < 1. The peak of prevalence is reached 
earlier but with a reduction in its peak and the disease dies out from the population 
earlier. Likewise, Figure 4(b) illustrates that if the ineffective treatment is initiated on the 
seventh day of onset of symptoms or beyond, the treatment would have less effect on the 
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control of the disease transmission that is R0 > 1. The peak of prevalence is delayed and 
the disease slowly dies out from the population as is illustrated in Figure 4(b). Also, the 
relationship between the basic reproduction number R0 and the treatment initiation h is 
inversely proportional as is illustrated in Figure 5. 

Figure 5 Relationship between the basic reproduction number R0 and the treatment initiation h 
showing an inverse relationship (see online version for colours) 

 

5 Discussion 

In this work, a SEAITR model for COVID-19 was developed that specifically include 
asymptomatic, symptomatic, and treatment classes to capture the real characteristics of 
the disease dynamics. While people under these three classes are responsible for the 
disease transmission here the focus was given more on the treatment class which is 
further investigated by considering the ineffectiveness of the treatment. 

The simulated model fits quite well to the early part of the data reported in Roser  
et al. (2020). This indicates that the finding from this model to a certain extent can be 
useful in informing the health authorities in estimating the number of people who would 
be on treatment and accordingly plan for the required number of hospital beds and other 
related treatment amenities (Ndairou et al., 2020). 

Using the estimated parameter values this model predicts the basic reproduction 
number to be R0 = 1.3667 in India which is below 1.4–2.5 in Wuhan, China as per WHO 
as of 23rd January 2020 (Croda and Garcia, 2020). R0 in India is less than the WHO 
estimation because by then the disease reached India, authorities were more aware of the 
precautionary measures and gave time to prepare for COVID-19 due to which more 
restrictions were put in place such as lockdown, social distancing, wearing of face mask 
in public, and practising of good personal hygiene, during the outbreak. 

From the sensitivity analysis, it points to the fact that more attention needs to be given 
to reducing the transmission coefficient  as it is the most influential factor in the disease 
dynamics which in turn depends on the contact rate and the probability of infection in 
each contact of infected with the susceptible population. In this regard, an appropriate 
control strategy would be in keeping the susceptible without contact with the infected 
which can be done through social distancing and lockdown. 

Once there is the prevalence of infected cases the control strategy such as the 
treatment even when ineffective may still help in controlling the infection transmission to 
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a certain extent if the treatment is initiated within a certain day from the onset of the 
symptoms. The treatment initiation value close to one indicates an early treatment 
initiation. So, for treatment to help control transmission dynamic the treatment should be 
initiated early. However, for it to happen the intervention such as proactively doing case 
finding is deemed important (Li et al., 2020). 

The majority of the prior studies done on COVID-19 related control strategies 
emphasised that social distancing, isolation, quarantine, and lockdown as some of the 
important control strategies. More so, a similar study was done on COVID-19 by Ullah 
and Khan (2020) and their findings are that a mild social distancing can reduce the 
number of cases while a stricter social distancing for an extended period would avoid a 
significant COVID-19 outbreak. Their study also highlights that the highly effective 
quarantine would reduce the peak of the pandemic. On the other hand, this study is 
distinctive because it highlights the effect of treatment of COVID-19 also as the control 
strategies for the disease. Therefore, the distinctive findings of this study are that the 
symptomatic treatment even if it is ineffective in curing the disease would certainly help 
in controlling the number of the cases which in turn may help in slowing the transmission 
dynamics of the disease as is depicted in Figure 4(a). Also, this study indicates that the 
transmission coefficient  to be one of the most influential parameters. Such finding 
would help the policymakers to decide on the kind of interventions or control strategies to 
be put in place or measure its effectiveness if already in place. 

While this study may have its own merits but also has its limitations. The COVID-19 
itself being relatively a new disease has many things to be yet known. From whatever has 
been known to date a mathematical model is done considering the process as an 
instantaneous process. However, the dynamics of COVID-19 is such that it has a latent 
period and some delay in the recovery. So in the future, it would be more realistic if 
instead of the ordinary differential equations a system of delay differential equations is 
used. 
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