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Abstract: Single nucleotide polymorphisms (SNPs) are the most common form
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a particular drug and they might lead to complex multi-factorial and common
diseases such as cancer, inflammatory disease, cardiovascular disease and so
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comprehensive review on single nucleotide polymorphisms (SNPs), association
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identification and SNP identification approaches.
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1 Introduction

With completion of Human Genome Project (HGP), in 2003, enormous amount of
genetic data was generated as 20,500 human genes were revealed and 3.3 billion base
pairs of human genome were sequenced. In the past two decades, various endeavours and
progress in genome sequencing led to generation of massive data on genetic variants, in
particular, SNPs (NHGRI, 2015). Projects like Genome-Wide Association Studies
(GWAS) and The Cancer Genome Atlas (TCGA) revealed a number of sequence
variations. Now, it is a big challenge to distinguish between harmless and disease-causing
variations. It is established from the conducted studies that 99.5% of human genome
sequences are identical with a difference of 0.5% only (Sachidanandam et al., 2001).
Various forms of sequence variations are there viz. variable number of tandem repeats,
insertions ordeletions(indels) and Single nucleotide polymorphisms (SNPs). SNPs are the
most common form of genetic sequence variations (Collins et al., 1997; Robert and
Pelletier, 2018). SNPs involve change of single nucleotide, i.e., adenine (A), guanine (G),
cytosine (C) or thymine (T) in the genome sequence (Vallejos-Vidal et al., 2020). SNPs
involve substitution of one nucleotide for another in the DNA sequence (Collins et al.,
1997). Figure 1 presents an example of SNP.

Figure 1 Example of SNP
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Mostly, SNPs are bi-allelic as the rate of mutation at a base-pair position is quite low and
it is least probable that two point mutations occur at same base-pair position. This makes
them a perfect choice as a marker for mapping the history of populations and for other
tasks (Borsting and Morling, 2013). SNPs are found to occur at every 100-300 bp and
allele frequency is higher than 1% (Wang et al., 1998). Under SNPs, if the change of
nucleotide occurs in this way: A <-->G or C <-->T, it is termed as transition and if it
occurs in this way: A <-->C or T or G <-->C or T, it is termed as transversion.
Transitions occur more commonly than transversions (Robert and Pelletier, 2018). There
are different types of SNPs based on their genomic location hence responsible for
different kind of functional effects as presented in Figure 2. SNPs occurring in the coding
region of SNPs, i.e., exons are called coding SNPs whereas those occurring in the
non-coding regions, i.e., introns, promoter regions, untranslated regions or intergenic
regions are called non-coding SNPs. Coding SNPs are of two types: synonymous and
non-synonymous SNPs. Synonymous SNPs are those which change a codon into another
codon that codes for same amino acid. Hence, there occurs no change in the protein
whereas in non-synonymous SNP, a codon is changed into another codon forming a
different amino acid. Non-synonymous SNPs are further of two types: mis-sense and
non-sense. Mis-sense SNPs occur when codon specifying an amino acid changes into
codon forming different amino acid. Non-sense SNPs occur when codon specifying an
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amino acid changes into stop codon leading to formation of incomplete or non-functional
protein (Robert and Pelletier, 2018).

Figure 2 Different types of SNPs
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There are so many studies which unravel the functional impact of SNPs and other
mutations on genes (as shown in Figure 3).

Figure 3 Various effects of SNPs
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These are excellent biomarkers for disease diagnosis and prognosis (Srinivasan et al.,
2016). SNPs might be responsible for genetic diversity, evolution of species, trait
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differences, individual’s response to a particular drug (pharmacogenomics) and complex
multi-factorial and common diseases like cancer, inflammatory disease, cardiovascular
disease and so on (Hassan et al., 2016). SNPs might alter the amino acid sequence hence
altering the function of protein. Altered protein might lead to abnormalities and diseases
in humans. SNPS affect an individual’s response immune-response towards pathogens
and diseases hence they increase susceptibility of a human to develop some disease
(Wijmenga and Zhernakova, 2018). Understanding the association of sequence variations
with diseases can enable prevention and early diagnosis and treatment of diseases.
Humans having presence of these disease-causing SNPs are genetically predisposed to
the risk of developing that disease (Collins et al., 1997; Sohi and Singh, 2018).

Hence, identifying and analysing these SNPs is highly important for finding their role
in causing diseases (as shown in Figure 4) (Wijmenga and Zhernakova, 2018). Sequence
variations like SNPs can affect the gene expression in different ways depending upon
genomic location of the variant. SNPs may occur in the coding region (exons), intergenic
region or non-coding region (introns) (Ahmad et al., 2018). If the SNP occurs in
transcriptional regulatory element, it might affect mRNA expression. If the SNP occurs in
genes, it might affect splicing of mRNA, export of nucleo-cytoplasmic, stability, and
translation. If the SNP lies within a coding sequence, it might lead to formation of a
different amino acid. This is termed as non-synonymous SNP (Robert and Pelletier,
2018).

Figure 4 Various ways in which SNPs cause diseases
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Non-synonymous single nucleotide polymorphisms (nsSNPs) might alter gene regulation
and function of proteins. It is observed that non-synonymous SNPs constitute around 2%
of total known SNPs which have association with genetic diseases (Hassan et al., 2016).
If the mutation is synonymous then same amino acid is encoded. It affects the translation
rates or half-life of mRNA. If the SNP forms such an amino acid sequence that produces
a premature stop codon, it might produce truncated protein (Robert and Pelletier, 2018).
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(miRNAs or mRNA) binding sites which are called mirSNPs can affect miRNA’s
function and also gene expression. These might lead to cancer. Rigorous testing is
required to establish association of a SNP with some disease (Hassan et al., 2016).

1.1 Motivation

This paper presents a comprehensive review on SNPs, association of SNPs with diseases,
identification of SNPs, tools and methods for SNP identification and SNP identification
approaches. There are a number of review papers on SNPs in the past years. Following
are some of the motivating factors for this review paper:

1 Lack of a comprehensive review paper covering majority of tools and approaches for
SNP identification.

2 Lack of a paper with discussion on background and importance of SNPs along with
discussion on tools and approaches for their identification.

3 Lack of a paper covering all these aspects since 2000s up to 2020.

This paper aims to cover all the relevant literature related to the problem under study
beginning from Chakravarti’s (1999) pioneering work published in 1999 up to 2020. In
Section 2, findings of other researchers, as presented in their review work are
summarised. Section 3 covers various tools and approaches for SNP identification. In this
section, underlying principle, workflow and findings of each tool are discussed. Next,
findings of conducting this review are discussed and future scope of this study is also
described. At the end of the paper, a table is presented giving brief overview of various
state-of-the-art tools for SNP identification.

2 Studies reviewing bio-computing approaches and tools for SNP analysis

Various researchers have reviewed existing tools, algorithms and databases catering to
identification, analysis and annotation of SNPs, and other genetic variations. A journal
named Nucleic Acids Research (NAR) comes up with an article on annual basis that
covers new biology databases. A total of 92 online biology databases were reported in
this journal’s 2012 29th edition. There were 1380 databases categorised into
14 categories and 41 subcategories by NAR online Molecular Biology Database
collection. This collection is available at http://www.oxfordjournals.org/nar/database/a/.
Table 1 presents summary of some of the prominent tools available for SNP
identification and analysis.

Chakravarti (1999) have discussed about different sequence variations in his paper.
Authors discussed SNPs with special focus stating that SNPs are the single base
differences between sequences. These are the most common form of sequence variation.
SNPs are abundant in the human genome which occur at a density of around
1 per kilobase (kb) of DNA. Next, author discussed various approaches to understand
genetic variations that underlie complex diseases (Chakravarti, 1999).



N. Sohi and A. Singh

432

Summary of some prominent tools

Table 1
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Summary of some prominent tools (continued)

Table 1
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Summary of some prominent tools (continued)

Table 1

£3oj0ju0 Juod
pue NTINO Sulsn UOTJBULIOJUI [BUOTIOUN] IIY) SIORIIXD ]

100f01d 'S]00) Paseq-qam SuIsn SGNS SIALIAI PUB S)BUIPIOOD 100} (#00T “Te 12
'so'o1ud-ojurolq “dusednd,/:dyy papung 00T JRWOSOWOIYD 10 SAUST JO ISI] B SN} [00) SIY ], - SuIyoIRaS Paseq-qap apuo)) dNSedng
‘wioy) Sunoadsur Kjjensia Aq spodxo
uewny £q AUOp SI SIN'S A} JO UONEOYLIDA “A] dIS
"aouanbas
Q0UQISJAI ) WOIJ JUDIAJJIP Ik Jery) 2duanbas ayyy
ur suonisod Sutynuopt Aq uoneoynuapy NS “II1 dors
Surpres-oseq ‘11 daig
j90f0xd yojews piom oduirs e Juisn aouanbas 9oudIdjo1 X NIT /SMOPUIM (500T “1B 30
/dusur/opesoonur mmm papunyg 500T oy jsureSe oouanbas udAIS ayy suSije :gNSu] ‘T doig uo papoddng - 10)5BUR) JNSU]
JOU 10 UOTJBLIBA
901 © ST UONBLIBA B IOY)AYM SUISSISSE 10 pIlepue)s
j00fo1d Ayrend) pooyoquSiou puesy juswuSie souonbos (S00T “18 32 Sueyz)
AoSyru-tou3dy//:dny papunyg $S00T 10} JAIS ‘Sul][es aseq 10J PaIyd JO UOHBUIQUIOD) - - 1003 s Sueyz
SAN'S M0 1[5y 0) SuLIAy
[enuew pue onewoIne :Jnpow JNS 1] ‘Al daIs
01B3s JNS 9POW-[dIeq S)ONPUOd pue spy dudd
uI] SNOO] JO ISI] © 3B} :[npow YuI| snooT [T daig
a[npow yoreas NS £q paAdLal (uonepdn
uoneuojul safeuew jjuswadeuew NS 1 daig 10J pue NS Mau
1afoid dNSAP IEDN  LEAN'EA YOSOIOIN  Suruieiqo 10y JNSqp uo (500z “1e 10 Suep)
/3dd/mpo-prearey ydsy mmm//:dny papung $S00T woly SINS 10] SoYdIRIS-o[npou yoIeas JN§S :J doig ur pajuowofduy judpuadop) JudI[O-qI A IUNHJINS
suaj01d Jo uonouny
U0 SINS SnowAuouAs-uou Jo 199359 s191paid 1] [NPOA
'SoUA3 JBPIPULD JO 13S UM
diysuone[al Jnoqe UONBWLIOJUT SOPIAOILJ (][ ANPOIA QIBM1JOS
ja0f0xd *9SBASIP ayoedy ySnoxy aseqejep (900T
S10°qESINS Mmm//:dny papunyg 900T o1j10ads © 10J SoudT JepIpULd SANUSP! [ ANPOIN  XNIT uo papoddng PUE 22IN0SAI GO “Ie 10 anx) ASSINS
1afo1d SrdHd 1no (9007 “[e 10 Suel)
/qamdus,/S[00)/[u’soneWOFUIONg mmM //:dy papunyg 9007  SIONY € Yim SUI[[Rd JUBLIBA PUB £V M JUSWUSI[Y  pue [194 ‘D Ul udnp i dde suojepuerg SugdNSANEend
yS1oy yead ur doip jo 3doouod uo paseq uonLIYHUIPL
NS pue astou punoigsoeq pue syead ann usamiaq
j00f01d ysmsunsip o) uononpai asiou ‘yuowusije odusnbas (L00T
130°ur0sA[0d/a18M1J0S/5]00)/NPS TISNM dWoUaT//:dny papung L00T  10J Y0JRW-SSOI0 ‘Jul[[d 35BQ I0J PAIYJ JO UOHBUIGUIOD) - - “Ie 12 uayD) urdSA[od
23vdawopy Supun,y  avag pasn anbiuyoa | o \Nch\mw%c:wxaﬁ 1001 fo 2dA] 1007 3u1jpd JNS




Bio-computing approaches and tools for identification of single nucleotide 435

Summary of some prominent tools (continued)

Table 1
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It is reported in the review that 60,000 within-gene SNPs i.e. coding SNPs have been
found by International SNP Map Working Group. There is a coding SNP in every
1.08 kilobases of gene sequence. A SNP is found to be present in 93% of genes out of
which 98% lie in the range of 5 kilobases of some SNP. Nucleotide Diversity is defined
as the number of base differences between two genomes divided by total number of base
pairs. It is a good measure of variation. This measure captures factors of history and
biology that the human genome underwent. The purpose of human SNP map is to find
out role of genes in causing multi-gene diseases. This whole research and understanding
about SNPs opens up new research path. First is to understand natural selection in human
population. Here, SNPs prove helpful to find areas with very low variation levels to find
out genomic areas with beneficial mutations. Second, biggest area of research becomes to
understand molecular basis of variations which cause diseases. Molecular Anthropology
is an important area to understand molecules and knowledge that molecular diversity
gives about the evolution of humans.

Gray et al. (2000) have presented a comprehensive review on SNPs. The study
projects that SNPs are the markers which can potentially be used to test the association of
a genetic variant and a disease. In 1980s, SNPs were the most favoured variant for
finding association with diseases. In 1990s, simple tandem repeats (STRs) became
popular marker for finding association of a gene with disease. STRs especially became
popular because they showed high variation in alleles in the number of repeat units.
Second, they were evenly and widely distributed across human genome. Their typing was
possible using PCR amplification. STRs were especially useful in linkage studies. In
linkage studies, STRs were used for pedigree analysis to identify genes responsible for a
monogenic disease. Then the focus of research drifted from single-gene diseases towards
complex multifactorial diseases such as osteoporosis, diabetes, cancer, cardiovascular and
inflammatory diseases involving multiple genes. These diseases are a big social burden.
STRs are helpful in pharmacogenetics (or pharmacogenomics) in order to design the
treatment for an individual based on individual drug response. In multifactorial diseases
there is a combined effect of multiple genes all having small contribution towards
causing the disease. If linkage analysis studies are applied for identifying those causative
genes in multifactorial diseases, sometimes there is very little difference in frequency of
some polymorphism in group of cases — with disease and group of controls-unaffected
individuals. Hence, linkage studies bear less fruits for multifactorial diseases. Association
studies began to be increasingly used for multifactorial studies. Therefore, for population
based, case-control studies, STRs are not a good choice as markers because they have
high mutation rates. In comparison to STRs, SNPs are highly abundant and stable marker
owing to low rates of mutation. Also, STRs are surrogate markers which means that an
STR might not be associated with a disease but some other STR in its neighbourhood can
be. SNPs too exhibit this surrogate nature but they are many times responsible for some
disease and have functional effects. This review focuses upon identification of SNPs,
SNP based association studies, frequency of SNPs across human genome and SNP
genotyping methods.

There are two methods of performing association studies. First, a SNP causing a
functional effect can be tested for association with a disease. Second, study of linkage
disequilibrium (LD) using a SNP as marker. LD measures the degree of association of
between two genetic markers further identifying genomic region associated with a
disease. Next, SNP identification is discussed in the review. It suggests that SNPs emerge
as primarily important tool to be used as a marker for association studies. Therefore, SNP
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identification becomes very important. Four methods are suggested for this: Detection of
single strand conformation polymorphism, heteroduplex analysis, direct DNA sequencing
and the latest variant detector arrays. Next part of the review discusses frequency of
SNPs across genome. SNP frequency within a gene and the pattern of occurrence of
SNPs has been investigated in a number of studies. By the end of 2001, it was aimed by
TSC to broaden the range of SNPs found in genome up to 300,000. Next part of the
review suggests SNP genotyping methods that can be used for their identification. The
technologies suggested were laboratory based such as fluorescent micro-array based
systems (affymetrix), fluorescent bead-based system, automated enzyme-linked
immunosorbent assays and so on. It is concluded in the review that with SNPs as markers
and association studies, new avenues for understanding of genetic diseases and traits will
open in future (Gray et al., 2000).

Mooney (2005) presented a comprehensive review on SNPs. In this review all the
resources and tools are reviewed which can be used for predicting functional effects of
variants. All prominent web resources for annotating and analysing SNPs are reviewed.
Variants are categorised according to their association with genes. Presence of variants in
a particular region of gene viz. exonic region, intronic region, upstream or downstream of
the gene reveals great information. NCBI dbSNP, OMIM and Ensembl are few resources
which annotate the variants. SNPs are identified and annotated using resources such as
GoldenPath, UCSCGenome Browser and genome assembly. A prominent resource
containing Ensembl is a primary resource of genomic information followed by SNPper.
This provides good quality variant calling and annotation. National Cancer Institute as a
part of Cancer Genome Anatomy Project’s Genetic Annotation Initiative(CGAP-GAI)
came up with new tools for SNP identification and analysis. SNP annotation is done
using two major tools viz. PolyPhen and SIFT. nsSNPs might impair the normal
functioning of genes. It has been established from the findings obtained from sorting
intolerant from tolerant (SIFT), that 25% of nsSNPs as reported in dbSNP cause
modification of protein function. A good review and classification of non-synonymous
SNPs is performed by Sunyaev et al. (2001) where he finds 20% of the nsSNPs to be
altering the protein function. The study conducted by Chasman and Adams (xxxx) has
found 26% to 32% nsSNPs to be affecting the protein function. A comparative study of
disease-causing variants found by HGMD and dbSNP was conducted by Wang and
Moult (2001). Functional nsSNPs were analysed by Ng and Henikoff (2006) in their
study. Saunders and Baker (2002) adopted machine-learning approach for analysis. It is
quite complex to understand effect of variants on gene expression (Mooney, 2005).

Kim et al. (2006) performed a pilot study of LD and haplotype structure of 200 kb
region of 22q13.2 in Korean population. In this study, 165 SNPs were identified from the
region using direct sequencing. This data was compared with dbSNP database (build
124). 76 SNPs were used to analyse the patterns of LD, haplotype diversity and
recombination rates from Korean study population and compared with HapMap database.
LD and haplotype frequencies found from Korean and Japanese population were found to
be highly similar with high degree of correlation between high LD and low
recombination frequency. Patterns of LD were found to be similar in Han Chinese,
Japanese, Korean and CEPH population. Haplotype frequencies were, however,
significantly different between them. Purpose of International Haplotype Mapping
Project (HapMap) is to find out LD in the human genome. In the 200 kb region belonging
to chromosome 22, LD patterns were analysed using D’ and 12 between pairwise
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combination of markers using Haploview version 3.2 (http://www.broad.mit.edu/
mpg/haploview/) (Kim et al., 2006).

Sripichai and Fucharoen (2007) in their paper have discussed about basic concept of
SNPs and importance of SNPs. SNPs are understood to enable reconstruction of history
of genome owing to their inheritability from one generation to the next. They can also be
used in study of evolution of species and in population studies. Next, authors discuss
about annotation study based on SNPs. They define an association study as the one
conducted to establish relationship of a disease to the region of genome. Next, concept of
LD is discussed in the paper. It is stated that if a factor leads to enhanced risk of some
disease this implies higher frequency of that factor in group of cases — ones with disease
than the group of controls. The study suggests candidate-gene approach as another
approach to perform association study where genes with pre-known associations or
linkages are picked for testing association. The authors describe SNPs as genetic
variations which cause alteration of one of the nucleotides viz. adenine (A), thymine (T),
cytosine (C) or guanine (G). SNPs are biallelic form of polymorphisms. SNPs are the
most common source of genetic variation, They are responsible for 90% of total human
genetic variations. SNPs are found in both coding and non-coding genomic regions. They
are highly important owing to their role in reconstructing genome, finding evolution of
species, population study and their role in predisposing the person to diseases. They act
as good markers for building high-density genetic maps which are further used in
association studies. SNPs are good markers as they are abundant, inheritable,
evolutionary stable. A study conducted to find a relationship between a phenotype and
one or more regions of the genome is known as association study. Frequency of SNPs is
found in the two given populations which vary for presence of phenotype. It is based on
the fact that if a variant has association with a disease then individuals suffering from that
disease will have higher frequency of that variant in comparison to individual with
absence of that disease. The authors describe this kind of association as linkage
equilibrium (LD). Another approach to check the association is candidate-gene approach.
Genetic factors leading to risk of diseases have been revealed through large-scale studies
such as Alzheimer’s disease (APOE), type 1 diabetes(human leukocyte antigen (HLA),
type 2 diabetes(PPARG), deep vein thrombosis (factor V), myocardial infarction (LTA),
stroke (PDE4D) and asthma (ADAM33) (Sripichai and Fucharoen, 2007).

Altshuler et al. (2008) have presented all the relevant concepts related to genetic
mapping of Mendelian and multi-gene, complex diseases. The study illustrates that
genetic mapping is localisation of genes associated with phenotype. Linkage Analysis is
suggested for finding genes associated with single-gene (mendelian) diseases. Linkage
Analysis states that markers present on genes showing similar association with some trait
lie close to each other in genome. Genome Wide Association Studies (GWAS) are
suggested for finding genes associated with complex, multi-gene diseases. Here, a
catalogue of common human genetic variations is created and these variations are tested
for association with diseases. It was Sturtevant who proposed the linkage analysis method
for fruit flies in 1913. Linkage analysis is performed in three main steps: First step is to
perform a genome-wide search to find the location; second step is to perform case-control
study to find responsible mutation and third step is to identify molecular and cellular
functions of the found genes. Several studies of genes associated with Mendelian diseases
revealed that approach based on candidate genes is not so successful. Some responsible
genes are initially completely unknown. Second, it was concluded that there occur
alterations in proteins due to disease-causing mutations and there are many
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disease-causing alleles present. Also, there is heterogeneity, incomplete penetrance and
variable expressivity related to Mendelian diseases. Genetic mapping was used for
common diseases such as hypertension, breast cancer and diabetes but this approach
failed to yield fruitful results. Studies on population genetics and genomics led to new
approach of localisation of genes through association study. This study compares
frequency of a genetic variant in the group of affected and group of unaffected
individuals. A new genome-wide approach for performing association study came up in
the middle of 1990s. It was proposed to create a catalogue of common genetic variants
and then test them for association to diseases. It was in 2002 that the International
HapMap Project was started. The idea was to find out frequency of SNPs and LD pattern
in human genome in 270 samples taken from Europe, Asia and West Africa. Around 1
million SNPs were identified by 2005 and around 3 million by 2007. It was found that the
common SNPs have correlation to one or more close proxies (Altshuler et al., 2008).

Johnson (2009) has presented a comprehensive review on SNPs. The study reports
that there has been enormous research on genes which contribute to monogenic and
complex polygenic diseases. Also, there exist wide variety of bioinformatic databases,
software and resources for storage and analysis of genetic data. This review focuses on
SNPs, issues related to SNPs and bioinformatic resources including tools and databases
containing information about SNPs. SNPs emerge as a marker which are easiest to
identify in comparison to other variants such as indels, microsatellites, copy number
variants and epigenetic markers, which are also associated with diseases. It reports that
there are more than 800 databases of information about human genetic variation where
there are few which are most prominently used. Such data resources are classified into
three major categories viz. Common genetic variation databases, rare genetic variation
databases and databases of variation where there is addition of some functional
information about the variation. The largest database of common genetic variation is
NCBI’s dbSNP. This resource is a repository to variants identified through HGP
discovered a significant number of common variants. This database is the primary freely
available resource that caters to various tasks related to variations such as mapping of
known variants to the human genome, providing identifiers for known and novel variants,
identifying known variation within a gene, identifying functional effects of variants,
design of assays for measuring a particular variants and calculating frequency of an allele
of a variant in some population. The dbSNP variants are added to NCBL,UCSC and
EMBL in order to provide integration of SNP data with other genome data. Querying of
SNP data in batches and downloading of information from dbSNP is also available.
International HapMap Project is another database containing SNP data. The HapMap
project aimed at estimating allele frequencies and LD patterns among common human
genetic variations. The data can be downloaded and can be viewed using HapMap
browser. The 1000 Genomes Project is another endeavour that released first lot of data in
2009 and is a good source of human genetic variation including both common and rare
variation. A number of databases are there for identifying variation within and across
human population such as Japanese SNP database (JSNP), Thai SNP database, Taiwan-
Han Chinese SNP database, SNP@ethnos8, CEPH genotype and ALFRED. There are
few more resources such as dbGAP, OMIM, Human Genome Epidemiology (HuGE) and
Genetic Association Database (GAD). Many of these databases are based upon
information in dbSNP and HapMap (Johnson, 2009).

Oeveren and Janssen (2009) have presented a review of SNP mining tools. They have
categorised the tools as de novo tools and reference sequence based tools. de novo tools
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are AutoSNP, QualitySNP and MAVIANT. Reference based tools include PolyBAyes,
PolyPhred, NovoSNP and SNPdetector. Also, a general procedure for SNP mining is
described (Oeveren and Janssen, 2009).

Mooney et al. (2010) have presented an excellent comprehensive review on
bioinformatic tools for identifying disease gens and SNPs. Firstly, the authors discuss
online databases which contain SNP data and disease data such as db SNP, HGMD,
OMIM, PharmGKB, dbGAP and so on. Second, authors have presented available tools
for predicting genes associated with diseases such as Fit SNPs, Endeavour Algorithm,
GeneSeeker, Gene2Disease, SUSPECTS, PROSPECTR, TOM, Prioritiser, KEGG,
BIND, HPRD, Gentrepid, Phenophred and so on. Third, authors have discussed tools for
SNP searching, visualisation and annotation such as UCSC Genome Browser and
Ensembl. A large number of databases are available that contain SNP and other variation
data. The SNPs database, dbSNP (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/) is the
most prominent source of SNP data. Other databases are Human Gene Mutation Database
(HGMD, http://www.hgmd.cf.ac.uk/ac/index.php), Online Mendelian Inheritance in
Man (OMIM, http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim), Pharmacogenetics
Knowledge Base (PharmGKB, http://www.pharmgkb.org/) anddatabase of Genotype and
Phenotype (dbGAP, http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap). There are so
many databases, tools and web resources containing genomic data that it leads to rich
wealth of data. There are a number of tools available for predicting genes associated with
diseases such as FitSNPs (Functionally interpolated SNPs; http://fitsnps.stanford.edu/),
Endeavour algorithm (http://homes.esat.kuleuven.be/~bioiuser/endeavour/), GeneSeeker
(http://www.cmbi.ru.nl/geneseeker/), Gene2Disease (G2D, http://www.ogic.ca/projects/
g2d_2/), Gene Ontology (GO, http://www.geneontology.org/), SUSPECTS (http://www.
genetics.med.ed.ac.uk/suspects/), PROSPECTR  (http://www.genetics.med.ed.ac.uk/
prospectr/), OMIM (TOM, http://www-micrel.deis.unibo.it/~tom/), PRIORITIZER
(http://pcdoeglas.med.rug.nl/prioritizer/), Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.ad.jp/kegg/), Biomolecular  Interaction  Network
Database (BIND, http://binddb.org/), Human Protein Reference Database
(HPRD, http://www.hprd.org/), Gentrepid (https://www.gentrepid.org/), PhenoPred
(http://www.phenopred.org/) (Mooney et al., 2010).

Borsting and Morling (2013) have thrown light on SNPs and short tandem repeats
(STRs) as markers where STRs are better choice to be used as markers in criminal
investigations because for over past more than two decades, STR records of criminals and
victims have been stored in national and international databases. SNPs can be better
markers for finding relationships as their mutation rate is less of the order of 0.00000001
where as that of STRs is 0.001-0.003. In this paper, authors have thrown light on various
applications of SNPs with special focus on advantage of SNP identification for
identifying a human. This study does not involve any computer based software or
algorithm for solving the problem (Borsting and Morling, 2013).

Bianco et al. (2013) have presented a comprehensive review describing databases
useful for biomedical research of genetic diseases, sequences, mutations, gene expression
and protein expression data. The paper summarises prominent databases for biomedical
literature such as PubMed; database containing genetic data such as NBI, Ensembl,
UCSC Genome Browser, GWAS database. Authors have presented the usage of various
databases for disease information by studying inflammatory bowel disease using three
databases such as PubMed, OMIM and GWASdb. The prominent journal NAR annually
comes up with a research paper covering newly created biological databases and
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resources. The 19th edition got published in 2012. It lists 92 online databases containing
biological data and also listed 100 more research papers on this topic. There is an online
database collection, NAR online Molecular Biology Database collection. It lists 1,380
databases and is available at http://www.oxfordjournals.org/nar/database/a/. There are a
number of NCBI databases including BioProject database (www.ncbi.nlm.nih.gov/
bioproject/), BioSample database (http://www.ncbi.nlm.nih.gov/biosample/),
PopSet database (http://www.ncbi.nlm.nih.gov/popset/), Clone database (CloneDB)
(http://www.ncbi.nlm.nih.gov/clone/), molecular modelling database (MMDB)
(http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml), database of expressed
sequence tags (dbEST), database of genomic structural variation (dbVar), Entrez,
databases of genotypes and phenotypes (dbGaP), database of major histocompatibility
complex (dbMHC), database of short genetic variations (dbSNP), Ensembl and Genome
Browser of the University of CaliforniaSanta Cruz and GenScan. There are a number of
gene regulation databases including Decipher, Histone, Starbase and microsniper
database (Bianco et al., 2013).

3 Bio-computing approaches and tools for SNP analysis

There are a number of bio-computing approaches and tools available for SNP
identification, analysis and annotation. Also, there exists variety of tools for analysis of
genetic variations. It goes back to 1997 when Collins and team did a breakthrough about
sequence variations with their pioneering work highlighting the significance of sequence
variations for their association with diseases. There are a number of automated software
and tools for SNP identification and analysis. Most of them are pipelines consisting of
similar kind of popular tools yielding results of SNP identification. Many of them yield
good results. Some of the prominent tools and software are discussed in this section.

Nickerson et al. (1997) have proposed an automated program, PolyPhred, for
identification of SNPs. Polyphred is used in combination with Phred, Phrap and Consed.
When compared to ABI sequencing software, Phred is found to have higher accuracy and
low error rate. There is an error probability associated with each of the bases (Ewing
et al., 1998). The principle for identifying polymorphism is to compare sequence traces of
homozygotes and heterozygotes where two changes are looked for:

a  asignificant drop in normalised peak height at a polymorphic site when traces from
homozygous and heterozygous individuals are compared

b asecond underlying peak at the position.

It uses a four phase procedure to determine a sequence of base calls from processed trace.
The first phase involves determining the idealised peak locations, i.e., predicted peak
locations. Second phase is to identify the observed peaks in the trace. Third phase
involves matching the observed peak locations to the predicted peak locations where
some peaks are omitted and some others are split apart. Final step is to check out the
unmatched observed peaks, to determine if these actually represent some base but they
were not assigned to a predicted peak. Hence, the corresponding base is then inserted into
the read sequence. Phrap is used for sequence alignment for aligning the query sequence
against the reference sequence. It takes as input the normalised peak areas and quality
values retrieved from Phred for each location in the sequence. If another peak gets
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detected at a base and the peak height gets reduced, then it is considered heterozygous by
PolyPhred. Consed is a tool used for editing, evaluating and viewing the traces
(Nickerson et al., 1997). In this Phred/Phrap/Consed setup, monitoring of data quality
takes place and then it is displayed as a main component of the system. There is a
relationship between sequence quality as found by Phred and performance of PolyPhred.
Factors including peak spacing, the relative size of the uncalled and called peaks and the
dip in signal between called peaks are used to generate quality measures in Phred. When
sequence quality is low (Phred quality = 20), the signal-to-noise ratio is obtained as the
ratio of PolyPhred true positives to false positives and is low. The signal-to-noise ratio,
i.e., true positive to false positives is enhanced as the scanning window for PolyPhred is
set for analysing data at raised quality thresholds. As a part of Japanese Millennium
Genome Project, Haga et al. (2002) identified a total of 190,562 genetic variations
consisting of 174,269 SNPs and 16,293 insertion/deletions from DNA samples of
24 Japanese individuals using PolyPhred for SNP identification. Data and methods of the
study are available at http://snp.ims.u-tokyo.ac.jp (Haga et al., 2002).

Picoult-Newberg et al. (1999) have proposed a strategy to extract SNPs from public
expressed sequence tag (EST) databases. 300,000 distinct sequences were taken from
ESTs obtained from 19 different cDNA libraries and identification of 850 mismatches
was done from contiguous EST data sets without de novo sequencing. Genetic bit
analysis (GBA) was the technique used to confirm presence of a subset of these candidate
SNPs and estimation of allele frequencies was done in three human populations from
different ethnic origins. GBA is a polymerase-mediated, single-base, primer extension
technique. This is an approach used for rapid and efficient SNP identification in specific
regions and genome-wide. For SNP discovery, it gathers data from sequences from
different libraries of cDNAs. The SNPs found in the study were submitted to the National
Center of Biotechnology (NCBI) SNP database under submitter handles ORCHID
(SNPS-981210-A) and debnick (SNPS-981209-A and SNPS-981209-B).

Authors have proposed a three-step procedure for SNP calling. Firstly, Phred is used
for base-calling, identification of bases in the sequence. Next, Phrap is used for sequence
alignment to align the query sequence against the reference sequence. It classifies
Sequences which do not have enough of similarity information as singlets are categorised
by Phrap, also they are removed from the set of assembled contigs. Finally, SNP
identification is done through four filters. Filter 1 segregates and removes cluster of
mismatches occurring in low quality trace data regions. Filter 1 looks out for window
sizes of 5, 10 or 20 bp around location where single base-pair mismatch occurs.
Identification of the type of sequence mismatch as base substitution or insertion/deletion
is done by filter 2. Function of filter 3 and filter 4 is to keep track of the quality of each
base call with respect to its position and frequency in a contig. Filter 3 ignores
mismatches occurring in first 100 bases because there is susceptibility of errors in the
starting portion of the reads. Filter 4 calls a mismatch as a high quality candidate SNP, if
it is found to occur in more than one sequence in a contig. Therefore, mismatches
resulting from copying errors are discarded. This approach is very cost efficient as it uses
existing sequence resources used for discovery of genes instead of finding markers
leading to useful EST SNPs. Number of SNPs in Washington University EST database is
doubling in every 6 months and 5,000 new EST sequences are added to it every week.
SNP markers are highly important in large-scale analysis of human genotype-phenotype
relationships owing to their significance in genetic diseases, as well as their density in the
genome and low mutation rate (Picoult-Newberg et al., 1999).
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Zhang et al. (2005) have proposed an automated SNP detection tool. The tool has
been developed to mimic the human visual inspection process. Firstly, Phred is used for
base calling, calculating quality scores and generating primary and secondary peak
information for each trace file. Next, alignment of the query sequence against a reference
sequence is done using SIM which is based upon Smith Waterman algorithm. There is
some sequence variation but still there is an optimal alignment of PCR reads. The
alignments are trimmed from the ends.

In the end, variation site is inspected using neighbourhood quality standard. Also each
base in its flanking window is checked to exceed a user-defined quality threshold.
Identified SNPs are then validated. A base is termed as a true variation if this base and
each base in its 4bp flanking region have a Phred quality score greater than or equal to 25
and their sequence similarity has to be greater than or equal to 95%. Height of the
Secondary Peak for heterozygous allele must be at least 30% of the height of Primary
Peak. If the peak height is lesser than 20% then it is considered as noise. The proposed
tool has been compared with the human visual inspection, PolyPhred and NovoSNP and
has been found to be superior than them. The tool has been found to have low false
positive and false negative rates.

SNP detector was used in the HapMap project. At the stage of discovering SNPs, 48
individuals were selected from four populations viz. Centre d’Etude du Polymorphisme
Humain collection, Yoruba individuals from Ibadan, Nigeria, Japanese individuals from
Tokyo, Japan and Han Chinese individuals from Beijing, China. Cell lines of the
individuals are available from the Coriell Institute for Medical Research (http://locus.
umdnj.edu/nigms/products/hapmap.html). Out of a total 11,241 candidate SNPs found in
the region, half (51.9%) were novel in comparison to data in build 121 of dbSNP. Out of
those SNPs, 80% of the were having a minor allele frequency greater than 0.05. The error
rate of SNP detector in comparison to PolyPhred and NovoSNP is quite low. SNP
detector is accurate enough to identify SNPs from PCR templates with low false negative
rates (2%-6%) and moderate false positive rates (1%-9%) (Zhang et al., 2005).

Chen et al. (2007) have proposed an automated software, PolyScan for indel and SNP
detection. It provides de novo detection of heterozygousindels with high sensitivity and
enhanced specificity. PolyScan improves the accuracy of SNP identification accuracy as
it combines the results of existing SNP detection programs. Most variant identification
pipelines are sequential, multi-program approaches such asphred/phrap/PolyPhred or
phred/SIM/SNP detector. In such pipelines, errors propagate from one stage to the next.
PolyScan integrates base calling, alignment, statistical sequence analysis and indel and
SNP identification into one program. An ace file and the PhD file consisting of called
bases, positions and quality scores are input into PolyScan. Firstly, the chromatograms
are re-analysed based on the called base positions which act as initial conditions and
boundaries for locating additional peaks in the four fluorescence channels. Phred is used
for base-calling to identify the bases in the sequence. Next, sequence alignment is done in
order to align the sequence against the reference sequences using cross-match program.
Next, Noise reduction is done to distinguish between true peaks and background noise.
The program runs through each fluorescent channel using overlapping 30-bp windows,
tracking height, sharpness, and regularity of each peak. Then indel identification is done
based on identified indel signatures. Finally, SNPs are identified as doublet peaks whose
heights are half of those for homozygous individuals. Drop in the peak height is the
indicator of presence of variation. Trace statistics are calculated from the individual
channels through integral base re-calling and noise-reduction. Two procedures namely
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horizontal and vertical scan are performed. In horizontal scan, distance metrics are
computed within reads. It generates significance estimates of observed heterozygous
trace patterns based on these computed distance metrics. In vertical scan, peak height is
computed. It generates information about heterozygous peak height variation in the
individuals. In the study, performance comparison of PolyScan with PolyPhred and
mutation surveyor is done using parameters as specificity and sensitivity (Chen et al.,
2007).

Ngamphiw et al. (2008) have proposed VarDetect for identification of SNPs and
other forms of genetic variation. This is an algorithm for interpreting fluorescence based
chromatograms and detect the corresponding nucleotide variations in an automatic mode.
In this tool, SNPs are identified from the chromatograms obtained for different
nucleotides. Base calling is improved by partitioning and re-sampling technique. Primary
peak depicting the primary allele and secondary peak depicting the secondary allele is to
be identified. If multiple peaks occur at a particular position, it is indication of presence
of SNP. Next, observed peak intensity ratio; Q! is calculated from peak intensities of
various peaks at i location as Q, = highest peak intensity / (sum of all intensities).
Vicinity peak intensity ratio; Qi is calculated relative to two bases to the left and two

bases to the right of base call location as Q3 = (I1 + 12 + 14 + 15) / 4. The difference
between observed peak intensity ratio; Q) and vicinity peak intensity ratio; Ql;
Q!, —Q! =5 called detection value is calculated which is used to predict SNP. This

difference above a defined threshold value is considered significant and is termed as
SNP. Chromatogram traces are converted to numeric codes using CodeMap technique.
Homozygous bases are converted to 0 and 2 codes and heterozygous base is converted to
1. VarDetect has been compared with PolyPhred, novoSNP, Genalys and Mutation
Surveyor using fluorescence-based chromatograms and has been found to be most
efficient among them all.

Comparison of VarDetect with PolyPhred (version 6.11 beta), Genalys
(version3.3.23a), novoSNP (version 2.0.3) and Mutation Surveyor (trial version 3.23)
was done using parameters such as features and accuracy. False positive (FP) and false
negative (FN) SNP counts are the main parameters used for comparison. True positive
count (TP) conveys the number of predicted SNPs which correspond to the actual and
verified SNPs in the given area. FP conveys the number of SNPs predicted by the
software which are not actually present. FN conveys the number of true SNPs which
were missed from being identified by the software. Efficiency is calculated in terms of
precision (TP / (TP + FP)), recall (TP / (TP + FN)) and F-score (2 x (precision X recall) /
(precision + recall)). Performance comparison of VarDetect was done with other tools
using chromatogram traces utilised in past SNP identification from 15 candidate genes. In
a past study, 171 SNPs were validated from a set of 77 reads. These validated SNPs acted
as a TP count. VarDetect is compatible with most of the operating systems such as
Microsoft Windows, Linux and Mac OSX. VarDetect program available at
http://www.biotec.or.th/Gl/tools/vardetect (Ngamphiw et al., 2008).

Wegrzyn et al. (2009) have proposed a SNP identification pipeline called PineSAP
which also provides multiple sequence alignments. It provides a high-throughput solution
for analysis of re-sequencing data consisting of chromatogram files for forward and
reverse reads of different individuals. This pipeline is supported for Unix/Linux platform
and has been written in Perl. PineSAP is a combination of Phred, Phrap and Probcons
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RNA used for base-calling and alignment. Phred is used for Base-calling is done using
Phred and two tools namely Phrap and Probcons RNA are used for sequence alignment.
Next, Polybayes and PolyPhred techniques are used for SNP and indel identification.
Supervised machine learning algorithms are used to extract and process the sequence
information to validate or reject the predicted SNPs. Its code is available at
http://dendrome.ucdavis.edu/adept2/resequencing.html (Wegrzyn et al., 2009).

Li et al. (2009) came up with a software package called SAM tools used for
manipulating alignments in SAM or BAM format. It provides conversion from other
alignment formats, removal of PCR duplicates, per-position information generation in
pileup format, short indel and SNP identification and presents the alignments in text
based viewer. This software package is available in both C and Java languages with little
difference in their functionality. SAM tools software package is available at
http://samtools.sourceforge.net/ and can be downloaded from https://github.com/
samtools/samtools (Li et al., 2009).

BWA is based upon Burrows wheeler transform (BWT). BWT is useful for pattern
matching and compression. BWA is suitable for mapping of less-divergent sequences
with a large sized reference genome like the whole human genome. Source code of BWA
is available at http://bio-bwa.sourceforge.net/. It has four different algorithms namely
BWA-backtrack used for sequence reads up to 100 bp, BWA-SW used for sequence
reads from 70 bp—1 Mbp, BWA-MEM used for sequence reads from 70 bp—1 Mbp and
BWA aln/SAMSE/SAMPE (Li and Durbin, 2009).

BCFtools are used to view the BCF file which contains all the variants. Its source
code is available at http://www.htslib.org/ (Li et al., 2009).

AlleleID is a commercially available comprehensive desktop tool specifically
designed for bacterial identification, pathogen detection or species identification. It uses
ClustalW algorithm for multiple sequence alignment. The product is available at
http://www.premierbiosoft.com/. In this study, a demo version of the product, AlleleID
7.84 is used for evaluation. Its market price is 3227 EUR (Rs. 2,53,520) (‘AllelelD:
design qPCR and microarray assays for related organisms’, http://www.premierbiosoft.
com).

In Silico Genotyper (ISG) is a parallel, open source tool for identification and
annotation of SNPs and insertions/ deletions. ISG is written in Java and has BWA-MEM,
MUMmer and GATK as its main components. ISG works on the Queue pipeline system
of the Broadlnstitute(http://www.broadinstitute.org/gatk/auth?package=Queue). Data can
be input in formats of .txt’, ‘.fastq’, or ‘.fastq.gz’for raw reads, ‘.fasta’ format for genome
assembly, ‘.gbk’ format for genome annotation, ‘.bam’ format for binary alignment map
or ‘vcf” format for variant call. If single or paired reads are provided, BWA-MEM is used
for alignment of reads against the reference genomein ‘.fasta’ format. SNPs and indels
are called with the Unified Genotyper method using thresholds like minimum depth of
coverage and allele proportion variation defined by the user.For a specific application,
GATK variables can be altered by user. Show-snps function of MUMmer can be used for
SNP calling. The position where a SNP is found in one genome, is queried in rest of the
genomes. If a location in query sequence does not qualify one user-defined filter then ‘N’
is placed at that location. If a non-SNP location qualifies all the filters but it is not a SNP
then GATK is used for measuring the base quality and coverage at that location. A
reference state is used for this purpose which has to be a location of sufficient quality.
Otherwise, a “.> or ‘N’ is placed at that location depending on sufficient coverage or
quality, respectively. Its source code is available at https://github.com/TGenNorth/
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ISGPipeline. In this paper, performance comparison of ISG with other popular tools such
as snpTree, SPANDx, kSNP, CO-Phylog and ParSNP has been carried out establishing
ISG as the most efficient tool. snpTree method is similar to ISG but cannot handle
hundreds and thousands of sequences. SPANDX is a reference dependent approach which
does not work for genome assemblies. kSNP is similar to ISG in terms of provided
function whereas different in terms of methodology. It works for both raw reads and
genome assemblies but it takes time while concatenating raw reads. CO-Phylog does not
produce SNP annotation. ParSNP is not able to handle raw reads, for that it needs an
additional step of assembly. 1,000 Escherichia coli and Shigella Genomes retrieved from
Genbank were used to compare the speed of ISG with other counterparts. It was found
that ISG scales linearly with increasing number of genomes (Sahl et al., 2015).

Tang et al. (2006) have come up with a tool for identification of SNPs and indels
called QualitySNPng. It provides a data storage and retrieval system for SNPs,
haplotypes and alignments. QualitySNPng is a haplotype-based strategy for detection of
synonymous and non-synonymous SNPs from public EST data. There is no need of trace
or quality files or the genome sequence data. Haplotypes are the different alleles of a
gene. QualitySNPng has been used for SNP identification in potato, chicken and humans.
This pipeline program consists of five steps. Firstly, ESTs are assembled using
cross_match for removing vectors and CAP3is used for clustering of sequences. Second,
clusters are formed with at least four members by analysing alignment information.
Third, detection of SNPs is done and differentiation of variations between and within
genotypes is done. Fourth, non-synonymous are distinguished from synonymous SNPs
using FASTY. Fifth, results are stored into database. The pipeline program is written in
standard C-Shell script for a Linux workstation. The individual program is written in the
C programming language. At third step, there are three filters for identifying SNPs. First
filter finds potential SNPs and separates out variations between and within genotypes.
Second filter finds clusters consisting of variations produced as a result of sequencing
errors and paralogous sequences. Third filter identifies unreliable SNPs by assigning
confidence scores to the SNPs on the basis of sequence redundancy and quality.
QualitySNPng is as good as its counterparts and at some points outperforms them. It
needs to provide a genomic sequence or sequence quality files. This program identifies
SNPs and haplotypes as well. It can also be used for EST based genotyping. One big
advantage of this program is a retrieval system which can produce output in different
formats. The source code of the tool is available at http://www.bioinfomatics.nl/
tools/snpweb/ (Tang et al., 2006).

Wang et al. (2005) have developed a SNP data extraction tool known as SNPHunter.
This tool extracts the SNP data such as physical location, flanking sequence and
functional class of the SNP from NCBI dbSNP database for the provided input genes.
Microsoft Visual Basic .NET has been used for implementing SNPHunter. User queries
are delegated by HTTP parser to the databases such as dbSNP, MapViewer, LocusLink
and AceView at NCBI. It also does parsing of data. SNPSearch, SNP Management, and
LocusLink SNP are its three major components. The SNPSearch module takes gene
symbol as input and selects SNPs on the basis of heterozygosity, chromosomal position
and functional class. If upstream or downstream sequence of gene are to be included, this
can also be specified by the user. The SNP Management module lets the user to retrieve
and then manage various kinds of information about SNPs fetched by search module. The
LocusLink module takes a list of LocusLink gene IDs (i.e., Entrez Gene IDs) as input and
then it conducts batch-mode SNP search through LocusLink. It helps to fetch SNP data
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for a set of genes. This tool prepares a summary of SNPs. There comes a new ‘Filter
SNP’ panel. A user defined criteria can be specified for filtering of SNPs. The local filter
filters out the SNPs without need of web. It can do filtering in both manual and automatic
mode. SNPs can be stored in local disk space. This tool performs batch-mode SNP
selection. This process is really fast. A case-control study was conducted involving ten
biological candidate genes for type 2 diabetes mellitus. Some of the genes included in
study are CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1 and AR. It
was a practical example of applying SNPHunter for extracting SNPs present on these
genes from dbSNP. All these ten genes were selected based upon their biochemical and
physiological functions. SNPs were selected using four criteria.

e Genome coverage: Selected SNPs should span the region of gene and the 30 kb 5’
upstream and 30 kb 3° downstream area.

e  Priority based on function: There has to be an order of priorities for selecting SNPs
where non-synonymous SNPs are top priority followed by synonymous SNPs,
ssSNPs, 5 upstream SNPs, 3” downstream SNPs and then intronic SNPs.

e HET-based priority: HET is a parameter that can be calculated using
POLYMORPHISM Software. HET threshold is set for intronic and 5’ upstreamor 3’
downstream region SNPs where SNPs having threshold greater than 0.095 are given
high priority whereas no such threshold is set for cSNPs and ssSNPs. Threshold of
0.095 is same as that of MAF greater than or equal to 5%.

e SNP density: Even distribution of SNPs is desirable in gene region, 30 kb 5’
upstream and 30 kb 3’ downstream regions. The density of SNPs should be
5-50 SNPs/Kb depending upon the size of gene. Genes having size less than 10 kb
should have a density of 50 SNPs/Kb. Genes having size from 10 to 100 Kb should
have a density of 10 SNPs/Kb and genes having size more than 100kbshould be
having a density of 5 SNPs/Kb.

Authors have compared the tool to its other counterparts such as SNPper, SNPicker,
SNPBox and viewGene. Comparison has established that SNPHunter works in both
ad hoc-mode and batch-mode, works well for a set of genes rather than just one gene and
provides both automatic and manual selection of SNPs. The project is available at
http://www.hsph.harvard.edu/ppg/. This tool completely relies upon dbSNP database for
extracting SNPs. Although this database is the primary source of SNP data still some of
other research projects like Seattle SNPs and SNP500 cancer having more SNP data need
to be considered for the purpose (Wang et al., 2005).

Ensembl variant effect predictor is used for analysis, annotation and prioritisation of
sequence variations in both coding and non-coding regions. This is an open-source, free
online, platform independent tool for interpreting the found sequence variations. VEP
enables automated annotation of variations reducing the manual efforts and time.
Sequence variations which are responsible for diseases, if analysed can lead to better
prevention and treatment planning for those diseases. In order to interpret the genetic
variants, effect of a variant on a transcript or a protein has to be considered. It is
associated with annotation of transcripts and categorisation of variants as coding or
non-coding. GENCODE and reference sequence (RefSeq) of National Center for
Biotechnology Information (NCBI) are primary source of annotation for humans. If there
occurs any change in version or updates of these then annotation gets changed too.
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Transcript isoforms and versions should be taken care of for proper interpretation. There
is another system of nomenclature for reporting of variants termed as Human Genome
Variation Society (HGVS) which relies upon transcripts and proteins too. This problem
with annotation leads to ambiguities. A highly robust tool is the need of the hour to
overcome the challenges of annotating variants and handling ever-increasing sequencing
data. Ensembl variant effect predictor (VEP) came up as an excellent tool to provide
annotation and analysis of genetic variants in both coding and non-coding genomic
regions. It has been used for analysing features of farm animals, diagnosing humans
clinically and for performing research on Genome Wide Association Studies. This tool
has also been used for analysis in research projects such as 1,000 Genomes and Exome
Aggregation Consortium (ExAC).Tools like Gemini take output of VEP as input. This
annotation and analysis tool offers flexibility to a high degree. The Ensembl Variant
Effect Predictor software offers a systematic approach for annotation and prioritisation of
genetic variants in studies involving sequencing and analysis. Analysis of SNPs, short
indels, copy number variants and structural variants is usually quite time-consuming.
VEP offers a faster approach for annotation. There is a broad range of sources used for
annotations by VEP such as transcripts, regulatory regions, frequencies from previously
observed variants, citations, information about clinical significance and predictions of
biophysical consequences of variants. How much stable and of how much good quality
an annotation is going to be, relies upon the used transcript set. A variety of variant
annotations and transcript isoforms are used by VEP for prioritisation of results and
reduce manual intervention. VEP takes input in VCF format. Variant Call Format(VCF)
is the standard format used in sequencing programs. VEP can also take in the variant
identifiers from dbSNP and HGVS nomenclature notations. Variants can be mapped from
cDNA or protein coordinates to the genome and vice versa. Output of VEP is in an
HTML format, text file, tab-delimited, VCF, GVF, or JSON format. The tab-delimited
form is the default format for output. VCF format of output follows a standard form for
cross-platform comparison and benchmarking of results (McLaren et al., 2016).VEP is
available at https://asia.ensembl.org/Tools/VEP.

Yue et al. (2006) have developed a web resource cum database which provides
information about disease-gene relationship. SNPs3D has three modules. One module
identifies candidate genes for a specific disease. Second module provides information
about relationship between set of candidate genes. Third module predicts effect of
non-synonymous SNPs on function of proteins. This software enables searching for genes
associated with diseases. Authors have also compiled candidate genes lists for
76 diseases taken from NCBI (Yue et al., 2006).

Gardner and Hall (2013) came up with kSNPv2, an improved version of kSNPvI.
kSNPv2 provides SNP gene annotation, better scaling of draft genomes available as
assembled contigs or raw reads, estimation of optimal value of k, distribution of packages
of executables for Linux and Mac OS and a user guide. The program kSNP is used for
finished and draft sequences to identify SNPs and phylogenies. Generally, Multiple
Sequence Alignment or a set of pairwise alignments are needed to further locate SNPs.
With kSNP, there is no need of a reference genome and multiple sequence alignment. It
can scale well for upto gigabases of sequences in single run. kSNPv2 is the second
version of kSNPv1 which has been proved to be faster, memory-efficient and provides
better SNP annotation. A tool named Mauve performs whole genome multiple alignment
with huge memory requirements restricting its usage upto 30 bacterial genomes only. It
takes around 70 hours to align 25 genomes. Two tools namely Gegens and BopGenomes
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carry out comparison of complete genomes without performing their alignment. The
comparison is done based on presence or absence of DNA segments where SNPs are not
identified. Analysis of hundreds of bacterial or viral genomes is possible with kSNPv2 in
few hours. It can handle raw reads, finished genomes and genome assemblies.

Hence, kSNP is a reference free method. For SNP identification, firstly the user
inputs a fast a file of target genomes and also specifies k, length of the flanking sequence
including SNP. For example, k = 15 means that each SNP will be flanked by 7 bases on
its either side. The SNP lies at the central base of the k-mer, and flanking (k — 1) / 2 bases
are there on each side of the SNP defining the SNP locus. First step is to enumerate
k-meroligos and their count for each input genome through open source code jellyfish.
For raw reads, singleton k-mers that occur only once are dropped as they can probably be
sequencing errors. If the SNP conflict occurs that means if there is more than one central
base, then that k-mer is also dropped leading to a SNP conflict. Sorting of deleted k-mers
is done using merge sorting method. Next, it searches for SNP from list of central base
variants. Next, a comparison of found SNP location is done with deleted k-mers due to
conflict. Next, allele, i.e., the central base and flanking sequence in the genome are
identified. Identified SNPs are verified using MUMmer. Output is available in various
formats viz. SNP allelefasta alignment, SNP matrix, and list of SNPs with allele
locations. There are a number of methods for calculating phylogeny of SNPs such as
Parsimonator, neighbour joining of pairwise distances from SNP difference counts and
maximum likelihood. Using maximum likelihood, trees are formed based upon SNP
locations present in all of the genome or user-specified genome. Next, mapping of SNP
locations to the trees is done. Annotation of SNPs is done using Genbank files taken from
NCBI (Gardner and Hall, 2013).

Gardner et al. (2015) proposed kSNPv3, an improved version of kKSNPv?2. It is faster,
provides flexible annotation, its input file consists of paths to genome files instead of
genome sequences. Authors have compared k SNPv3 with its counterparts such as
ParSNP and RealPhy. Project is available at http://sourceforge.net/projects/kSNP/files/
(Gardner et al., 2015).

kSNP3.0 is an enhanced version of kKSNP v2. Genomes can be retrieved using various
tools available in kSNP3.0 suite, in order to carry out analysis. This program also
provides annotation of SNPs whereas kSNP v2 provided annotation of SNPs within the
chromosomes only. In the input file of kSNP3.0, paths of original genome files are
included and not genome itself hence providing ease of addition or removal of genome
from the list. It offers higher flexibility in annotating SNPs. This process of annotation is
usually quite time-consuming. Hence, kSNP3.0 offers two different modes viz. Standard
annotation where annotation of some SNP is done based upon the first genome in the list.
Second, full annotation where annotation of some SNP is done based upon every genome
where it is present. Speed of standard annotation process is quite high. In terms of
accuracy, kSNP 3.0 and kSNP v2 stand equal. kKSNP 3.0 was compared with other tools
like Parsnp, RealPhy and Epstein et al approach.

Parsnp can only be used for aligning finished or assembled genomes and not for
unassembled raw reads. RealPhy, at first performs the alignment of raw reads to the
reference genome therefore working of RealPhy greatly relies upon accuracy of
alignment done. The approach proposed by Epstein et al is for mapping raw reads to
complete genome.

Conde et al. (2004) came up with a web-based searching tool for searching SNPs
called PupaSNP. This tool takes a list of genes or chromosomal coordinates and retrieves
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SNPs using web-based tools. It extracts their functional information using OMIM and
Gene Ontology. The PupaSNP web interface is available at http://pupasnp.bioinfo.
cnio.es.

A list of genes is given as input to the PupaSNP. Gene list can be fed as the list of
gene identifiers such as gene Ensembl IDs,GenBank IDs, Swissprot/TrEMBL IDs.
Chromosome location for the genes can also be provided where all genes in that region
are selected. Tools can be used for finding functional effects of SNPs. In the output a text
file is generated enlisting descriptions of identified SNPs in tab-delimited format. The file
has major columns as name of the SNP, ID of the gene, starting location for translation
and alleles. Chromosomal position is used to indicate the gene as cytoband units or
absolute chromosome position. There is a provision of uploading the list of genes or can
be pasted in the box.SNPs having adverse functional effects are identified. Information
about functions of various genes can be found from OMIM and Gene Ontology. The
resources also contain information about homologous genes. The best way is to describe
SNPs by indicating their relative location with respect to gene and not absolute
coordinates. SNPs occurring in various regions of genes are found such as promoter
region, intronic region, exonic region and coding region. Identified SNPs and genes are
linked to Ensembl Genome Browser. It is highly important to validate the found SNPs.
Authors found at the time of this study, that only 2,359,534 out of 5,798,183 SNPs, i.e.,
40% of SNPs were validated in dbSNP build 118. Out of these SNPs, population
frequencies could be found only for 160,466 and 94,867 SNPs are associated with
diseases. For finding allele frequencies, a study was conducted by taking 48 persons from
the Spanish population. The fragments of interest were amplified by polymerase chain
reaction (PCR) using specific primers designed with OLIGO 4.1 program. Initially, the
SNP screening was done using a denaturing high-performance liquid chromatograph
(dHPLC) system (WAVE, Transgenomics Limited, Crewe, UK). Data handling and
optimisation of dHPLC was done using Navigation software. Sequence analysis of every
PCR product showing change of chromatogram profile was done next. E.Z.N.A.
Cycle-Pure Kit (Omega Bio-tek, USA) was used for purification of PCR products and an
automatic sequencer ABI PRISMTM 3700 (Applied Biosystems. PerkinElmer, USA)
was used for its sequencing. Fourml of a Big Dyeterminator cycle sequencing Kit (Perkin
Elmer, USA), 10 pmolof the sense/antisense primer, 5% DMSO and 6 to 12 ng of
amplified DNA were used for carrying out the reaction. Out of a total of 28 SNPs which
were identified , there were 24 SNPs which were authenticated and were proved to be
polymorphic in Spanish population chosen for conducting study (Conde et al., 2004).

Sachidanandam et al. (2001) developed a map with 1.42 million SNPs distributed
across entire human genome. This map integrates SNPs made available by a number of
projects viz. The SNP Consortium (TSC), HGP, White head Institute, Sanger Centre and
Washington University. Detection of SNPs was done using two algorithms viz.
Polybayes and Neighbourhood Quality Standard. This map acted as a good resource for
understanding haplotype variation across the genome and to identify genes significant in
diagnosis and therapy. This map contains SNPs available up to November, 2000. With
95% contribution from The SNP Consortium (TSC) and the public HGP, 1,023,950
candidate SNPs (http:// snp.cshl.org) came from TSC found using shotgun sequencing of
genomic fragments. Other institutions which found SNPs are Whitehead Institute, Sanger
Centre and Washington University. The method adopted involved following steps: firstly,
alignment of reads to each other and to the genome was done. Next, single-base
mutations were identified using Polybayes and the neighbourhood quality standard
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(NQS). Then identification of Candidate SNPs was done. A number of method were
employed to identify SNPs in EST overlaps. Found SNPs area available at their
individual dbSNP entries (http://www.ncbi.nlm.nih.gov/SNP/) (Sachidanandam et al.,
2001).

Prunier et al. (2019) came up with a tool named LD annot to find annotations of
polymorphisms based on phenomenon of LD. Authors define that a polymorphism may
not be directly responsible for some phenotype but there can be some other
polymorphism in neighbouring area with short physical distance which might be
causative of some disease. LD-annot calculates an average distance (in bp) between two
SNPs based on specified r2 threshold in entire dataset. This distance is considered on
both sides of a SNP in order to consider SNPs in its LD. LD-annot tool is available at
https://github.com/ArnandDroitLab/LD-annot. There have been numerous research
endeavours based upon variant identification approaches which aim to identify genomic
basis for the variations. The tool developed in this study finds LD and finds annotation
from all those regions which have genetic association with the candidate polymorphisms.
They can then be prioritised and analysed. Research is done to establish association of
genetic markers with quantitative traits. One approach is to do testing and genotyping of
individuals selected from the population. Then they are studied to find candidate
polymorphisms in controlled and uniform conditions using GWAS. Second approach is
to genotype offsprings of a controlled cross between two individuals. The two individuals
vary substantially for the given trait. This is again done in controlled and uniform
conditions. These approaches pave way for SNP identification. The developed annotation
tool was tested on different datasets of that of a domesticated animal, a domesticated
plant and a wild insect. The sampling size, number of tested SNPs and candidate SNPs
were also different for these datasets. This enabled performance evaluation of the tool
(Prunier et al., 2019).

SNiPlay is a web-based application offering simplicity and robustness for extraction
and analysis of polymorphisms in genomic data. This pipeline generates nicely formatted
output which can be further analysed by other tools. There is a pipeline of programs and a
relational database in SNiPlay. This database is based on MySQL. SNPs are identified
from alignments using a home-made module. The web interface is coded in Perl CGI
scripts on an Apache web server. JavaScript and Ajax technologies enable the interaction.
Polymor-find program combines Phred/Phrap/Consed software suite with Polyscan
program (Dereeper et al., 2011). SniPlay is available at http://sniplay.cirad.fr/ (Dereeper
etal., 2011).

Hassan et al. (2016) have carried out a study of BRAF gene of RAF family located on
chromosome 7 (7q34) consisting of 18 exons and translated into protein named ‘B-RAF
prot-oncogene serine/ threonine protein kinase’. In this study, SNPs&Indels present in
coding&non-coding regions of BRAF gene are identified. Various state-of-the-art
bioinformatics tools are used to identify SNPs and indels. A total of 111 SNPs identified
from coding regions are found to be high damage causing and six SNPs as less damage
causing. Different tools used for extracting the SNPs from SNP databases and predicting
their effects are SIFT, Polyphen-2, SNAP2 server, I-Mutant suite, CPH Models, UCSF
Chimera Model Software, Automatic Protein Structural Analysis and Information Using
HOPE Server, PolymiRTS Database (3°’UTR), Effect of SNPs within 5> UTR on
Transcription Factor Binding Sites and Effect of 3°/5’Splice Sites SNPs/Indels (HSF
Tool). SNPs are extracted from dbSNP, UniProt, HapMap, 1000 Genomes Project, gene
bank, and ClinVar (Hassan et al., 2016).
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Pers et al. (2015) have come up with a web based SNP identification and annotation
tool. The principle behind this approach is to identify the SNPs matching with the
associated query SNPs. First a set of SNPs is taken randomly. Then a set of query SNPs
is taken as input. These SNPs are the ones associated with some disease. Now, various
parameters are calculated for both sets of SNPs for matching the extracted SNPs with
query SNPs. First, Minor allele frequency is calculated and SNPs are classified into
minorallele frequency bins (1-2, 2-3, ..., 49-50% strata). Second, LD buddies are found
for every SNP, these are the SNPs in LD at different thresholds. Third, distance to nearest
gene is calculated. If the SNP lies within a gene then distance to the starting site of gene
is calculated. Fourth, Gene density, number of genes near the location of SNP is
calculated using concept of LD and physical distance like 100 kb, 200 kb, ..., 1,000 kb
and so on for defining physical distance of location/loci. This approach has been used by
a number of researchers in their study (Gamazon et al., 2010, 2013; Allen et al., 2010;
Nicolae et al., 2010; Maurano et al., 2012; Schaub et al., 2012; Wood et al., 2014).
Novelty of this study is development of a tool based on this approach. SNPsnap server is
available athttp://www.broadinstitute.org/mpg/snpsnap/.

Arshad et al. (2018) conducted a study on SNPs of TAGAP gene from the world’s
most extensive, dbSNP database. 1721 SNPs were retrieved out of which 275 were
nsSNPs, 147 lied in 5UTR, 162 lied in 3'UTR region and remaining ones were of some
other category. The nsSNPs were selected for this study. There are fivein silico tools
namelySIFT, PROVEAN, PolyPhen-2, PhD-SNP and SNPs&GO which are used for
predicting effects of these nsSNPs on structure or function of TAGAP protein. Results
produced by SIFT indicates that nsSNPs which scored tolerance index (TI) of 0.05 lie in
the ‘intolerant’ category. In the tool named PROVEAN, a variant is marked as
‘disease-causing’ if final score is less that the threshold value of —2.5 and variant is
marked as ‘neutral’ if the final score is above this threshold value. The tool PolyPhen-2
categorises the nsSNPs into three categories viz. probably damaging, possibly damaging
and benign nsSNPs. Here marking of a nsSNP as ‘probably damaging’ is the most
confident one. A total of 95 nsSNPs were found to be diseased by the tool PhD-SNP
whereas only 18 nsSNPs were found to be diseased by the tool SNPs&GO. Those
nsSNPs which were selected by at least four of these tools were termed as ‘high-risk’
nsSNPs (Arshad et al., 2018).

Manaster et al. (2005) have developed a specialised software called InSNP for
automated detection of SNPs and Indels. First of all, InSNP aligns the given sequence
against the reference sequence using a simple word match where a window of 20 bases
beginning from each primer site is used. Next, base-calling from the sequencing files is
done. In order to determine mutation frequency, the allele whose corresponding peak has
the greatest area under the curve is termed as primary allele. The allele is termed as the
other allele, if the area under its peak is more than 30% of the total area under all peaks at
that location else that base is termed as homozygous. InSNP automatically identifies
possible SNPs by identifying positions in the sequence that are different from the
reference sequence. Further verification of the SNPs is done by human experts by
visually inspecting them. This is beginning of good sequence. Results of InSNP were
compared with those of PolyPhred and Mutation Surveyor (Manaster et al., 2005).
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4 Conclusions and future scope

There are a number of approaches and tools available for SNP identification and analysis.
The working principles of various techniques are discussed in Section 3. There are certain
research gaps identified during the course of study based on the extensive literature
survey:

Majority of the tools require huge memory space and longer time for generating
output. Hence, these tools need a specific configuration of the system and cannot be
used on a simple personal computer.

Most of the tools which detect the SNPs satisfactorily work well for small sequences
and their performance deteriorates as the sequences become longer.

Most of these tools are pipelines consisting of similar kind of popular tools applied
in sequence. Here, error generated at one stage propagates to the next stage.

There is no standard format for output from various tools. Hence, there is absence of
one benchmark or a set of parameters which can be used to evaluate and compare
performance of state-of-the-art techniques.

Several methods exist for identifying SNPs though there is no global approach to
identify all types of SNPs. Most of the methods focus at coding region SNPs.

There have been various endeavours and projects in the area of genome sequencing such
as HGP, GWAS, and TCGA, whose outcomes reveal that genetic sequence variations
have strong association with diseases. SNPs are found to be the most common genetic
sequence variation which constitute 90% of sequence variations and are found to be
responsible for about half of the known human inherited diseases. Therefore, there is
great significance and scope of this study as summarised below:

Identification and analysis of SNPs is highly important for early prevention,
diagnosis and treatment of diseases.

SNPs act as excellent markers for locating candidate genes associated with a disease.

Identification of SNPs can enable individualised drug treatment as they are
responsible for particular response of a person towards a drug.

Identification and analysis of SNPs plays vital role in studying genetic diversity,
evolutionary study of a species and differences of traits among individuals.

An automated tool can identify SNP in shorter time and with lesser memory
requirement for the task.

Disclaimer

This study is not part of any funded project.



454 N. Sohi and A. Singh

References

‘AlleleID: design qPCR and microarray assays for related organisms’ [online]
http://www.premierbiosoft.com.

Ahmad, T., Valentovic, M.A. and Rankin, G.O. (2018) ‘Effects of cytochrome P450 single
nucleotide polymorphisms on methadone metabolism and pharmacodynamics’, Biochemical
Pharmacology, Vol. 153, pp.196-204.

Allen, H.L. et al. (2010) ‘Hundreds of variants clustered in genomic loci and biological LD-annot:
a bioinformatics tool to automatically provide candidate SNPs with annotations for genetically
linked genes’, Frontiers in Genetics, Vol. 10, No. 7317, p.1192.

Altshuler, D., Daly, M.J. and Lander, E.S. (2008) ‘Genetic mapping in human disease’, Science,
Vol. 322, No. 5903, pp.881-888.

Arshad, M., Bhatti, A. and John, P. (2018) ‘Identification and in silico analysis of functional SNPs
of human TAGAP protein: a comprehensive study’, PLoS ONE, Vol. 13, No. 1, p.e0188143.

Bianco, A.M., Marcuzzi, A., Zanin, Z., Girardelli, M., Vuch, J. and Crovella, S. (2013) ‘Database
tools in genetic diseases research’, Elsevier Genomics, Vol. 101, No. 2, pp.75-85.

Borsting, C. and Morling, N. (2013) ‘Single-nucleotide polymorphisms’, in Encyclopedia of
Forensic Sciences, 2nd ed., Elsevier Ltd., University of Copenhagen, Denmark.

Chakravarti, A. (1999) ‘Population Genetics-making sense out of sequence’, Nature Genetics,
Supplement, Vol. 21, Supplement 1, pp.56—60.

Chasman, D. and Adams, R.M. (2001) ‘Predicting the functional consequences of non-synonymous
single nucleotide polymorphisms: structure-based assessment of amino acid variation’,
Journal of Molecular Biology, Vol. 307, No. 2, pp.683—-706.

Chen, K., McLellan, M.D., Ding, L., Wendl, M.C., Kasai, Y., Wilson, R.K. and Mardis, E.R.
(2007) ‘PolyScan: an automatic indel and SNP detection approach to the analysis of human
resequencing data’, Genome Research, Vol. 17, No. 5, pp.659—-666.

Collins, F.S. et al. (1997) ‘Variations on a theme: cataloging human DNA sequence variation’,
Science, Vol. 278, No. 5343, p.1580.

Conde, L., Vaquerizas, J.M., Santoyo, J., Al-Shahrour, F., Ruiz-Llorente, S., Robledo, M. and
Dopazo, J. (2004) ‘PupaSNP Finder: a web tool for finding SNPs with putative effect at
transcriptional level’, Nucleic Acids Research, Vol. 32: pp.W242-W248.

Dereeper, A., Nicolas. S., Cunff, L.L., Bacilieri, R., Doligez, A., Peros, J.P., Ruiz, M. and This, P.
(2011) °SNiPlay: a web-based tool for detection, management and analysis of SNPs.
Application to grape vine diversity projects’, BMC Bioinformatics, Vol. 12, p.134.

Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) ‘Base-calling of automated sequencer
traces using Phred 1. Accuracy assessment’, Genome Research, Vol. 8, No. 3, pp.175-185.
Gamazon, E.R. et al. (2013) ‘Enrichment of CIS-regulatory gene expression SNPs and methylation
quantitative trait loci among bipolar disorder susceptibility variants’, Molecular Psychiatry,

Vol. 18, No. 3, pp.340-346.

Gamazon, E.R., Huang, R.S.,, Cox, N.J. and Dolan, M.E. (2010) ‘Chemotherapeutic drug
susceptibility associated SNPs are enriched in expression quantitative trait loci’, Proceedings
of the National Academy of Sciences of the United States of America, Vol. 107, pp.9287-9292.

Gardner, S.N. and Hall, B.G. (2013) “When whole-genome alignments just won’t work: kSNPv2
software for alignment-free SNP discovery and phylogenetics of hundreds of microbial
genomes’, PLOS ONE, Vol. 8, No. 12, p.e81760.

Gardner, S.N., Slezak, T. and Hall, B.G. (2015) ‘kSNP3.0: SNP detection and phylogenetic
analysis of genomes without genome alignment or reference genome’, Bioinformatics
Advance Access, Vol. 31, No. 17, pp.2877-2878.

Gray, 1.C., Campbell, D.A. and Spurr, N.K. (2000) ‘Single nucleotide polymorphisms as tools in
human genetics’, Human Molecular Genetics, Vol. 9, No. 16, pp.2403-2408.



Bio-computing approaches and tools for identification of single nucleotide 455

Haga, H., Yamada, R., Nakamura, Y. and Tanaka, T. (2002) ‘Gene-based SNP discovery as part of
the Japanese Millennium Genome Project: identification of 190 562 genetic variations in the
human genome’, Journal of Human Genetics, Vol. 47, No. 11, pp.605-610.

Hassan, M.M., Omer, S.E., Khalf-allah, R.M., Mustafa, R.Y., Ali, [.S. and Mohamed, S.B. (2016)
‘Bioinformatics approach for prediction of functional coding/moncoding simple
polymorphisms (SNPs/Indels) in human BRAF gene’, Advances in Bioinformatics 2016,
p.2632917.

Johnson, A.D. (2009) ‘SNP bioinformatics: a comprehensive review of resources’, Circulation:
Cardiovascular Genetics, Vol. 2, No. 5, pp.530-536.

Kashuk, C., Gupta, S., Eichler, E. and Chakravarti, A. (2001) ‘viewGene: a graphical tool
for polymorphism visualization and characterization’, Genome Research, Vol. 12, No. 2,
pp-333-338.

Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., Melsopp, C., Hammond, M.,
Rocca-Serra, P., Cox, T. and Birney, E. (2004) ‘EnsMart: a generic system for fast and
flexible access to biological data’, Genome Research, Vol. 14, No. 1, pp.160—169.

Kim, K.J., Lee, H.J., Park, M.H., Cha, S.H., Kim, K.S., Kim, H.T., Kimm, K., Oh, B. and Lee, J.Y.
(2006) ‘SNP identification, linkage disequilibrium, and haplotype analysis for a 200-kb
genomic region in a Korean population’, Genomics, Vol. 88, No. 5, pp.535-540.

Leekitcharoenphon, P. et al. (2012) ‘snpTree — a web-server to identify and construct SNP trees
from whole genome sequence data’, BMC Genomics, Vol. 13, Suppl. 7, p.S6.

Li, H. and Durbin, R. (2009) ‘Fast and accurate short read alignment with Burrows-Wheeler
transform’, Bioinformatics, Vol. 25, No. 14, pp.1754-1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. and
Durbin, R. (2009) ‘1000 genome project data processing subgroup: the sequence
alignment/map (SAM) format and SAM tools’, Bioinformatics, Vol. 25, No. 16,
pp-2078-2079.

Manaster, C., Zheng, W., Teuber, M., Wachter, S., Doring, F., Schreiber, S. and Hampe, J. (2005)
‘InSNP: a tool for automated detection and visualization of SNPs and InDels’, Human
Mutation, Vol. 26, No. 1, pp.11-19.

Maurano, M.T. et al. (2012) ‘Systematic localization of common disease-associated variation in
regulatory DNA’, Science, Vol. 337, No. 6099, pp.1190-1195.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flicek, P. and
Cunningham, F. (2016) ‘The Ensembl variant effect predictor’, Genome Biology, Vol. 17,
p.122.

Mooney, S. (2005) ‘Bioinformatics approaches and resources for single nucleotide polymorphism
functional analysis’, Briefings in Bioinformatics, Vol. 6, No. 1, pp.44-56.

Mooney, S.D., Krishnan, V.G. and Evani, U.S. (2010) ‘Bioinformatic tools for identifying disease
gene and SNP candidates’, Methods Molecular Biology, Vol. 628, pp.307-319.

National Human Genome Research Institute (NHGRI) (2015) An Overview of the Human Genome
Project [online] http://www.genome.gov/12011238 (accessed 10 February 2021).

Ng, P.C. and Henikoff, S. (2006) ‘Predicting the effects of amino acid substitutions on protein
function’, Annual Review of Genomics and human Genetics, Vol. 7, pp.61-80.

Ngamphiw, C., Kulawonganunchai, S., Assawamakin, A., Jenwitheesuk, E. and Tongsima, S.
(2008) ‘VarDetect: a nucleotide sequence variation exploratory tool’, BMC Bioinformatics,
Vol. 9, No. 12, p.S9.

Nickerson, D.A., Tobe, V.O. and Taylor, S.L. (1997) ‘PolyPhred: automating the detection and
genotyping of single nucleotide substitutions using fluorescense-based resequencing’, Nucleic
Acids Research, Vol. 25, No. 14, pp.2745-2751.

Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E. and Cox, N.J. (2010)
‘Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from
GWAS’, PLoS Genetics, Vol. 6, No. 4, p.e1000888.



456 N. Sohi and A. Singh

Niu, T. and Hu, Z. (2004) ‘SNPicker: a graphical tool for primer picking in designing mutagenic
endonuclease restriction assays’, Bioinformatics, Vol. 20, No. 17, pp.3263-3265.

Oecveren, J.V. and Janssen, A. (2009) ‘Mining SNPs from DNA sequence data; computational
approaches to SNP discovery and analysis’, in Komar, A.A. (Ed.): Single Nucleotide
Polymorphisms: Methods in Molecular Biology, p.578, Humana Press.

Pers, T.H., Timshel, P. and Hirschhorn, J.N. (2015) ‘SNPsnap: a web-based tool for identification
and annotation of matched SNPs’, Bioinformatics, Vol. 31, No. 3, pp.418-442.

Picoult-Newberg, L., Ideker, T.E., Pohl, M.G., Taylor, S.L., Donaldson, M.A., Nickerson, D.A. and
Boyce-Jacino, M. (1999) ‘Mining SNPs from EST databases’, Genome Research, Vol. 9,
No. 1, pp.167-174.

Prunier, J., Lemagon, A., Bastien, A., Jafarikia, M., Porth, 1., Robert, C. and Droit, A. (2019)
‘LD-annot: a bioinformatics tool to automatically provide candidate SNPs with annotations for
genetically linked genes’, Frontiers in Genetics, Vol. 10, p.1192.

Pusch, W., Kraeuter, K.O., Froehlich, T., Stalgies, Y. and Kostrzewa, M. (2001)’ Genotools SNP
MANAGER: a new software for automated high-throughput MALDI-TOF Mass spectrometry
SNP genotyping’, BioTechniques, Vol. 30, pp.210-215.

Riva, A. and Kohane, I.S. (2002) ‘SNPper: retrieval and analysis of human SNPs’, Bioinformatics,
Vol. 18, No. 12, pp.1681-1685.

Robert, F. and Pelletier, J. (2018) ‘Exploring the impact of single-nucleotide polymorphismson
translation’, Frontiers in Genetics, Vol. 9, p.507.

Sachidanandam, R., Weissman, D., Schmidt, S.C., Kakol, J.M., Stein, L.D., Marth, G., Sherry, S.,
Mullikin, J.C., Mortimore, B.J., Willey, D.L., Hunt, S.E., Cole, C.G., Coggill, P.C.,
Rice, C.M., Ning, Z., Rogers, J., Bentley, D.R., Kwok, P.Y., Mardis, E.R., Yeh, R.T.,
Schultz, B., Cook, L., Davenport, R., Dante, M., Fulton, L., Hillier, L., Waterston, R.H.,
McPherson, J.D., Gilman, B., Schaffner, S., Van Etten, W.J., Reich, D., Higgins, J.,
Daly, M.J., Blumenstiel, B., Baldwin, J., Stange-Thomann, N., Zody, M.C., Linton, L.,
Lander, E.S., Altshuler, D. and International SNP Map Working Group (2001) ‘A map of
human genome sequence variation containing 1.42 million single nucleotide polymorphisms’,
Nature, Vol. 409, No. 6822, pp.928-933.

Sahl, J.W., Beckstrom-Sternberg, S.M., Hepp, C.M., Auerbach, R.K., Tembe, W., Wagner, D.M.,
Keim, P.S. and Pearson, T. (2015) ‘The in silico genotyper (ISG): an open-source pipeline to
rapidly identify and annotate nucleotide variants for comparative genomics applications’,
Biorxiv: The Preprint Server for Biology, http://dx.doi.org/10.1101/015578.

Saunders, C.T. and Baker, D. (2002) ‘Evaluation of structural and evolutionary contributions to
deleterious mutation prediction’, Journal of Molecular Biology, Vol. 322, pp.8§91-901.

Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S. and Snyder, M. (2012) ‘Linking discase
associations with regulatory information in the human genome’, Genome Research, Vol. 22,
No. 9, pp.1748-1759.

Sohi, N. and Singh, A. (2018) ‘Single nucleotide polymorphisms: identification and association
with breast cancer using biocomputing approach’, Presented at the /EEE Second International
Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India,
14-15 June.

Srinivasan, S., Clements, J.A. and Batra, J. (2016) ‘Single nucleotide polymorphisms in clinics:
fantasy or reality for cancer?’, Critical Reviews in Clinical Laboratory Sciences, Vol. 53,
No. 56, pp.29-39.

Sripichai, O. and Fucharoen, S. (2007) ‘Genetic polymorphisms and implications for human
diseases’, Journal of the Medical Association of Thailand, Vol. 90, No. 2, pp.394-398.

Sunyaev, S., Ramensky, V., Koch, 1., Lathe, W., Kondrashov, A.S. and Bork, P. (2001) ‘Prediction
of deleterious human alleles’, Human Molecular Genetics, Vol. 10, No. 6, pp.591-597.

Tang, J., Vosman, B., Voorrips, R.E., van der Linden, C.G. and Leunissen, J.A. (2006) ‘Quality
SNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST
data from diploid and polyploid species’, BMC Bioinformatics, Vol. 7, p.438.



Bio-computing approaches and tools for identification of single nucleotide 457

Vallejos-Vidal, E., Reyes-Cerpa, S., Rivas-Pardo, J.A., Maisey, K., Yanez, J.M., Valenzuela, H.,
Cea, P.A., Castro-Fernandez, V., Tort, L., Sandino, A.M., Imarai, M. and Reyes-Lopez, F.E.
(2020) ‘Single-nucleotide polymorphisms (SNP) mining and their effect on the tridimensional
protein structure prediction in a set of immunity-related expressed sequence tags (EST) in
Atlantic Salmon (Salmo salar)’, Frontiers in Genetics, Vol. 10, p.1406.

Wang, D.G., Fan, J., Siao, C., Berno, A., Young, P., Sapolsky, R. et al. (1998) ‘Large-scale
identification, mapping, and genotyping of single-nucleotide polymorphisms in the human
genome’, Science, Vol. 280, No. 5366, pp.1077-1082.

Wang, P. et al, (2005) ‘SNP function portal: a web database for exploring the function implication
of SNP alleles’, Bioinformatics, Vol. 22, No. 14, pp.e523—e529.

Wang, Z. and Moult, J. (2001) ‘SNPs, protein structure and disease’, Human Mutation, Vol. 17,
263270.

Weckx, S., De Rijk, P., Van Broeckhoven, C. and Del-Favero, J. (2005) ‘SNPbox: a modular
software package for large-scale primer design’, Bioinformatics, Vol. 21, No. 3, pp.385-387.

Wegrzyn, J.L., Lee, J.M., Liechty, J. and Neale, D.B. (2009) ‘PineSAP-sequence alignment and
SNP identification pipeline’, Bioinformatics, Vol. 25, No. 19, pp.2609-2610.

Wijmenga, C. and Zhernakova, A. (2018) ‘The importance of cohort studies in the post-GWAS
era’, Nature Genetics, Vol. 50, No. 3, pp.322-328.

Wood, A. et al. (2014) ‘Defining the role of common variation in the genomic and biological
architecture of adult human height’, Nature Genetics, Vol. 46, No. 11, pp.1173-1186.

Yue, P., Melamud, E. and Moult, J. (2006) ‘SNPs3D: candidate gene and SNP selection for
association studies’, BMC Bioinformatics, Vol. 7, p.166.

Zhang, J., Wheeler, D.A., Yakub, 1., Wei, S., Sood, R., Rowe, W., Liu, P.P., Gibbs, R.A. and
Buetow, K.H. (2005) ‘SNPdetector: a software tool for sensitive and accurate SNP detection’,
PLoS Computational Biology, Vol. 1, No. 5, pp.0395-0404.



