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Abstract: Most of the computational approaches based on Heyman’s theory 
rely on the safe theorem and can only tackle kinematical problems (KPs) with 
non-homogeneous boundary displacements for simple geometries. So far, no 
computational tools have been developed to directly address the KP for generic 
2D structures taking into account different mechanical scenarios and 
foundation settlements simultaneously. With this aim, compas_prd, a new 
computational Python-based tool has been developed. It is based on the 
piecewise rigid displacement (PRD) method, which couples the KP with the 
equilibrium problem (EP), allowing the search for a mechanism and its 
corresponding internal stress state even in large displacements. Both KP and EP 
are framed as linear programming problems, allowing fast computational 
solving. Looking at an approximate cross-section of a multi-span masonry 
bridge, different mechanical scenarios are addressed to illustrate the abilities of 
compas_prd, also taking into account an initial deformed configuration. 
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1 Introduction 

The assessment of masonry structures is a complex mechanical problem, mainly because 
of their negligible tensile strength (Heyman, 2019). Indeed, masonry constructions are 
typical structures characterised by a double unilateral constraint. These unilateral 
constraints allow them to accommodate small changes in the external environment 
reaching a new stable configuration (Heyman, 1966) where a rigid macro-block partition 
of the structural domain can be seen. This partition is defined by fractures, which are the 
peculiar manifestation of their intrinsic unilateral behaviour (Ochsendorf, 2002; Huerta, 
2006a; Como, 2013; Angelillo et al., 2018). For this reason, standard tools adopted in 
practice and conceived for other materials cannot be applied (Block et al., 2006; Shin  
et al., 2016), mainly for their inability in catching zero-energy modes (e.g., crack pattern 
or mechanisms which reflects into ill-conditioned matrices). 

One of the widely accepted approaches to face their assessment is to use limit 
analysis theory à la Heyman (Huerta, 2006b; Roca et al., 2007; Como, 2013). The 
Heyman model can be framed into the continuum mechanics using the so-called normal, 
rigid, no-tension (NRNT) material. It can be proved that its constitutive relations are 
equivalent to the classic normality and dual-normality relations adopted in Limit 
Analysis. In this sense, the boundary value problem (BVP) solution for an NRNT 
material intrinsically satisfies the classic limit analysis requirements (Angelillo, 2014). 
Moreover, for NRNT materials, a BVP solution can be found solving two opposite 
problems: an equilibrium problem (EP) and a kinematical problem (KP) (Angelillo et al., 
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2018). Solving the EP means finding an admissible internal stress state in equilibrium 
with the external loads, compatible with prescribed boundary conditions and fulfilling the 
NRNT material requirements. 

An efficient, robust and direct approach to the solution of EP is represented by the 
safe theorem of limit analysis, representing a standard lower bound approach to the BVP 
solution (Fraternali et al., 2002; Block and Ochsendorf, 2007; Block, 2009; Fraternali, 
2010; Fraddosio et al., 2020; Bruggi, 2020; Angelillo et al. 2021). For advanced 
applications, the reader is referred to Marmo and Rosati (2017), Marmo et al. (2018), 
Monaco et al. (2019), Barsi et al. (2019), Aita et al. (2019), Brandonisio et al. (2020), 
Gesualdo et al. (2020) and Olivieri et al. (2021). The safe theorem’s use requires only 
equilibrium considerations, and the stability is guaranteed when at least one thrust line, 
thrust network or purely compressed membrane lying entirely within the structural 
domain can be found (Heyman, 1966; Huerta, 2006b). Even though it was not rigorously 
framed, the safe theorem’s use can be traced back to the 18th century. Consequently, an 
initial rigorous framing of the thrust line theory can be dated back to the early of the 19th 
century. Specifically, it is attributed to Gerstner in German literature, to Méry in French 
literature and Moseley in English one. For more info, the reader is referred to Rondeaux 
et al. (2018) and Kurrer (2018). Méry and Moseley were the first who correlate the thrust 
lines with possible collapse mechanisms. Nowadays thrust line analysis still represents an 
efficient methodology to assess the local stability of complex three-dimensional 
structures (Paris et al., 2020) or the global stability through the slicing technique 
(Fuentes, 2019; Cennamo et al., 2018b). Only in recent periods, computational tools to 
fully explore lower-bound solutions have been successfully proposed (Block, 2009; 
Block and Lachauer, 2014a, 2014b; De Chiara et al., 2019). 

Solving the BVP KP means finding a displacement field that simultaneously  
satisfies constitutive relations, equilibrium requirements and, more importantly,  
non-homogeneous boundary conditions (Iannuzzo et al., 2018). Standard upper bound 
approaches based on the kinematic theorem of limit analysis can efficiently be used to 
assess the ultimate state of masonry structures, but they cannot take into account non-
homogeneous boundary displacements (Tralli et al., 2020). In this sense, they cannot be 
used to solve the kinematic problem in the presence of foundation displacements. Thus, 
no one computational tool suitable to solve the KP in presence of foundation settlements 
and for generic masonry 2D structures has been developed so far. 

Moreover, despite great advances in the field and numerous efforts put by scientists 
into the development of computational tools especially also for the KP of generic 
masonry structures subjected to different scenarios of damage, the 2D problem remains 
unclear/has yet to be fully determined. Particularly, approaches and related computational 
tools especially for 2D masonry structures can properly reproduce only simplified 
geometrical forms (e.g., arched or trivial regular structures) for which either the 
qualitative mechanism is known or a specific selection of a number of mechanisms is 
made in advance. For an extensive discussion, the reader is also referred to Iannuzzo  
et al. (2021b). 

The NRNT material employed to model masonry structures provides a consistent 
mathematical framework to the use of the total potential energy as the energy criterion to 
efficiently and consistently solve the KP, particularly in the presence of foundation 
displacements. Moreover, as proved in Angelillo et al. (2018), the dual-energy criterion, 
based on the minimisation of the total complementary energy, provides a robust approach 
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to solve the EP and, in this sense, to couple mechanisms and internal stress states 
(Iannuzzo et al., 2020). 

With this aim, a new Python-based computational tool, framed within COMPAS 
masonry (Iannuzzo et al., 2021a), is being developed: compas_prd. Is based on the 
piecewise rigid displacement (PRD) method (Iannuzzo, 2017) and solves both the KP and 
EP for generic masonry structures. It is trivial to note that as for a Heyman model the EP 
and KP are dual (Iannuzzo et al., 2020), the numerical solution of one problem can be 
directly obtained through the dual solution of the dual LP problem through Lagrangian 
multipliers. In this sense, it is sufficient to numerically solve only one of those two LP 
problems. It is currently implemented for 2.5D geometries since the analysis is planar but 
non-uniform, symmetrical orthogonal depths can be considered. Displacements and 
mechanisms can be found simultaneously as the solution of two dual linear programming 
(LP) problems. Different mechanical problems can be tackled: stability in the initial 
configuration (Iannuzzo et al., 2020), effects of foundation displacements (Iannuzzo, 
2019), assessment of the safety under horizontal actions (Iannuzzo et al., 2018, 2019), 
and, the effects of large foundation displacements (Iannuzzo et al., 2021b). In this paper, 
looking at a structure approximating a masonry bridge, we propose different studies using 
the PRD approach. The first analysis regards the stability of the initial, perfect 
configuration, and a numerical approach to evaluate the geometric safety factor (GSF) is 
provided. The second study looks at the effects of large foundation displacements 
affecting one of the piers. Four different scenarios, depending on the direction of the 
foundation displacement, are tackled, and the corresponding level of stability is evaluated 
performing a displacement capacity analysis. The third study proposes the load-bearing 
capacity analysis assuming a cracked configuration as the analysis’s starting point. 
Different loading conditions, together with different profiles of foundation settlements, 
will be considered. We will show how the foundation displacement’s value drastically 
affects the bridge’s load-bearing capacity, also in term of collapse load multiplier. The 
last study looks at the effects of horizontal actions, and the bridge’s stability will be 
measure through the evaluation of the horizontal static multiplier. 

2 PRD method 

This section shortly recalls the mathematical formulation of the PRD method, and how it 
allows coupling the search for a crack pattern/mechanism solving the KP with the 
corresponding internal stress state solving the EP. 

2.1 Constitutive relations: NRNT material and singular strain and stress fields 

With the PRD method, a 2D masonry structure is modelled as a continuum composed of 
NRNT material. The NRNT material frames the Heyman material model into continuum 
mechanics through three constitutive relations: 

Sym , Sym , 0− +∈ ∈ ⋅ =T E T E  (1) 

in which T and E are the stress and latent strain tensors and where Sym– and Sym+ are 
the mutual polar cones of semidefinite negative and positive symmetric tensors. Relations 
(1) are the necessary ingredients for applying limit analysis to masonry structures. For 
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more info, the reader is referred to Angelillo (2014). For NRNT materials, both the strain 
E and stress T are bounded measures (Angelillo et al., 2014) and they can be 
decomposed additively into the sum of a regular part (∙)r and a singular part (∙)s, that is: 

r s r s, .= + = +E E E T T T  (2) 

Both the singular part of the strain and stress tensor can be represented by Dirac delta 
distributions having 1D curves as supports. Furthermore, while the singular part of the 
strain can be used to model fractures, that is, displacement jumps occurring on lines (e.g., 
hinges), the singular part of the stress tensor can be adopted to model 1D compressive 
forces along lines (e.g., thrust lines). Even if a numerical method accounting for the 
regular part of the latent strain is possible (Iannuzzo et al., 2019), the PRD approach 
considers the only displacement jumps as admissible. 

2.2 Two energy criteria for NRNT materials 

For the NRNT material, two minimum energy criteria can be proved (Angelillo et al., 
2018). The first reads: a solution of the BVP is represented by the displacement field u* 
minimising the total potential energy ℘(u) of the external loads in the space   of the 
admissible displacement fields u, namely: 

( )*
u
min ( ).

∈
℘ = ℘u u


 (3) 

In this case, since we look for a solution of the BVP in the space of admissible 
displacement fields, we are solving the KP using a displacement approach. 

The second dual criterion reads: a solution of the BVP is represented by the stress 
field T* minimising the complementary energy ℘c(T) in the space   of the admissible 
stress fields T, namely: 

( )*
u
min ( ).

∈
℘ = ℘T T


c  (4) 

Conversely, in this case, we are solving the EP with an equilibrium approach, which also 
gives a rigorous mathematical framework to the approach adopted in the past centuries by 
many scientists. Indeed, every time we are looking for a thrust line of purely compressive 
forces lying within the structural geometry (this technically means that the stress state T 
is admissible), we are solving the BVP through an equilibrium approach. 

2.2.1 Primal LP problem 
The PRD method couples the two dual-energy criteria and frames them as two dual LP 
problems. In particular, once the structural domain is discretised into M elements 

( )i i {1, , M} ,∈Ω   (5) 

and the set of admissible displacement is assumed composed of piecewise-rigid 
displacements defined over (5), the minimum problem (3) can be written as the following 
LP problem: 

minimise − ⋅c U  (6.1) 
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subject to 
int int

equt 0, 0≥ =A U A U  (6.2) 

ext ext
n eq tub , ,≥ = −A U δ A U δ  (6.3) 

where 

• 3M∈U   is the vector collecting the 3M rigid-body Lagrangian parameters (i.e., two 
translations and one rotation around, e.g., the centre of gravity) of the elements of 
equation (5) 

• the vector 3M∈c   collects the forces dual to the Lagrangian parameters U 

• int
ubA  and int

eqA  are two matrices enforcing the Heyman’s material restrictions 
(unilateral contact without sliding) on internal interfaces between two adjacent 
elements 

• vectors nδ  and tδ  represent the normal and tangential component of prescribed 
boundary displacements, respectively 

• ext
ubA  and ext

eqA  are matrices used to enforce non-homogeneous boundary 
displacements ruled by the vectors nδ  and t .δ  

Therefore, the objective function of the LP problem (6.1) is the discretised form of the 
total potential energy, whilst the constraints are represented by linear relations enforcing 
both Heyman’s material restrictions (6.2) and prescribed boundary displacements (6.3). 

2.2.2 Dual LP problem 
The original problem (P) gives rise to the following dual LP problem: 

n n t tminimise − ⋅ − ⋅f δ f δ  (7.1) 

subject to 
T T

n eq tub + =A f A f c  (7.2) 

i c2( )
n t0, +≤ ∈f f     (7.3) 

in which: 

• the vectors nf  and tf  represent the emerging singular stress on the constrained 
boundary 

• the matrix T T
equb[ ]A A  is the transpose of the matrix Aub [Aeq] that collects vertically 

int ext
ub ub[ ]A A  and ext ext

equb [ ]A A  

• the vectors fn and ft represent the emerging singular stress field on the boundary 
(internal and external) defined by the elements of equation (5). In particular, they are 
the forces dual of the unilateral (normal) and bilateral (tangential) kinematic 
constraints. 
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Thus, this dual LP problem represents the discretised form of the minimum problem (4). 
Specifically, the objective function (7.1) is the discretised form of the complementary 
energy since it is the opposite of the work done by the reaction forces and the constrained 
displacements of the primal problem. The matrix expression (7.2) represents the 
equilibrium of the elements of equation (5) and it is ruled by the transpose of the 
kinematic matrices of the problem (6). Finally, inequalities (7.3) allow only for 
compressive forces. 

It is worth to point out that, when there is a gap between two adjacent blocks (i.e., the 
relative displacement is non-zero), the corresponding force has to be zero since there is 
no contact. Conversely, if the forces on the boundary of the elements are non-zero, the 
relative dual displacement has to be zero. The solution of the dual problem (7) allows 
finding internal (between blocks) and external forces (on the constrained boundary) in an 
assembly of rigid block acting unilaterally without sliding. The first proof and an 
application of the minimum of the complementary energy for NRNT materials can be 
traced back in Angelillo et al. (2018). 

Finally, the PRD method translates the minimum problems (3) and (4) into two dual 
LP problems (6) and (7), allowing fast computational solving since numerical algorithms 
such as the interior-point can be used. Moreover, we want to point out that the primal 
problem’s solution directly provides (through the Lagrangian multipliers) the solution of 
the corresponding dual problem. 

2.2.3 Large displacement fields 
The way used to take into account large displacement fields is to recursively apply the 
PRD method on the deformed configuration in a step-by-step procedure. This procedure 
allows, at the same time, to keep fixed the NRNT material restrictions and to frame the 
displacement capacity analysis into a sequence of LP problems, that is, into a 
superimposition process of PRD analyses on the deformed and updated geometry. For 
this reason, large displacement fields are approximated through small PRDs in a 
superimposition process. This numerical procedure allows taking into account the effects 
of large foundation settlements on the stability of masonry structures, which are able to 
withstand even large foundation settlement (DeJong, 2016; McInerney and DeJong, 
2015). In particular, the primal LP problem (6) after each step needs to be updated. It 
preserves the same form, and the dual problem (7) is always the dual of the updated 
problem (6). If we are performing a PRD displacement capacity analysis, this procedure 
takes place until the total potential energy (6.1) is not bounded from below anymore: the 
structure becomes unstable and collapses. For a detailed description, the reader is referred 
to Iannuzzo et al. (2021b). 

3 Numerical application: a masonry bridge 

In this section, looking at an approximate cross-section of a masonry bridge [Figure 1(a)], 
we show how compas_prd can address different mechanical scenarios, outlining the main 
peculiarities of its current implementation. Based on the PRD method, compas_prd is a 
Python-based computational tool, which currently can handle any 2.5D geometry; that is, 
the analysis is planar but non-uniform, symmetrical orthogonal depths can be considered. 
In Figure 1(a), the geometry and the discretisation of the structure composed of three 
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identical shallow arches supported on four piers are depicted. For more details on the 
modelling of masonry arch bridges, the reader is referred to Proske and Van Gelder 
(2009) and Sarhosis et al. (2016), while in Gobbin et al. (2020) and an accurate modelling 
of the effect of the backfill in historic masonry vaults is provided. 

The arches, having an internal radius of 2.00 m, a thickness of 0.30 m, a springing 
angle of 150°, are discretised into 21 voussoirs. The two external abutments have a height 
of 3.00 m and a width of 1.50 m, while the internal ones have the same height but a width 
of 1.00 m. All piers are partitioned with 16 blocks. The model’s orthogonal depth is  
1.00 m, and four additional blocks [highlighted in blue in Figure 1(a)] are added as 
supports. As a load, we consider the self-weight for a uniform distribution of mass 
density (ρ = 1,800 kg/m3). Different mechanical problems are addressed: stability of the 
initial configuration (Subsection 3.1), effects of large foundation displacements 
(Subsection 3.2), effects of incremental loads in a deformed configuration  
(Subsection 3.3), and effects of horizontal loads (Subsection 3.3). Each PRD analysis is 
conducted solving the corresponding LP problem with CVXPY (Diamond and Boyd, 
2016) and using the open-source solver ECOS (Domahidi et al., 2013). The 
computational time required to initialise the model, define and solve a single optimisation 
problem is about 0.05 s with an Intel® Core™ i7-8850H. 

Figure 1 (a) Geometry and discretisation of an approximate cross-section of a masonry bridge  
(b) Solution of the primal (6) and dual (7) problems for the initial perfect configuration 
(c)–(d) GSF assessment for the external, right abutment: two admissible stress states 
obtained by constraining the flow of forces to cross a tighter base obtained by 
symmetrically reducing the initial base through a scale factor r – the GSF is obtained as 
the inverse of r (see online version for colours) 

Support 3 Support 4

Arch 2 Arch 3Arch 1

Support 2Support 1

(a) (b)

Initial configuration

(c)

r = 0.15

(d)

r = 0.14

Model and discretisation

 

3.1 PRD stability analysis of the initial configuration and GSF 

This section illustrates a PRD stability analysis of the structure in its initial, perfect 
configuration. The assessment of the stability level is pursed through a numerical 
approach proposed in Iannuzzo et al. (2020), which allows defining the GSF – the reader 
is referred to Heyman (1997) for its definition, and Cennamo et al. (2018a) and Cennamo 
and Cusano (2018) for standard applications. 
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First, a PRD stability analysis of the structure is performed assuming zero boundary 
displacements (i.e., the supports are considered fixed). The solution of the primal 
problem (6) shows that the structure is stable as U = 0 is the minimiser of the total 
potential energy. The objective function of the corresponding dual problem (7) is zero 
and since the set of admissible stress states defined by constraints (7.2) and (7.3) is not 
void, infinite admissible stress solutions are possible [for more info the reader is referred 
to Iannuzzo et al. (2020)]. Figure 1(b) show one of the infinite admissible stress states. 
Note that the internal stress state is represented by reducing the interface forces to their 
resultants. It is worth to point out that this internal stress state is composed of 
compressive forces and is everywhere lying within the structural geometry. 

The solution reported in Figure 1(b) shows that, because of both geometry and loads’ 
symmetry, the flow of forces along the two internal piers is vertical and is acting on the 
centres of gravity of the two bases (supports 2 and 3). Therefore, the GSF of these two 
piers, for a gravity load condition, is infinite. Conversely, from Figure 1(b), it can easily 
be noted that the GSF of the two external abutments is not infinite. Therefore, an 
approach to evaluate the GSF of the outer, right pier consists in tightening the base 
forcing the flow of forces to go through a reduced interface until an admissible internal 
stress state can be still found [for more info the reader is referred to Iannuzzo et al. 
(2020)]. In Figures 1(c)–1(d), two admissible stress states obtained by reducing the actual 
base symmetrically with a scale factor r are depicted. Specifically, the condition depicted 
in Figure 1(d) and corresponding to r = 0.14 represents the ultimate limit state for which a 
compressive stress state lying within the structure can be still found. The corresponding 
GSF is 7.14. The total computational time needed to initialise, define and solve both the 
primal (6) and dual (7) problems is about 0.06s with an Intel® Core™ i7-8850H. 

3.2 PRD displacement capacity analysis 

This section illustrates how the PRD method allows assessing the stability of the masonry 
bridge subjected to large foundation displacements. In particular, we test its stability 
referring to four different foundation profiles affecting the third pier. In recent years, the 
study of the foundation displacement effects represents a growing research interest 
(Acikgoz et al., 2017; Portioli and Cascini, 2017; D’Altri et al., 2019; Sangirardi et al., 
2019; Spada, 2019; Pepe et al., 2020; Tiberti et al., 2020). Performing a displacement 
capacity analysis gives direct information about the closeness to the collapse of a 
structure showing a non-negligible crack pattern. Indeed, suppose we know the 
foundation profile causing the existing crack pattern. By increasing its magnitude, we can 
measure the structure’s stability as the ratio among the maximum allowable displacement 
and the current one. Of course, the hypothesis at the base of the proposed approach is that 
the foundation profile’s evolution can be described as a function of a scalar parameter. 

The stability is assessed by performing a displacement capacity analysis and 
evaluating the maximum allowable displacement for which the structure is still stable. 
Notably, we assume that the third support is subjected to an increasing foundation 
displacement δ whose direction is defined by the angle α [Figure 1(a)]. Four values of α 
are considered: 0°, 15°, 30° and 45°. Note that opposite values of α (i.e., –0°, –15°, –30° 
and –45°) are not considered. Indeed, as it will be more evident in what follows, the 
present bridge’s stability depends on the arches’ geometry rather than on the piers’ 
geometry. Indeed, the opposite values of α give rise to anti-symmetric results in terms of 
mechanisms and identical results in terms of maximum allowable displacements. Each 
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analysis is conducted increasing the displacement δ in steps of 1 cm each until the 
structure collapses. 

Figure 2 PRD displacement capacity analysis assuming a vertical (α = 0°), increasing foundation 
displacement δ affecting the third pier (see online version for colours) 

(a)

70 cm

(b)

152 cm
0°

 

Notes: Configurations, crack patterns (bold, black lines) and resultant forces (red lines) 
for δ=70 cm (a) and for the unstable configuration due to δ=152 cm (b). 

Figure 2 shows the results of a PRD displacement capacity analysis assuming a vertical 
foundation displacement (α = 0°). The constraint (6.2) of the primal problem (6) are used 
to enforce the non-homogeneous, incremental, boundary displacement. The solution of 
the primal problem (6) is the displacement vector U collecting the Lagrangian parameters 
of the blocks. Since U ≠ 0, displacement jumps among adjacent blocks occur. The set of 
all displacement jumps represents the structure’s crack pattern needed to accommodate 
the foundation displacement. 

The displacement capacity analysis is performed solving a sequence of LP problems 
on the updated geometry. As soon as a small settlement (δ = 1 cm) occurs, both the 
arches supported by the third pier show a three-hinge mechanism [Figure 2(a)]. This 
mechanism remains qualitatively the same until δ reaches the value of 151 cm 
representing the maximum allowable displacement. Indeed, for δ = 152 cm [Figure 2(b)], 
the structure starts collapsing: because of the symmetry, the collapse involves both the 
arches while the piers are still in a stable condition. The total computational time needed 
for the entire displacement capacity analysis (about 200 steps) is about 8s with an Intel® 
Core™ i7-8850H. 

Figure 3 shows the results of PRD displacement capacity analysis assuming a 
settlement whose direction is defined by α = 15° [Figure 1(a)]. As in the previous case, 
the LP problems are solved in a superimposition process allowing for the evolution of the 
mechanism/crack pattern during the motion. Indeed, to accommodate the increasing 
foundation displacement, the structure shows ten, different, qualitative mechanisms 
(Figure 3) until δ reaches the value of 113 cm when the arch 2 becomes unstable. In this 
case, the total computational time required is about 9 s with an Intel® Core™ i7-8850H. 

Two further PRD displacement capacity analyses are performed assuming a 
foundation displacement whose direction is defined by α equals 30° (Figure 4) and 45° 
(Figure 5). The capacity in term of displacements is 85 cm and 65 cm, respectively. In 
both cases, the structure collapses when the arch 2 reaches an unstable configuration 
[Figures 4(d) and 5(b)]. For α = 30°, the bridge shows four different qualitative 
mechanisms during the motion. Conversely, the initial crack pattern remains the same 
until the collapse state when α = 45°. The computational time required for these two PRD 
displacement capacity analyses is about 7 s and 5 s with an Intel® Core™ i7-8850H. 
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Figure 3 PRD displacement capacity analysis for a foundation displacement δ affecting the third 
pier and whose direction [Figure 1(a)] is defined by α = 15° (see online version  
for colours) 

(e)

63 cm

(f)

70 cm

(a)

21 cm

(b)

23 cm
15°

(c)

45 cm

(d)

50 cm

(g)

79 cm

(h)

84 cm

(i)

95 cm

(l)

113 cm

 

Note: Ten qualitative, different mechanisms are used by the bridge to accommodate the 
increasing foundation displacement δ until the structural collapse (l). 

In all the cases, as the reader can see, the crack pattern solving the primal problem (6) 
and the corresponding internal stress state, solving the dual problem (7), are perfectly 
compatible: when a new hinge (crack) forms the thrust goes through the centre of 
rotation, and if a hinge, during the motion, closes up, the corresponding resultant forces 
can get back to act over the internal interface. 
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Figure 4 PRD displacement capacity analysis assuming a foundation displacement δ defined by  
α =30° [Figure 1(a)] (see online version for colours) 

(a)

15 cm

(b)

23 cm
30°

(c)

5 cm

(d)

86 cm

 

Notes: Representation of the main mechanisms and corresponding internal until the 
collapse (d). 

Figure 5 PRD displacement capacity analysis assuming a foundation displacement δ defined by  
α = 45° [Figure 1(a)] (see online version for colours) 

(a)

35 cm

(b)

66 cm
45°

 

Notes: The initial (δ=1 cm) mechanism remains qualitative the same, e.g., δ=35 cm (a), 
until the structure collapses δ=66 cm (b). Crack pattern and corresponding internal 
forces are compatible. 

3.3 PRD load-bearing capacity analysis 

This section illustrates the PRD method’s potentials in performing load-bearing capacity 
analyses with non-homogeneous boundary conditions. To this aim, we propose a 
complex mechanical scenario. We want to define the load-bearing capacity of the 
masonry bridge assuming as reference configuration the one depicted in Figure 6, where 
the structure shows a crack pattern due to a 10 cm third pier’s settlement whose direction 
is defined by α = 15°. Two different, vertical, asymmetric loading conditions affecting 
the second arch are considered (Figure 6). In both cases, the variable load’s magnitude is 
increased in steps of 0.05 kN/m each, until the structure collapses. This procedure gives 
rise to a sequence of LP problems. The maximum value of the load that the structure can 
stably withstand corresponds to the last value for which the total potential energy is still 
bounded from below. When the total potential energy is not bounded from below 
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anymore, it is impossible to find an equilibrated configuration, and the structure turns 
into a collapse mechanism. 

Figure 6 PRD load-bearing capacity analysis of the bridge subjected to non-homogeneous 
boundary conditions (see online version for colours) 

= 10 cm

=10Ö

Support 3 Support 4Support 2Support 1

Case A
q

q
Case B

 

Notes: The third pier has settled (δ = 10 cm, α = 15°). The bridge’s deformed 
configuration is assumed as a reference configuration for the load-bearing 
capacity analysis considering two different loading cases (cases A and B, 
respectively). 

The initial crack pattern (corresponding to the foundation settlement’s reference value of 
10 cm) defines a rigid macro-block partition of the structural domain as depicted in 
Figure 6. However, additional, increasing loads force the structure to reach a new 
equilibrium configuration: old hinges (cracks) close and new hinges open up. In this 
sense, the rigid macroblock partition evolves to accommodate increasing loads in new 
stable, cracked configurations. Figures 6 and 8 report the evolution of the mechanisms in 
the two different loading cases of Figure 6, i.e., cases A and B, respectively. Moreover, 
Figures 6(e) and 8(e) show the last stable configurations, while Figures 6(f) and 8(f) the 
collapse mechanisms. It is worth noting that the maximum load capacity in case A is 
25.60 kN/m while in cases B is 26.55 kN/m. The difference is due to the initial crack 
pattern, which determines a non-symmetric crack pattern. The total computational time 
needed for the entire load-bearing capacity analysis (considering small incremental steps 
of 0.05kN/m each, which gives rise to a sequence of about 600 LP problems!), including 
the initialisation of the model and the starting displacement capacity analysis needed to 
define the cracked configuration, is about 25 s with an Intel® Core™ i7-8850H. 

3.4 PRD seismic capacity analysis 

In this section, we assess the level of stability of the bridge subjected to horizontal 
actions. The usual way to account for seismic actions is to simulate them with horizontal 
forces proportional to the self-weight using a scale factor λ. Once λ reaches a specific 
value, the structure becomes a mechanism (Fortunato et al., 2014; Iannuzzo et al., 2018, 
2020). From this point onwards the mechanics is dominated by the rocking (DeJong and 
Ochsendorf, 2010; DeJong and Dimitrakopoulos, 2014; Mauro et al., 2015; 
Dimitrakopoulos and DeJong, 2012; Como et al., 2019; Meriggi et al., 2019) where the 
role of the friction becomes relevant (Monaco et al., 2014). The rocking behaviour of 
masonry structures can be clearly seen in experimental tests (Krstevska et al., 2020) and 
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it represents a further, but ultimate, resource to resist severe actions (Como, 2019) even if 
it leads to chaotic behaviour (Mascolo, 2019). 

Figure 7 PRD load-bearing capacity analysis with non-homogeneous boundary conditions:  
case A (Figure 6), (a) (b) (c) (d) (e) evolution of mechanisms and internal stress states 
used by the bridge to accommodate increasing loads (f) collapse mechanisms  
(see online version for colours) 

(e)

q = 20.30 kN/m

(f)

(a)

q = 1.15 kN/m

(b)

15° , 10 cm

(c)

q = 2.95 kN/m

(d)

q = 4.10 kN/m

q = 25.60 kN/m Collapse Mechanism

Case A

 

In Figure 9, solutions of both the primal (6) and dual (7) problems for increasing values 
of λ are reported. For low values [Figures 9(a)–9(b)], the structure is stable but the flow 
of forces to be in equilibrium with the increasing horizontal loads gets more inclined with 
respect to a vertical axis. When λ reaches the value of 0.30 [Figure 9(c)], the structure 
becomes a mechanism [Figure 9(d)]. Arches 1 and 3 become a three-hinge mechanism, 
while arch 2 shows only two hinges. Three further cracks open up at the base of the piers 
2, 3, and 4. The corresponding resultant forces are perfectly compatible with the 
mechanism: when a hinge forms the resultant force goes through the centre of rotation. It 
has to be underlined how the hinges’ position in the arches moves from the left to the 
right part of the structure (Figure 9). 
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Figure 8 PRD load-bearing capacity analysis with non-homogeneous boundary conditions:  
case B [Figure 1(a)], (a) (b) (c) (d) (e) evolution of stable mechanisms and internal 
stress states used by the masonry bridge to accommodate increasing loads (f) collapse 
mechanisms (see online version for colours) 

(e)

q = 10.40 kN/m

(f)

(a)

q = 1.50 kN/m

(b)

15° , 10 cm

(c)

q = 5.60 kN/m

(d)

q = 9.70 kN/m

q = 26.55 kN/m Collapse Mechanism

Case B

 

Figure 9 PRD horizontal capacity analysis of the structure for increasing values of the horizontal 
static multiplier λ (see online version for colours) 

(a)

0.10g

(b)

(c) (d)

0.20g

0.30g 0.30g

 

Notes: For low values of λ, the structure is stable (a, b). For λ=0.30, the structure 
becomes a mechanism (d) whose internal stress state is depicted in (c). 
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4 Discussion 

In this section, we discuss the main features of the PRD analyses referring to Section 3. 
Subsection 3.1 showed that the masonry bridge in its initial, perfect configuration is 
stable and, also, infinite admissible internal stress states are possible. We assessed the 
stability level through the evaluation of the GSF. Moreover, it is worth noting that the 
GSF evaluation’s numerical procedure also represents a way to select one of the infinite, 
admissible stress solutions. This feature perfectly fits the limit analysis spirit: in the 
undeformed configuration, infinite admissible, stress states are possible, and trying to 
find the actual stress state (the ‘true’ line of thrust) in a perfect configuration is hopeless. 

Figure 10 PRD displacement capacity analyses, (a) in horizontal thrust (dimensionless to the total 
weight of the structure) exerted on support 3 and 4 (b) in horizontal thrust 
(dimensionless to the arch’s weight) exerted by arch 2 and 3 on pier 3  
(see online version for colours) 

 
(a) 

 
(b) 

Notes: For α = 0°, the horizontal thrusts exerted by the arch 2 and 3 on the third pier are 
equal because of the symmetric mechanism. Consequently, the horizontal thrust 
on support 3 is everywhere zero [Figure 10(a)]. 
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Subsection 3.2 assessed the bridge’s stability for increasing foundation settlements 
performing some PRD displacement capacity analyses. First, these analyses clearly 
illustrated the peculiar behaviour of masonry structures which accommodate foundation 
displacements through a rigid macro-block partition of the structural domain. Moreover, 
increasing foundation displacements are accommodated through an evolution of the 
mechanism/crack pattern (Figures 2–6) until a part of the (or the whole) structure 
becomes unstable. This aspect highlights how the intrinsic weakness of masonry 
structures represented by their unilaterality turns into a ductile response for small 
foundation settlements, making them resilient to small external environment changes. 

Referring to the displacement capacity analyses, in Figure 10(a), we report the 
diagram of the horizontal thrust exerted on the supports 3 and 4. At the same time,  
Figure 10(b) shows the horizontal thrust exerted on the third pier by the second and third 
arch. Both diagrams show several jumps. These jumps occur whether the mechanism 
switches from one configuration to another or if the internal stress state suddenly changes 
(Iannuzzo et al., 2021b). Moreover, all the curves show an initial jump for δ = 1 cm: as 
soon as the structure undergoes a small settlement, it decomposes into rigid macro-blocks 
and accommodates this slight change in the boundary conditions in a new, deformed 
configuration. Consequently, the horizontal thrust (of the moving part of the structure) 
suddenly changes (e.g., in the presented cases, it drops down). While the blue and yellow 
curves do not show other jumps, the red and green ones show other jumps due to the 
changes in the mechanisms highlighted in Figures 3 and 4. Moreover, looking at  
Figure 10(b), it has to be noted that curves having a vertical asymptote at the collapse 
identify the collapsing part of the structure: except for α = 0° (where both arch 2 and 3 
are collapsing, i.e., the mechanism is symmetric), in the remaining cases, the collapse 
involves only the second arch. 

Subsection 3.3 looked at assessing the bridge’s load-bearing capacity, not in its 
undeformed configuration, but assuming a cracked structure as the starting point for our 
analysis. The bridge in a cracked configuration (δ = 10 cm, α = 15°, Figure 6) was loaded 
until its collapse referring to two different asymmetric, loading conditions. The main aim 
of the analysis was to illustrate how the PRD approach provides a consistent  
energy-based approach to face complex problems where the evolution of the mechanism 
(closing of old cracks and opening of new fractures) is key. 

Figure 11 shows the trend of the horizontal and vertical thrusts exerted on the 
supports as a function of the variable loads both in cases A and B, respectively. Also, in 
the present case, jumps on the thrusts identify changes in the mechanism as noted before. 
Moreover, looking at the thrusts diagrams, intervals showing a simultaneous, non-smooth 
trend suggest that part of the bridge connecting the corresponding supports is statically 
undetermined. Specifically, the meaning is that the thrust line can be slightly translated 
and the related internal stress state is still admissible. Indeed, looking at the load-bearing 
capacity of Figure 8, the left part of the bridge connecting supports 1, 2 and 3 is statically 
undetermined up to 5.60 kN/m. For variable loads greater than 5.60 kN/N only the 
structural part connecting supports 1 and 2 remains statically undetermined. The non-
smooth trend of the curves (red, yellow and green) of Figure 11(b) clearly illustrates this 
behaviour. 

Finally, to show how the foundation settlement’s initial value can significantly affect 
the load-bearing capacity of the bridge, in Figure 12 we report the collapse load 
multiplier (with respect to a given live load of 1 kN/m) as a function of the foundation 
displacement and for the two different loading cases of Figure 6. Additionally, the 
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collapse multiplier is evaluated, referring to all four foundation settlement profiles 
analysed in Subsection 3.2. 

Figure 11 PRD load-bearing capacity analyses, (a) and (b) horizontal (c) and (d) vertical thrusts 
(dimensionless to the total weight of the structure) exerted on supports and 
corresponding to the two asymmetric loading conditions of Figure 6 (cases A and B, 
respectively) (see online version for colours) 

Case A Case B

Case A Case B

(a) (b)

(c) (d)  

Figure 12 PRD load-bearing capacity analyses with non-homogeneous boundary conditions: 
collapse multiplier (reference load equals to 1 kN/m) as a function of the foundation 
displacement, (a) and (b) the two loading conditions of Figure 6 (cases A and B) are 
considered (see online version for colours) 

Case A

 
(a) 

Notes: Moreover, the analysis is performed referring to the four foundation profiles 
studied in Subsection 3.2. As the reader can note, the collapse multiplier rapidly 
decreases with increasing foundation displacements. 



   

 

   

   
 

   

   

 

   

   440 A. Iannuzzo et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 12 PRD load-bearing capacity analyses with non-homogeneous boundary conditions: 
collapse multiplier (reference load equals to 1 kN/m) as a function of the foundation 
displacement, (a) and (b) the two loading conditions of Figure 6 (cases A and B) are 
considered (continued) (see online version for colours) 

Case B

 
(b) 

Notes: Moreover, the analysis is performed referring to the four foundation profiles 
studied in Subsection 3.2. As the reader can note, the collapse multiplier rapidly 
decreases with increasing foundation displacements. 

Specifically, we replicate the study performed in Subsection 3.3 for each profile of 
Subsection 3.2, and for different values of the foundation settlement (up to 10 cm, a 
reasonable value of the foundation displacement). As the reader can note, for a 
foundation settlement of 10 cm, the green curves restitute the collapse load found in 
Subsection 3.3. Moreover, looking at the diagrams of Figure 12, it is worth noting how 
the collapse multiplier rapidly decreases with increasing foundation settlements. It goes 
from about 3.1 for a perfect, non-cracked configuration, to 2.5–2.7 when the initial 
configuration it the one associated to a 10 cm yielding of the third pier. Subsection 3.4 
showed how the PRD method provides a straightforward approach to assess the 
horizontal static multiplier and identify the structure’s crack pattern when it starts 
rocking. Finally, we want to point out that the current implementation of the PRD method 
provides a fast computational solving of various mechanical problems as it can solve a 
sequence of hundreds of LP problems in a few seconds as shown for both the 
displacement and load-bearing capacity analyses. 

5 Conclusions 

This paper has presented peculiarities and abilities of compas_prd, a new, Python-based 
tool framed within COMPAS masonry (Iannuzzo et al., 2021a). It is based on the PRD 
method (Iannuzzo, 2017), representing a fast, computational, limit analysis, 
displacement-based approach for assessing masonry structures. 

The PRD approach’s key aspect relies on using displacements as primal variables, 
which allows handling BVP with mixed boundary conditions, i.e., taking into account 
non-homogeneous boundary-displacements and forces at the same time. It is based on 
two dual-energy criteria (i.e., minimum of the total potential and complementary energy), 
and, thus, it allows coupling mechanisms and corresponding internal stress states even in 
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the presence of large foundation displacements. Moreover, it allows to perform and 
assess masonry structures without making any assumptions on the mechanism’s shape or 
considering only a fixed number of mechanisms in advance. 

In particular, looking at an approximate cross-section of a multi-span masonry bridge, 
we have demonstrated how compas_prd in a few seconds provides mechanisms and 
corresponding internal forces for different mechanical problems: stability of the reference 
configuration, effects of large displacements, load-bearing capacity analyses on a cracked 
configuration, and effects of horizontal actions. Furthermore, for each problem, a 
measure of the closeness to the collapse have been provided through GFS, maximum 
allowable displacement, collapse load and horizontal static multiplier. 

The first key point of all the proposed analyses is that the PRD approach provides a 
fast, energy-based and robust limit analysis strategy to solve both classical mechanical 
problems and non-standard problems in which non-homogeneous boundary conditions 
play a crucial role. Additionally, another key aspect is that it not only provides 
information about limit states (e.g., collapse loads or the maximum allowable 
displacements); but it also provides information about fractures and internal stress states 
for structures that, subjected to external loads and settlements, are still in a stable 
configuration. 
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