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1 Introduction

Multi-criteria decision making (MCDM) enables to select the most appropriate 
alternative among predetermined alternatives by evaluating them in terms of many 
criteria (Papathanasiou and Ploskas, 2018). According to recent literature (Kaya et al., 
2019; Xing et al., 2018; Xu et al., 2018; Mao et al., 2018; Zhang et al., 2017; Zhu et al., 
2019), there are different types of fuzzy MCDM methods and their applications in the 
literature such as:
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a pairwise comparison-based methods (e.g., analytic hierarchy process) where the
decision makers can systematically assess the alternatives by making pair-wise
comparisons for each of the chosen criteria (Saaty, 1980)

b outranking methods [e.g., PROMETHEE (Brans and Mareschal, 2005) and SIR
(Xu, 2001)] in which – based on the deviation between the evaluations of every
pair of alternatives in each criterion – aggregated preference indices and
positive/negative or superiority/inferiority outranking flows are computed

c distance based methods [e.g., VIKOR and TOPSIS (Opricovic and Tzeng, 2007,
2004; San Cristóbal, 2011; Yazdani and Graeml, 2014)] in which alternatives are
evaluated according to their distance to ideal solutions.

Nevertheless, expressing decision-makers’ fuzzy decision information such as his
preference information in an expressive and flexible manner remain a huge challenge.
This is mainly due to the fact that subjective factors related to the decision-makers’ own
experience, his cognitive ability, and intuition hugely influence the decision information
and hence the decision process and outcome.

Recently, tools and methods that can describe uncertain information and quite a few
influential theories have been proposed. According to De Luca and Termini (1972),
Weber (1984), Czogała et al. (1982), Farr and Brown (1971) and Ying (1990), there are
three types of uncertainty when dealing with problems in fuzzy decision making:

1 randomness that can be captured by a probabilistic measure

2 fuzziness that can be measured using entropy or energy measures

3 alternativity, the opposite of outstandingness, that can be measured using the
outstandingness measure introduced in Ying (1990).

Two types of outstandingness fuzzy binary predicates have been proposed in Ying
(1990): a positive fuzzy predicate expressing the degree of positive outstandingness
of one alternative over another whereas the negative fuzzy predicate expresses the
degree of negative outstandingness of one alternative over another. A critical issue may,
however, emerge from the process of subject judgments concerning appraisal behaviours
when the MCDM approaches ignore one side of the evaluation. Indeed, the fuzzy set
theory gives rise to type I bipolarity called the bipolar univariate model (Osgood, 1957).
Fuzzy sets only give a membership degree to each element and the non-membership
degree is always equivalent to the complementary. Therefore, a decrease in the negative
degree (non-membership function) goes hand in hand with an increase of the positive
degree (membership function). But, according to recent development in psychological
studies, the positive and negative degrees are not necessarily complementary to each
other (Cacioppo and Berntson, 1994; Cacioppo et al., 1997; Cacioppo and Berntson,
1999; Norris et al., 2010). An interesting property of the positive and negative
outstandingness predicates is that they may be defined in such a way that they are
antagonistic and completely independent of each other. Hence, such outstandingness
predicates may exhibit a good ability to describe and express decision-makers’ fuzzy
decision information in an expressive and flexible manner that takes into consideration
the latest development in psychological studies.

Another challenge in the design of MCDM methods is that attributes in most real
problems are correlated. This led to a number of works in the literature to consider the
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application of the Bonferroni (1950) and Heronian means (Beliakov et al., 2008; Chu
and Liu, 2015; Janous, 2001; Yu and Wu, 2012) in the aggregation phase. According to
a recent work Pramanik et al. (2020), however, the Heronian mean operator is shown to
be better equipped to embody the interaction between attributes to avoid unreasonable
situations in information aggregation. In Wang et al. (2017), the Bonferroni mean
aggregation operator has been shown to neglect the relationship between each attribute
and other attributes repeatedly when compared to the Hernonian mean. Furthermore, the
Bonferroni aggregation operator has a larger computational complexity compared to the
Heronian mean.

The main objective of this paper is to rank rationally pre-specified alternatives
starting, from pairwise comparisons of alternative evaluations on each criterion that
measure outstandingness. Towards this end, we make use of, among others, the
fuzzy positive and negative outstandingness predicates which measure the degree
of outsandingness of an alternative against another alternative in both the positive
and negative senses (Ying, 1990). We give a number of various outstandingness
predicates and study the properties of such predicate pairs. The proposed method, herein
called multiple-aspect outstandingness appraisement method (MAOAM), employs in
the aggregation phase, a family of multivariate generalised weighted Heronian means
having as special cases the Beliakov et al.’s (2008) generalised Heronian means as well
as that of Chu and Liu (2015). With positive and negative outstandingness predicates
and multivariate generalised weighted Heronian means, we are better equipped to rank
rationally pre-specified alternatives based on outstandingness that allow for

1 expressing the positive outstandingness degrees in an independent manner from
the negative one

2 aggregating information that handles the possible interaction between attributes.

The rest of the paper is organised as follow. In Section 2, we define the problem
and our assumptions. In Section 3, we introduce the concepts of positive and negative
outstandingness predicates as well as the Heronian mean and its generalisations which
constitute the mathematical tools for the MAOAM method. Next, the description of the
MAOAM method as a ranking method well adapted to problems where a finite number
of alternatives are to be ranked considering several criteria is presented in Section 4.
Finally, before concluding in Section 6, we present an illustrative exampel using a
real-world investment bank dataset in Section 5.

2 Problem definition

To begin, the problem formulation can be set out as follows:
Given

• A set of m feasible alternatives A = {Ai|i ∈ {1, ...,m}}.

• A set of n aspects C = {Cj |j ∈ {1, .., n}}.

• A m× n achievement (evaluation) matrix a where aij denotes the achievement
value of alternative Ai with respect to aspect Cj . Each line corresponds to an
alternative and each column corresponds to an aspect. Each alternative has a
vector of achievement (or degrees of satisfaction) ∈ [0, 1]n unit hypercube.
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C1 C2 ... Cn

a =

A1

A2

...
Am


a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n
...

...
...
...

am,1 am,2 ... am,n


Note that (ai,1, ai,2, ..., ai,n) is the achievement vector associated with alternative
Ai whereas (a1,j , a2,j , ..., am,j) is the achievement vector associated with aspect
Cj .

• A weight vector w = (w1, w2, ..., wn) which represents weights of relative
importance of the different aspects. These weights are non-negative numbers
independent from the measurement units of the aspect. The higher the weight, the
more important is the aspect. Each aspect weight wj is in (0, 1) and

1 ≤
∑
j

wj ≤ n

The objective is to rank the available alternatives using their positive and negative
outstandingness predicates whose formulas will be set hereafter (Subsection 3.1)

3 Development of MAOAM

We introduce the concepts of positive and negative outstandingness predicates (Ying,
1990) as well as the Heronian mean and its generalisations which constitute the
mathematical tools for the MAOAM method.

3.1 Positive and negative outstandingness predicates

Ying (1990) defined two fuzzy binary predicates on the unit interval [0, 1]. One
expresses the positive outstandingness of an alternative x over alternative y, denoted by
P(x, y), and the other for expressing the negative outstandingness, denoted by N (x, y).

Definition 3.1: A mapping P: [0, 1]× [0, 1] → [0, 1] is a positive outstandingness
predicate if and only if it satisfies the following properties.

1 P(1, 0) = 1

2 if x ≤ y, then P(x, y) = 0

3a if y < x1 < x2, then P(x1, y) ≤ P(x2, y)

3b if x2 < x1 < y, then P(y, x1) ≤ P(y, x2).

The following predicates satisfy all four properties stated above and, hence, are all
positive outstandingness predicates.

P1(x, y) = max(x− y, 0)
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P2(x, y) =

{
1 if x > y

0 otherwise.

P3(x, y) =

{
x if x > y

0 otherwise.

P4(x, y) =

{
x−y
x if x > y

0 otherwise.

P5(x, y) =

{
x

x+y if x > y

0 otherwise.

P6(x, y) =

{
x−y
x+y if x > y

0 otherwise.

P7(x, y) =

{
x−y
1+ y

x
if x > y

0 otherwise.

It is important to mention that the generalised preference predicates defined as P (d)
where d = x− y introduced in PROMETHEE (Brans and Mareschal, 2005) can also be
viewed as positive outstandingness predicates for all constants p, q, s ∈ [0, 1]:

P2(d) = P2(x, y) =

{
1 if x > y

0 otherwise.

P8(x, y) =

{
1 if x− y > q

0 x− y ≤ q

P9(x, y) =


1 if x− y > p
x−y
p 0 ≤ x− y ≤ p

0 x− y ≤ 0

P10(x, y) =


1 if x− y > p
1
2 q ≤ x− y ≤ p

0 x− y ≤ q

P11(x, y) =


1 if x− y > p
x−y−q
p−q q ≤ x− y ≤ p

0 x− y ≤ p

P12(x, y) =

{
1− e−

(x−y)2

2s2 if x− y > 0

0 x− y ≤ 0

Definition 3.2: A mapping N : [0, 1] × [0, 1] → [0, 1] is a negative outstandingness
predicate if and only if it satisfies the following properties.

1 N (0, 1) = 1

2 if x ≤ y, then N (y, x) = 0



MAOAM 261

3a if y < x1 < x2, then N (y, x1) ≤ N (y, x2)

3b if x2 < x1 < y, then N (x1, y) ≤ N (x2, y).

The following predicates satisfy all four properties stated above and, hence, are all
negative outstandingness predicates.

N1(y, x) = max(x− y, 0)

N2(y, x) =

{
0 if y > x

1 otherwise.

N3(y, x) =

{
0 if y > x

1− y otherwise.

N4(y, x) =

{
0 if y ≥ x
x−y
x otherwise.

N5(y, x) =

{
0 if y ≥ x
x

x+y otherwise.

N6(y, x) =

{
0 if y ≥ x
x−y
x+y otherwise.

N7(y, x) =

{
0 if y ≥ x
x−y
1+ y

x
otherwise.

Next, the following proposition states the compliment of a positive outstandingness
predicate (Ying, 1990).

Proposition 1: If P is a positive outstandingness predicate, then Pc defined by

Pc(x, y) = P(1− x, 1− y) ∀x, y ∈ [0, 1]

is a negative outstandingness predicate.

Similarly, we can derive the compliment of a negative outstandingness predicate as
follows (Ying, 1990):

Proposition 2: If N is a negative outstandingness predicate, then N c defined by

N c(x, y) = N (1− x, 1− y) ∀x, y ∈ [0, 1]

is a positive outstandingness predicate.

Definition 3.3: Let P be a positive outstandingness predicate and N is a negative
outstandingness predicate such that:

N (x, y) = P(1− x, 1− y) ∀x, y ∈ [0, 1]

and

P(x, y) = N (1− x, 1− y) ∀x, y ∈ [0, 1]
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Then, (P,N ) are said to be double pair predicates denoted D-pair.

In addition to the D-pair, we introduce four more pairs of the outstandingness predicates.

Definition 3.4: If P(x, y) = N (y, x)∀x, y ∈ [0, 1] then (P,N ) are called unbiased pair
predicates denoted by U-pair.

For instance, (P1,N1) is a U-pair. Consider the generalised preference predicates P2,
P8, P9, P10, P11, and P12 introduced in PROMETHEE (Brans and Mareschal, 2005) to
compute the preference of alternative x over alternative y. To compute the preference
of alternative y over x instead (from which negative outranking flow are computed), the
PROMETHEE method simply swaps the inputs of P(x, y), i.e., it uses P(y, x). Since
P(x, y) is a positive outstandingness predicate, it can easily be shown that P(y, x) is
indeed a negative outstandingness predicate. Thus, in the PROMETHEE method it turns
out that only U-pairs of the form (P(x, y),P(y, x)) are indeed used to compute the
poditive/negative preference index between pairs of alternatives in each criterion.

It is important to note that U-pairs are not independent of each other and do provide
complimentary evaluations. Next, we introduce pairs whose positive and negative
evaluations are independent.

Definition 3.5: If P(x, y) ≤ N (y, x)∀x, y ∈ [0, 1] then (P,N ) are called negativity
biais pair predicates denoted by NB-pair.

For instance, (P5,N2) is a NB-pair.

Definition 3.6: If P(x, y) ≥ N (y, x)∀x, y ∈ [0, 1] then (P,N ) are called positivity biais
pair predicates denoted by PB-pair.

For instance, (P4,N1) is a PB-pair.

Definition 3.7: If all the previous conditions are not satisfied,then (P,N ) are called
arbitrary pair predicates denoted by A-pair.

For instance, (P3,N3) is an A-pair.

3.2 The Heronian mean and its generalisations

Let a and b be two non-negative real numbers. The Heronian mean of a and b is defined
in equation (1) as follows (Beliakov et al., 2008):

He(a, b) =
a+

√
ab+ b

3
(1)

Recently, Janous (2001) defined further the generalised Heronian mean as shown in
equation (2):

Hω(a, b) =

{
a+ω

√
ab+b

ω+2 0 ≤ ω ≤ +∞√
ab ω = +∞

(2)
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Note that if ω = 1, it is clear that H1(a, b) = He(a, b). If ω = 0, then H0(a, b) =
a+b
2 =

A(a, b) where A(a, b) is the arithmetic mean. If ω = ∞, then H∞(a, b) =
√
ab =

G(a, b) where G(a, b) is the geometric mean.

G(a, b) ≤ Hω(a, b) ≤ A(a, b) (3)

Note that the above Heronian mean and its generalisations are those of two real
numbers. Next, we will define the generalised Heronian mean in n variables:

Let x = (x1, x2, ..., xn); xi ≥ 0, i = 1, 2, ..., n. The generalised Heronian mean in n
variables x1, x2, ..., xn is defined in equation (4).

Hω(x)

{∑
i xi + ω n

√
x1x2...xn 0 ≤ ω < +∞

n
√
x1x2...xn ω = +∞

(4)

Note that if n = 2, Hω(x) = Hω(a, b).
Beliakov et al. (2008) has proposed a different generalisation of the Hernian mean

in x which does not allow for n
√
x1x2...xn to evaluate to zero if any of the xi is zero

and is shown in equation (5).

HR(x) =
2

n(n+ 1)

n∑
i=1

n∑
j=1

√
xixj (5)

Note that for n = 2, we have HR(a, b) = He(a, b).
We might as well extend Beliakov’s definition to introduce ω as in Janous (2001)

and the extended form is shown in equation (6):

HR(x, ω) =

∑n
k=1 xk + ω

∑n
k=1

∑n
l=k+1

√
xixj

n+ ω n(n−1)
2

(6)

Note that HR(x, 1) = HR(x).
Unfortunately, the Heronian mean HR(x) and the generalised Heronian mean

Hω(x) operators ignore the weights of the criteria which has been incorporated
in the generalisation of Chu and Liu (2015) called the weighted generalised
Heronian mean (WGHM ). Let W = (w1, w2, ..., wn) be the relative importance
weights of x = (x1, x2, ..., xn) such that

∑n
i=1 wi = 1, respectively. Let p, q ≥ 0. The

WGHMp,q(x,W ) defined in Chu and Liu (2015) in shown in equation (7):

WGHMp,q(x,W ) =
(
∑n

k=1

∑n
l=1(wkxk)

p(wlxl)
q)

1
p+q

(
∑n

k=1

∑n
l=k w

p
kw

q
l )

1
p+q

(7)

In the following, we extend the WGHM operator by taking into account ω (as in
Walher Janous) as well as weights.

Let W = (w1, w2, ..., wn) the relative importance weights of x = (x1, x2, ..., xn),
respectively. Let p, q ≥ 0. Let |W | =

∑n
k=1 wk be the magnitude of W . We propose

a generalisation of the Hernian mean, named WGHM , in n variables that takes into
consideration the relative importance weights as follows.
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When 0 ≤ ω < +∞, we have equation (8).

WGHMp,q
ω (x,W )

=
(
∑n

k=1(wkxk)
p+q + ω

∑n
k=1

∑n
l=k+1(wkxk)

p(wlxl)
q)

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

(8)

When ω = +∞, we have equation (9).

WGHMp,q
ω (x,W ) =

(
∑n

k=1

∑n
l=k+1(wkxk)

p(wlxl)
q)

1
p+q

(
∑n

k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

(9)

If the sum of the weights is one and ω = 1, we have:

WGHMp,q
ω (x,W ) = WGHMp,q(x,W )

If the relative importance weights are equal and p = q = 1
2 , we have:

WGHM
1
2 ,

1
2

ω (x,W ) = HR(x, ω)

WGHM
1
2 ,

1
2

ω=1(x,W ) = HR(x)

WGHM
1
2 ,

1
2

ω ((x1, x2),W ) = Hω(x1, x2)

In the following, we prove that WGHMp,q
ω (x,W ) has the properties of idempotency,

monotonicity, and internality.

Theorem 3: WGHMp,q
ω (x,W ) is idempotent.

Proof: Let xi = a for all i = 1, 2, ..., n.

WGHMp,q
ω (x,W ) =

(
∑n

k=1 w
p+q
k ap+q + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l a

p+q)
1

p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

=
(ap+q(

∑n
k=1 w

p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l ))

1
p+q

(
∑n

k=1 w
p+q
i + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

= a
(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

= a

(((((((((((((((((((
(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

= a

�

Theorem 4: WGHMp,q
ω (x,W ) is monotone.
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Proof: Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) such that xk ≥ yk for all k. We
need to show that WGHMp,q

ω (x,W ) ≥ WGHMp,q
ω (y,W ).

Consider

WGHMp,q
ω (x,W ) =

(
∑n

k=1(wkxk)
p+q + ω

∑n
k=1

∑n
l=k+1(wkxk)

p(wlxl)
q)

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

Since, p, q ≥ 0, 0 ≤ ω ≤ +∞, and xk ≥ yk, we have (wkxk)
p+q ≥ (wkyk)

p+q . Thus,

WGHMp,q
ω (x,W ) ≥

(
∑n

k=1(wkyk)
p+q + ω

∑n
k=1

∑n
l=k+1(wkxk)

p(wlxl)
q)

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

Similarly, because (wlxl)
p ≥ (wkyk)

p and (wlxl)
q ≥ (wlyl)

q we have

WGHMp,q
ω (x,W ) ≥

(
∑n

k=1(wkyk)
p+q + ω

∑n
k=1

∑n
l=k+1(wkyk)

p(wlyl)
q)

1
p+q

(
∑n

k=1 w
p+q
k + ω

∑n
k=1

∑n
l=k+1 w

p
kw

q
l )

1
p+q

Thus, WGHMp,q
ω (x,W ) ≥ WGHMp,q

ω (y,W ). �

Theorem 5: WGHMp,q
ω (x,W ) satisfies the internality property.

Proof: Let x− = min(x1, x2, ..., xn) and x+ = max(x1, x2, ..., xn). According to
Theorem 1, we have

WGHMp,q
ω ((x−, x−, ..., x−),W ) = x−

WGHMp,q
ω ((x+, x+, ..., x+),W ) = x+

Since, x− ≤ xk ≤ x+ for all k, we have

WGHMp,q
ω ((x−, x−, ..., x−),W )

≤ WGHMp,q
ω (x,W )

≤ WGHMp,q
ω ((x+, x+, ..., x+),W )

Thus,

x− ≤ WGHMp,q
ω (x,W ) ≤ x+

�

In this section, we have introduced two generalisation of the Heronian mean. The first
one denoted HR(x, ω) extends Beliakov’s definition by introducing the parameter ω
as in Janous (2001) and the extended form is shown in equation (6). The introduction
of ω provides more flexibility to the decision-maker since when ω is set to zero,
HR(x, ω) becomes the arithmetic mean, and as ω gets larger and larger (ω  ∞), it
approaches the geometric mean. For the other values of ω, we have a wide range of
Heronian means. The second generalisation extends the WGHM operator by taking into
account ω (as in Walher Janous) as well as weights [denoted by WGHMp,q

ω (x,W ) and
shown in equations (8) and (9)]. The advantage of this generalisation, like HR(x, ω),
is the introduction of the paramter ω which allows it express various means (arithmetic,
geometric, and Heronian). Furthermore, it also takes into consideration the relative
weights when aggregating the information. These features allow it to be an expressive
and flexible aggregation operator.
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4 The MAOAM method

MAOAM is a ranking method well adapted to problems where a finite number of
alternatives are to be ranked considering several criteria. Recall that we are given,

• A set of m feasible alternatives A = {Ai|i ∈ {1, ...,m}}.

• A set of n aspects C = {Cj |j ∈ {1, ..., n}}.

• A m× n achievement (evaluation) matrix a where aij denotes the achievement
value of alternative Ai with respect to aspect Cj . Each line corresponds to an
alternative and each column corresponds to an aspect. Each alternative has a
vector of achievement (or degrees of satisfaction) ∈ [0, 1]n unit hypercube.

• A weight vector w = (w1, w2, ..., wn) which represents weights of relative
importance of the different aspects. These weights are non-negative numbers
independent from the measurement units of the aspect. The higher the weight, the
more important is the aspect. Each aspect weight wj is in (0, 1) and

1 ≤
∑
j

wj ≤ n

The objective is to rank the available alternatives using their positive and negative
outstandingness predicates. The procedural steps of the parameterised MAOAM method
are enlisted below:

In our first step, we make pairwise comparisons between all the alternatives for
each aspect using positive outstandigness predicates (POP) and negative outstandigness
predicates (NOP). Assume we have a POP P (resp. NOP N ). For each aspect Cj and
for each alternative Ak, we compute the positive (resp. negative) outstandingness of Ak

against every other alternative Al ( ̸= Ak) denoted by POj
k,l (resp. NOj

k,l) as follows:

POj
k,l = P(ak,j , al,j)∀j ∈ {1, ..., n}, ∀k ∈ {1, ...,m}, ∀l ∈ {1, ...,m|l ̸= k}

NOj
k,l = N (ak,j , al,j)∀j ∈ {1, ..., n},∀k ∈ {1, ...,m}, ∀l ∈ {1, ...,m|l ̸= k}

For each aspect j and alternative k, let

POj
k = (PO1

k,l, ..., POj
k,m)

where ∀l ∈ {1, ...,m|l ̸= k}.
Similarity, let

NOj
k = (NO1

k,l, ..., NOj
k,m)

Our second step is to compute the partial positive outstandingness +Ωj
k using the

extended Hernonian mean of Beliakov et al. (2008) introduced in Section 3:

+Ωj
k = HR(POj

k, ω)

Similarly, we compute the partial negative outstandingness −Ωj
k as follows:

−Ωj
k = HR(NOj

k, ω)
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In the third step, we compute +Ωk as the global positive outstandingness index of each
alternative k by using our generalised hernonian mean as follows:

+Ωk = WGHMp,q
ω ((+Ω1

k, ...,
+ Ωj

k, ...,
+ Ωn

k ),W )

Similarly, we compute −Ωk as the global negative outstandingness index of each
alternative k as follows:

−Ωk = WGHMp,q
ω ((−Ω1

k, ...,
− Ωj

k, ...,
− Ωn

k ),W )

In the fourth step, we calculate the bounded difference overall outstandigness for each
alternative k as follows:

Ωk = max
(
0, 1−

−Ωk

+Ωk

)
Or, alternatively, we compute the net outstandingness for each alternative k as follows:

Ωk =+ Ωk −− Ωk

Finally, in step five, we determine the ranking of all alternatives depending on the values
of Ωk. The higher value of Ωk, the more outstanding is the alternative.

5 Illustrative example

In this section, we validate the properties and evaluate the sensitivity of the MAOAM
method using a real-life use case by mainly varying the:

• Outstandingness predicates: We consider four pairs of oustandingness predicates:
an unbiased U-pair ((P1, N1)), a negatively biased NB-pair ((P5, N2)), a
positively biased U-pair ((P4, N1)), and an arbitrary A-pair ((P3, N3)). This
variation will allow us to validate the properties of these different outstandingness
predicates.

• Heronian means parameters: In the MAOAM method, we introduced two
Heronian means in the second and third step where each operator is parameterised
with ω. Here, we use ω1 instead of ω in the aggregation operator in the second
step and ω2 instead of ω in the third step to remove any ambiguity since each
aggregation in each step can use different values for ω. We then consider values
ω1, ω2 ∈ {0, 1,000} that allows us to consider extreme cases when the
aggregation is compensatory (when ω1 = ω2 = 0) and when the aggregation is
non-compensatory (when ω1 = ω2 = 1,000) and combinations of these two
extreme cases. This variation will allow us to study the sensitivity of the
MAOAM method to different instantiations of the proposed Heronian means.

5.1 Context

The managers of a Tunsian investment bank receive applications of ivestment loans
from various businessmen. The criteria alongside their weights used to evaluate the
alternatives are shown in Table 1.

There are 32 candidates and their respective evaluations on the 18 criteria are shown
in Table 3 where the objective is to rank the candidates according to their ‘credibility’
on a set of 18 weighted criteria.
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Table 1 The criteria and their corresponding weights

Criterion Weight

C1 Quality of the project proposal 0.075
C2 Applicant’s responsiveness 0.05
C3 Applicant’s risk aversion 0.075
C4 Administrative and financial management 0.12
C5 Technical knowledge 0.12
C6 Commercial position 0.06
C7 Infrastructure and logistics risk 0.025
C8 Technology risk 0.05
C9 Supply risk 0.05
C10 Regulation risk 0.025
C11 Demand risk 0.05
C12 Offer risk 0.025
C13 Quality risk 0.05
C14 Distribution risk 0.025
C15 Financial risk 0.05
C16 Customer risk 0.05
C17 Profitability risk 0.05
C18 Financial exploitation risk 0.05

Table 2 Values of the measure A

U-pair (P1, N1) NB-pair (P5, N2) PB-pair (P4, N1) A-pair (P3, N3)

ω1 = ω2 = 0 16 2 20 16
ω1 = 0, ω2 = 1,000 16 2 20 16
ω1 = 1,000, ω2 = 0 16 2 17 16
ω1 = 1,000, ω2 = 1,000 16 2 16 16

5.2 Results

The results of are shown in Table 4 (ω1 = ω2 = 0), Table 5 (ω1 = 0, ω2 = 1,000),
Table 6 (ω1 = 1,000, ω2 = 0), and Table 7 (ω1 = ω2 = 1,000) where we report, for each
alternative k and for each oustandingness predicate pair, the net oustandingess value Ωk

and the alternative’s rank. Note that, we set p = q = 1
2 for all experiments.

To validate the properties of the various fuzzy outstandingness predicate pairs, we
introduce the following measure, denoted measure A: which is the number of alternatives
with positive net outstandingness divided by the total number of alternatives. We
summarise the results of measure A in Table 2 which confirm that the positively biased
pair weighs most the positive outstandingness of an alternative wrt the negative one,
followed by the U-pair and the A-pair and the negatively biased pair weighs most the
negative outstandingness of an alternative instead. Furthermore, on this example, the
only measure A that is not stable across different configurations of the ω’s is the PB-pair
(P4, N1).
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Table 4 Results for ω1 = ω2 = 0

Alternative
MAOAM: net outstandingness, p = q = 1

2
; ω1 = 0; ω2 = 0

U-pair: (P1, N1) NB-pair: (P5, N2) PB-pair: (P4, N1) A-pair: (P3, N3)

Value Rank Value Rank Value Rank Value Rank

1 0.218 1 0.061 1 0.256 1 0.502 1
2 0.214 2 0.02 2 0.233 2 0.472 2
3 0.156 4 –0.129 5 0.173 8 0.326 4
4 0.085 14 –0.296 14 0.117 13 0.155 14
5 0.061 15 –0.321 15 0.098 15 0.117 15
6 0.087 13 –0.265 13 0.106 14 0.178 13
7 0.021 16 –0.357 16 0.068 16 0.058 16
8 0.135 5 –0.117 4 0.183 4 0.313 5
9 –0.198 27 –0.853 29 –0.182 27 –0.46 27
10 –0.215 28 –0.847 27 –0.199 28 –0.471 28
11 –0.215 28 –0.847 27 –0.199 28 –0.471 28
12 0.101 11 –0.24 11 0.149 11 0.204 11
13 0.101 11 –0.24 11 0.149 11 0.204 11
14 0.165 3 –0.11 3 0.202 3 0.345 3
15 0.132 6 –0.209 8 0.179 5 0.252 8
16 0.132 6 –0.209 8 0.179 5 0.252 8
17 0.132 6 –0.209 8 0.179 5 0.252 8
18 –0.28 32 –0.891 32 –0.262 32 –0.562 32
19 –0.082 23 –0.656 23 –0.053 23 –0.226 23
20 –0.232 30 –0.879 31 –0.215 30 –0.508 31
21 –0.14 26 –0.809 26 –0.122 26 –0.376 26
22 –0.011 17 –0.531 18 0.027 17 –0.083 18
23 –0.233 31 –0.858 30 –0.217 31 –0.496 30
24 0.124 9 –0.197 6 0.163 9 0.252 6
25 0.124 9 –0.197 6 0.163 9 0.252 6
26 –0.059 22 –0.623 22 –0.027 22 –0.186 22
27 –0.107 24 –0.724 24 –0.078 24 –0.293 24
28 –0.022 19 –0.582 19 0.013 18 –0.125 19
29 –0.022 19 –0.582 19 0.013 18 –0.125 19
30 –0.023 21 –0.588 21 0.011 20 –0.13 21
31 –0.124 25 –0.77 25 –0.104 25 –0.338 25
32 –0.021 18 –0.511 17 –0.003 21 –0.081 17

Furthermore, we observe that for all ω configurations, the various outstandingess pairs
exhibit some variation in rankings despite that they often agree more than disagree
overall.

In what concerns varying the ω values, we observe some variation in rankings for
different outstandigness prdeicates pairs across the same ω configuration. But, across
configurations, the rankings often agree more than disagree in this particular case. It
seems that the effect of the Hernian means for large ω values is not as great as one
expects. This led us to question the level of correlation among the attributes in our
input data. We indeed measured the correlation between each pair of attributes and



MAOAM 271

averaged them. The avarage mean correlation among attributes is indeed low being
0.564. This findings partly explains the observed lack of significant variation among
different rankings across various ω configurations.

Table 5 Results for ω1 = 0, ω2 = 1,000

Alternative
MAOAM: net outstandingness, p = q = 1

2
; ω1 = 0; ω2 = 1,000

U-pair: (P1, N1) NB-pair: (P5, N2) PB-pair: (P4, N1) A-pair: (P3, N3)
Value Rank Value Rank Value Rank Value Rank

1 0.216 1 0.095 1 0.251 1 0.5 1
2 0.189 2 0.041 2 0.217 2 0.434 2
3 0.119 10 –0.185 7 0.144 10 0.253 7
4 0.079 14 –0.303 14 0.11 14 0.153 14
5 0.07 15 –0.31 15 0.107 15 0.14 15
6 0.09 13 –0.247 11 0.117 13 0.198 11
7 0.039 16 –0.33 16 0.081 16 0.072 16
8 0.13 6 –0.13 4 0.174 6 0.284 6
9 –0.177 27 –0.88 30 –0.167 27 –0.419 27
10 –0.179 29 –0.867 27 –0.169 28 –0.435 30
11 –0.179 29 –0.867 27 –0.169 28 –0.435 30
12 0.097 11 –0.265 12 0.141 11 0.181 12
13 0.097 11 –0.265 12 0.141 11 0.181 12
14 0.152 3 –0.1 3 0.191 3 0.326 3
15 0.12 7 –0.228 8 0.163 7 0.24 8
16 0.12 7 –0.228 8 0.163 7 0.24 8
17 0.12 7 –0.228 8 0.163 7 0.24 8
18 –0.283 32 –0.925 32 –0.276 32 –0.583 32
19 –0.071 23 –0.7 23 –0.051 23 –0.199 23
20 –0.183 31 –0.886 31 –0.172 31 –0.431 29
21 –0.128 26 –0.848 26 –0.116 26 –0.351 26
22 –0.009 17 –0.586 18 0.02 17 –0.083 17
23 –0.178 28 –0.871 29 –0.17 30 –0.419 28
24 0.137 4 –0.149 5 0.176 4 0.29 4
25 0.137 4 –0.149 5 0.176 4 0.29 4
26 –0.052 22 –0.685 22 –0.028 22 –0.179 22
27 –0.093 24 –0.775 24 –0.072 24 –0.265 24
28 –0.015 18 –0.604 19 0.014 18 –0.097 18
29 –0.015 18 –0.604 19 0.014 18 –0.097 18
30 –0.016 20 –0.608 21 0.014 20 –0.1 20
31 –0.097 25 –0.801 25 –0.084 25 –0.28 25
32 –0.033 21 –0.55 17 –0.015 21 –0.12 21

6 Concluding remarks

In this paper, we introduced the MAOAM framework founded on two key concepts:

• Outstandingness predicates which are fuzzy predicates that measure the degree of
outsandingness of an alternative against another alternative in both the positive
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and negative senses. We proposed different types of oustandingness pairs: U-pair,
NB-pair, PB-pair, and A-pair and validated empirically their properties.

Table 6 Results for ω1 = 1,000, ω2 = 0

Alternative
MAOAM: net outstandingness, p = q = 1

2
; ω1 = 1,000; ω2 = 0

U-pair: (P1, N1) NB-pair: (P5, N2) PB-pair: (P4, N1) A-pair: (P3, N3)

Value Rank Value Rank Value Rank Value Rank

1 0.16 2 0.123 1 0.182 2 0.392 2
2 0.18 1 0.063 2 0.187 1 0.406 1
3 0.128 3 –0.085 5 0.133 4 0.253 3
4 0.059 14 –0.239 14 0.072 14 0.075 14
5 0.046 15 –0.262 15 0.062 15 0.052 15
6 0.075 11 –0.216 13 0.08 13 0.116 11
7 0.018 16 –0.298 16 0.04 16 0.004 16
8 0.094 5 –0.05 4 0.123 5 0.21 5
9 –0.147 27 –0.832 29 –0.145 27 –0.464 27
10 –0.165 28 –0.819 27 –0.162 28 –0.479 28
11 –0.165 28 –0.819 27 –0.162 28 –0.479 28
12 0.064 12 –0.169 11 0.089 11 0.107 12
13 0.064 12 –0.169 11 0.089 11 0.107 12
14 0.118 4 –0.047 3 0.137 3 0.247 4
15 0.081 8 –0.134 8 0.106 8 0.142 8
16 0.081 8 –0.134 8 0.106 8 0.142 8
17 0.081 8 –0.134 8 0.106 8 0.142 8
18 –0.223 32 –0.871 32 –0.221 32 –0.551 32
19 –0.067 23 –0.609 23 –0.057 23 –0.268 23
20 –0.182 30 –0.859 31 –0.179 30 –0.507 31
21 –0.102 26 –0.777 26 –0.099 26 –0.4 26
22 –0.022 21 –0.474 17 –0.008 21 –0.142 18
23 –0.193 31 –0.834 30 –0.189 31 –0.504 30
24 0.087 6 –0.133 6 0.107 6 0.158 6
25 0.087 6 –0.133 6 0.107 6 0.158 6
26 –0.055 22 –0.574 22 –0.044 22 –0.229 22
27 –0.081 24 –0.685 24 –0.073 24 –0.316 24
28 –0.013 18 –0.529 19 –0.001 18 –0.168 19
29 –0.013 18 –0.529 19 –0.001 18 –0.168 19
30 –0.016 20 –0.536 21 –0.005 20 –0.173 21
31 –0.101 25 –0.736 25 –0.096 25 –0.371 25
32 –0.005 17 –0.474 18 0 17 –0.113 17

• Multi-variate (weighted) generalised Heronian means employed in the aggregation
phase which are a family of multivariate generalised weighted Heronian means
having as special cases the Beliakov et al.’s (2008) generalised Heronian means
as well as that of Chu and Liu (2015). These types of means are especially useful
when there is a significant correlation among attributes. We, however, through the
proper parametrisation of these two means through ω1 and ω2 provide the
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flexibility to balance the proper level of compensation one should expect
fromthese means. The application of these means on a real use case that lacks
significant correlation among its attributes did not allow us to observe the results
of such a diversity.

Table 7 Results for ω1 = 1,000, ω2 = 1,000

Alternative
MAOAM: net outstandingness, p = q = 1

2
; ω1 = 1,000; ω2 = 1,000

U-pair: (P1, N1) NB-pair: (P5, N2) PB-pair: (P4, N1) A-pair: (P3, N3)
Value Rank Value Rank Value Rank Value Rank

1 0.141 1 0.153 1 0.163 1 0.349 1
2 0.123 2 0.084 2 0.136 2 0.296 2
3 0.069 7 –0.115 7 0.079 10 0.135 7
4 0.042 14 –0.214 14 0.053 14 0.058 14
5 0.034 15 –0.231 15 0.047 15 0.042 15
6 0.05 13 –0.17 11 0.059 13 0.089 11
7 0.019 16 –0.261 16 0.034 16 0.002 16
8 0.079 4 –0.042 4 0.102 4 0.17 4
9 –0.126 29 –0.834 30 –0.126 30 –0.41 28
10 –0.116 27 –0.809 27 –0.115 27 –0.419 30
11 –0.116 27 –0.809 27 –0.115 27 –0.419 30
12 0.052 11 –0.172 12 0.071 11 0.078 12
13 0.052 11 –0.172 12 0.071 11 0.078 12
14 0.087 3 –0.036 3 0.107 3 0.189 3
15 0.063 8 –0.136 8 0.083 7 0.115 8
16 0.063 8 –0.136 8 0.083 7 0.115 8
17 0.063 8 –0.136 8 0.083 7 0.115 8
18 –0.211 32 –0.886 32 –0.21 32 –0.56 32
19 –0.051 23 –0.615 23 –0.047 23 –0.215 23
20 –0.13 31 –0.84 31 –0.129 31 –0.417 29
21 –0.081 26 –0.79 26 –0.08 26 –0.351 26
22 –0.01 17 –0.486 17 –0.001 17 –0.119 17
23 –0.127 30 –0.81 29 –0.125 29 –0.402 27
24 0.078 5 –0.069 5 0.096 5 0.163 5
25 0.078 5 –0.069 5 0.096 5 0.163 5
26 –0.037 22 –0.599 22 –0.032 22 –0.198 22
27 –0.064 24 –0.709 24 –0.062 24 –0.272 24
28 –0.013 18 –0.523 19 –0.006 18 –0.137 18
29 –0.013 18 –0.523 19 –0.006 18 –0.137 18
30 –0.014 20 –0.527 21 –0.007 20 –0.14 20
31 –0.065 25 –0.73 25 –0.063 25 –0.285 25
32 –0.024 21 –0.492 18 –0.019 21 –0.158 21

We have provided various pairs of outstandingness predicates alongside a taxonomy
that could be further studied to align them with various decision-maker preferences in
specifying how to measure outstandigness among alternatives. This might bring some
added value with respect to existing method that focus more on outstandingness. Indeed,
an possible future research direction is to deploy a carefully chosen outstandingness
pairs for each attribute that describes more the fuzzy needs of the decision-maker on
each attribute separately.
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In future works, more exhaustive experiments need to be done in order to fully
understand the impact of the ω parameters especially when the attributes exhibit a high
level of correlation. Finally, it remains an important and challenging task to find the
proper combination of outstanding predicate pair as well as proper ω parameters for
each specific application that would meet the decison-makers intentions and preferences.
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