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Abstract: Recently, some engineering systems are modelled as interval 
systems. In this investigation, an improved approximation method is first 
presented for reducing the order of single-input-single-output (SISO) 
continuous interval systems and then the same method is extended for reducing 
the order of multi-input-multi-output (MIMO) continuous interval systems 
utilising multi-point Padé approximation. In contrast to traditional Padé 
approximants, multi-points are used for matching the response of higher order 
system to that of its model in case of multi-point Padé approximation. 
Matching around multi-points improves the overall quality of approximation. 
The multi-point Padé approximation is proposed for SISO system firstly. A test 
case for SISO system is considered to illustrate the efficacy of proposed 
method. Secondly, multi-point Padé approximation is extended for reducing the 
order of MIMO continuous interval systems. The proposed method is also 
investigated for one MIMO test case. From the results obtained for SISO and 
MIMO test cases, it is observed that multi-point Padé approximation is able to 
provide better approximants. 
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1 Introduction 

The model reduction of large-scale interval systems is continued an important area of 
research in control system design (Choudhary and Nagar, 2018a, 2018b, 2018c). Model 
reduction not only reduces the order of large-scale interval systems but also offers 
simpler understanding of system, simpler controller design, reduced computational effort 
in simulation, etc. (Schilders et al., 2008; Singh et al., 2019). 

Many good works are reported to lower the order of interval systems 
(Bandyopadhyay et al., 1994; Sastry et al., 2000; Yang, 2005; Kumar et al., 2011a,  
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2011b, 2011c, 2016; Saini and Prasad, 2010; Saraswathi et al., 2007; Choo, 2007; 
Choudhary and Nagar, 2013; Singh and Chandra, 2012; Anand et al., 2011; Gu and 
Yang, 2010; Singh et al., 2017). The pioneering work by Bandyopadhyay et al. (1994) 
derived the Routh-Padé approximation of continuous interval systems. In this work, the 
denominator of approximant is obtained using Routh table while the numerator is 
obtained by equating coefficients of power series expansions of large-scale interval 
system and approximant. Other important works based on Routh table includes large-
scale interval system modelling using Routh approximation (Sastry et al., 2000), 
comments on Routh-Padé model reduction (Yang, 2005), modified Routh approximation 
combined with factor division method (Kumar et al., 2011a), Routh approximation with 
Cauer second form (Kumar et al., 2011c) and stable Routh-Padé approximation (Gu and 
Yang, 2010). Recently, Ismail (Ismail, 1996) has proposed multi-point Padé 
approximation for discrete interval systems. However, the reduction of single-input-
single-output (SISO) interval system only is considered in Ismail (1996). 

Inspired from (Ismail, 1996), in this contribution, a multi-point Padé approximation is 
proposed for model order reduction of higher order continuous interval systems. Further, 
the proposed method is extended for lowering the order of multi-input-multi-output 
(MIMO) continuous interval systems. In multi-point Padé approximation, first 2k points 
are chosen around which the responses of higher order continuous interval system and 
model are to be matched, where k is the order of model. In multi-point Padé 
approximation, 2k points are used for matching in contrast to traditional Padé 
approximation. Matching around multi-points improves the overall approximation. 
Firstly, the multi-point Padé approximation is proposed for SISO system. A test case for 
SISO system is also undertaken to illustrate the whole procedure. Secondly, the multi-
point Padé approximation is extended for reduction of MIMO systems. The whole 
procedure of reduction of MIMO systems is carried out for one test system. The results 
obtained are also compared with some relevant works. The step and impulse responses 
are plotted for higher order system and its approximants. 

The brief outline of the paper is as follows. Section 2 formulates the problem 
considered whereas Section 3 discusses the methodology to derive the approximant for 
higher order SISO continuous interval system. A test case for SISO system is provided in 
Section 4. Section 5 extends the proposed methodology for reduction of higher order 
MIMO continuous interval system. Further, a test case for MIMO system is provided in 
Section 6. Finally, the concluding remarks are carried out in Section 7. 

2 Problem formulation 

Consider a higher order continuous interval SISO system given by 

( ) ( )
( )

2 1
0 0 1 1 2 2 1 1

2
0 0 1 1 2 2 

, , , ,

, ,   , ,

n
n n

n
n n

B s
G s

A

b b b b s b b s b b s

a a a a s a a s s sa a

−
− −

      + + + +      
      + + + +      

= =



 (1) 

where ( )B s  and ( )A s  are numerator and denominator of system ( )G s , respectively; and 
[ ],i ib b  for ( )0,1, , 1i n= −  are interval coefficients of numerator with ib  as lower 
bound and ib  as upper bound, respectively. Similarly [ ],i ia a  for ( )0,1, ,i n=   are 
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interval coefficients of denominator with ia  as lower bound and ia  as upper bound, 
respectively. 

Suppose, a kth order interval model of higher order system, given in (1), is desired. 
The transfer function of kth order interval model can be written as 

( )
( )

2 1
0 0 1 1 2 2 1 1

2
0 0 1 1 2 2

, , , ,
(

   
)

, , , ,

k
k k

k
k k

d d d d s d d s d d s

e e e e s e e s e
R

e s

D s
s

E s

−
− −

      + + + +      
      + + + +      

= =



 (2) 

where ( )D s  and ( )E s  are numerator and denominator of kth order interval model 
( )R s , respectively. [ ],i id d  for ( )0,1, 1i k= −  and [ ],i ie e  for ( )0,1, ,i k=   are, 

respectively, interval coefficients of numerator and denominator with [ ]0 0[ ] ,, 1 1e e = . 

3 Methodology 

The kth order interval model, given in equation (2), is obtained from higher order interval 
system, provided in equation (1), using multi-point Padé approximation (Ismail, 1996; 
Lucas, 1993). In multi-point Padé approximation, the expansions of system and model 
are matched as 

( ) ( ) j jG R=   (3) 

around 2k  expansion points j  where 1,2, , 2j k=  . Contrary to Padé approximation 
where the expansion is matched around only two points, s = 0 and s = ∞ , in multi-point 
Padé, the expansion is matched around 2k  points, where k  represents order of model. 
Due to matching around multiple points, the quality of approximation improves. 

The 2k  unknown parameters of equation (2) are obtained using equation (3). The 
formulation given in equation (3) becomes 

( ) ( ) P s sQ=  at is =   (4) 

where 1, 2, , 2i k=   and 

( ) ( ) ( )   DP s s A s=  (5) 

( ) ( ) ( ) Q s B s E s=  (6) 

The polynomials of equations (5) and (6) turn out to be, respectively, equations (7) and 
(8). 

( ) 2 1
0 0 1 1 2 2 1 1, , , , n k

n k n kP s p p p p s p p s p p s + −
+ − + −

      = + + + +        (7) 

( ) 2 1
0 0 1 1 2 2 1 1, , , , n k

n k n kQ s q q q q s q q s q q s + −
+ − + −

      = + + + +        (8) 
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where 

1 1 1 1

2 2 2 2 1 1 1 1 1 1

0 0 0 0 1 1 00

, , ,

, , , , ,

, , , , ,

n k n k n n k k

n k n k n n k k n n k k

k k n n

p p a a d d

p p a a d d a a d d

p p a a d d a a d d

+ − + − − −

+ − + − − − − − − − − −

− −

     =     
         = +         

         = + +         





 (9) 

and 

1 1 1 1

2 2 2 2 1 1 1 1

0 0 0 0 1 1 00

, , ,

, , , , ,

, , , , ,

n k n k n n k k

n k n k n n k k n n k k

k k n n

q q b b e e

q q b b e e b b e e

q q b b e e b b e e

+ − + − − −

+ − + − − − − − − −

− −

     =     
         = +         

         = + +         





 (10) 

A polynomial from 2k  expansion points can be formed as 

( ) ( )2 2 2 1
2 1 1 01

k k k
i ki

M s s s s sγ γ γ−
−=

= − = + + + +∏    (11)
 

In multi-point Padé, Routh type array (Table 1) is formed using (7) and (11). 

Table 1 Routh type array 

1 1 2 2 3 3 0

2 1 2 2 0

2 2 3 3 4 4 0 0

2 1 2 2 0

3 3 4 5 5 0

0

4

1

1

, , , ,

, , , ,

, , ,

n k n k n k n k n k n k

k k

n k n k n k n k n k n k

k k

n k n k n k n k n k n k

p p p p p p p p

w w w w w w w w

x x x x x x x

γ γ γ

γ γ γ

+ − + − + − + − + − + −

− −

+ − + − + − + − + − + −

− −

+ − + − + − + − + − + −

          

          

       

  

  









 0

4 4 5 5 6 6 0 0

2 1 2 2

5 5 6 6 7 7 0 0

0

,

, , , ,

, ,

1

, ,

n k n k n k n k n k n k

k k

n k n k n k n k n k n k

x

y y y y y y y y

z z z z z z z z

γ γ γ
+ − + − + − + − + − + −

− −

+ − + − + − + − + − + −

  

              

              









 

The first two rows of Table 1 are obtained from the coefficients of equations (7) and (11) 
while remaining rows are calculated as 
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( )

( )

2 2 2 2 2 1 1 1

3 3 3 3 2 1 2 2

5 5

, , ,

 0,1, 2, , 2

, , ,

 0,1, 2, , 3

,

n k i n k i n k i n k i k i n k n k

n k i n k i n k i n k i k i n k n k

n k i n k i n k i

w w p p p p

i n k

x x w w w w

i n k

z z y

γ

γ

+ − − + − − + − − + − − − − + − + −

+ − − + − − + − − + − − − − + − + −

+ − − + − − + − −

     = −     
= + −

     = −     
= + −

  = 






( )
5 5 2 1 4 4, ,

  0,1, 2, , 2 1
n k i k i n k n ky y y

i k

γ+ − − − − + − + −
   −   

= −

 (12) 

In similar manner, another Routh type array can be formed using equations (8) and (11). 
Finally, by equating the corresponding elements of the two arrays (first obtained for 
equations (7) and (11), and second obtained for equations (8) and (11)), the unknown 
coefficients of equation (2) are determined. The proposed methodology is explained with 
one test system considered in Section 4. 

4 Test case for SISO system 

In this section, one test system is provided to illustrate the proposed method. 
Consider a second-order continuous interval system (Bandyopadhyay et al., 1994) 

with a transfer function 

( ) [ ] [ ]
[ ] [ ] [ ]

( )
( )2

15,16 2,3
10,11 12,13 2,3  

s
G

B
As

s
s

s
s

+
+

=
+

=  (13) 

It is required to find a first-order model given as 

( ) ( )
( )

0 0

0 0 1 1

,

, ,

d d
R

D s
E s

s
e e e e s

  = =
   +   

 (14) 

for the system, described in equation (13), using multi-point Padé approximation such 
that 

[ ]0 0 1, 1,e e  =   (15) 

The following expansion points 

0, 3s s= =  (16) 

are considered to obtain equation (14) which are the roots of the polynomial 

( ) 2  3M s s s= −  (17) 

For equations (13) and (14), the polynomials ( )P s  and ( )Q s , as given in equations (7) 
and (8), become 

( ) [ ] [ ] [ ]2
0 0 0 0 0 0  , 2,3 , 12,13 , 10,11P s d d s d d s d d     = + +       (18) 
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( ) [ ] [ ] [ ]{ } [ ]2
1 1 1 1 0 0 0 0  , 2,3 , 15,16 , 2,3 , 15,16Q s e e s e e e e s e e      = + + +         (19) 

Table 1 becomes Table 2 for equations (17) and (18). Similarly for equations (17) and 
(19), Table 3 is obtained. 

Table 2 Routh like array for ( )P s  and ( )M s  

[ ] [ ] [ ]

[ ] [ ]{ } [ ]

0 0 0 0 0 0

0 0 0 0 0 0

2,3 12,13 10,11

1 3 0

12,13

, , ,

, 3 2,3 10,1 0, 1,

d d d d d d

d d d d d d

     
     

−

     +     

 

Table 3 Routh like array for ( )Q s  and ( )M s  

[ ] [ ] [ ] [ ]

[ ] [ ]
[ ]

[ ]

1 1 1 1 0 0 0 0

1 1 0 0

0 0

1 1

2,3 15,16 2,3 15,16

1 3 0

15

, , ,

,16 2,3
1

,

, ,
,

,
5,16 0

3 2,3

e e e e e e e e

e e e e
e e

e e

       +       
−

    + +            

 

Equating the like coefficients of third row of Tables 2 and 3, it is obtained as given in 
equations (20) and (21). 

[ ] [ ]{ } [ ] [ ]
[ ]

1 1 0 0

0 0 0 0

1 1

15,, ,16 2,3
12,13 3 2,3

3 2, 3
, ,

,

e e e e
d d d d

e e

    + +      + =          

 (20) 

[ ] [ ]0 0 0 010,11 1 , 6, 5 1,d d e e   =     (21) 

Using equations (15), (20) and (21), the values of 0 0,d d    and 1 1,e e    obtained are 

[ ] [ ]0 0 1 11.363,1.6 , 0.861,1.58, ,d d e e   = =    (22) 

Putting the values from equations (15) and (22), first-order model (14) turns out to be 

( ) [ ]
[ ] [ ]

1.363,1.6
1, 0.861,1. 81 5

R s
s+

=  (23) 

For second-order interval system given in equation (13), the model proposed by 
Bandyopadhyay et al. (1994) is given by equation (24). 

( ) [ ]
[ ] [ ]

12.58,19.072
1 9.23,11.922,13

BR s
s

=
+

 (24) 
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Figure 1 depicts the step and impulse responses of second-order interval system (13) and 
models given in equations (23) and (24). It is evident from Figure 1 that step response of 
proposed model (23) is more closer to the step response of second-order interval system 
(13) than the step response of model (24) derived by Bandyopadhyay et al. (1994). The 
same is true for impulse response of proposed model. This shows that proposed multi-
point Padé approximation provides excellent approximation in case of continuous SISO 
interval system. 

Figure 1 Step and impulse responses of system and models (see online version for colours) 

 

5 Proposed method for reduction of MIMO interval systems 

The proposed method is also extended for the reduction of higher order MIMO 
continuous interval systems. The procedural steps are as follows. 

Let the nth order MIMO interval system be 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

  

j

j

i i ij

G s G s G s
G s G s G s

s G

s

G

G

s G s

=

… 
 … 
 
 

…  

 
 (25) 

with   1,2, ,i N=   and 1, 2, ,j M=   where M and N are, respectively, number of 
inputs and outputs. The transfer functions ( )ijG s  are given as 

( ) ( ) ( )ij ij ijB ss AG s=  (26) 

where ( )ijB s  and ( )ijA s  are, respectively, the numerator and denominator polynomials 
of thij  transfer function ( )ijG s . 
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Suppose, it is desired to obtain a thk  order model as represented by 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

  

j

j

i i ij

R s R s R s
R s R s R s

s R

s

R

R

s R s

=

… 
 … 
 
 

…  

 
 (27) 

for equation (25) where   1,2, ,i N=   and 1, 2, ,j M=  , and 

( ) ( ) ( )ij ij ijD ss ER s=  (28) 

( )ijD s  and ( )ijE s  are the numerator and denominator polynomials of thij  transfer 
function ( )ijR s  of MIMO model ( )R s , respectively. 

5.1 Determination of ( )11R s  

The transfer function ( )11R s  is derived from ( )11G s . Suppose, ( )11R s  is given as 

( )
( )

2 1
0 0 1 1 2 2 1 1

2
0 0 1 1 2

1
2

11
1

11 

, , , ,
( )

, ,   , ,

k
k k

k
k k

d d d d s d d s d d s

e e e e s e e s

D s
R s

E se e s

−
− −

      + + + +      
     

= =
+ + + +      




 (29) 

where ,i id d    for ( )0,1, , 1i k= −  and ,i ie e    for ( )0,1, ,i k=   are, respectively, 
interval coefficients of numerator and denominator polynomials provided [ ]0 0 1, 1,e e  =  . 

As assumed in case of SISO interval system in equation (11), the polynomial of 2k 
expansion points can be formed as 

( ) ( )2 2 2 1
11 2 1 1 01

k k k
i ki

M s s s s sγ γ γ−
−=

= − = + + + +∏    (30) 

For equations (29), (5) and (6) modify to 

( ) ( ) ( )11 11 11P s D s A s=  (31) 

( ) ( ) ( )11 11 11Q s B s E s=  (32) 

The interval coefficients of 11( )D s  and ( )11E s , are obtained by comparing the elements 
of Routh like arrays (Table 1) formed for ( )11P s  and ( )11M s , and ( )11Q s  and ( )11M s . 
In similar manner, other transfer functions ( )12R s , ( )13R s , …, ( )ijR s  can be 
determined. 

6 Test case for MIMO system 

Consider a second-order MIMO interval system (Sastry and Rao, 2003) as given below 

( ) ( ) ( )
( ) ( )

11 12

21 22

G s G s
G s G s

G s
 

=  
 

 (33) 
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where 

( ) ( )
( )

[ ] [ ]
[ ] [ ] [ ]11

1
2

11

1

0.622,1.622 1.00712,2.00712
0.537464,1.537464 1.379631, 2.379813 1, 2

s
s

B s
s

G s
A s

+
+ +

= =  (34) 

( ) ( )
( )

[ ] [ ]
[ ] [ ] [ ]

2
12 2

1

12

462.6, 463.6 715.2653,716.62653
0.537464,1.537464 1.379631,2.379813 1, 2

B s
G s

s
s sA s

=
+
+ +

=  (35) 

( ) ( )
( )

[ ] [ ]
[ ] [ ] [ ]21

1
2

21

2

3.563,4.563 4.8589,5.8589
0.537464,1.537464 1.379631,2.379813 1, 2

s
s

B s
s

G s
A s

+
+ +

= =  (36) 

( ) ( )
( )

[ ] [ ]
[ ] [ ] [ ]

22
22

22
2

610.435,611.453 1000.3485,1001.3485
0.537464,1.537464 1.379631,2.379813 1,2

B s
G s

s
s sA s

=
+

+ +
=  (37) 

Suppose, a first-order MIMO model given by 

( ) ( ) ( )
( ) ( )

11 12

21 22

R s R s
R s

R s R s
 

=  
 

 (38) 

is desired for equation (33). 

6.1 Determination of ( )11R s  

The first-order transfer function ( )11R s  is given as 

( ) ( )
( )

1 0 0

0 0 1 1

1
11

11

,

 , ,
D s

R
d d

e e es e
s

E s

  = =
   +   

 (39) 

where 

[ ]0 0 1, 1,e e  =   (40) 

The ( )11D s  and ( )11E s  are obtained from ( )11B s  and ( )11A s  of matrix (33). For 
( )11D s  and ( )11E s , expressions (31) and (32) become 

( ) ( ) ( )
[ ] [ ] [ ]

11

2

11

0 0 0 0 0 0, 0.5374,1.5374 , 1.3791, 2.379 , 1,2

  

d d s d d s d d

P s D s A s

     = + +     

=
 (41) 

( ) ( ) ( )
[ ]

[ ] [ ]{ }
2

11 11

0 0

1

1 0 0 0

1

1 0

, 0.622,1.622

, 1.00721, 2.00721 , 0.622,1 ,

 

.622

e e s

e e e e s e

Q B s E s

e

s

 =  



=

   + + +     

 (42) 

The expansion points are considered as 0s =  and 4s = . For these expansion points, 
(30) becomes 
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( ) 2
11   4M s s s= −  (43) 

The Routh like array for (41) and (43) is given in Table 4. Similarly, the Routh like array 
for equations (42) and (43) is provided in Table 5. 

Table 4 Routh like array for ( )11P s  and ( )M s  

[ ] [ ] [ ]

[ ] [ ]{ } [ ]

0 0 0 0 0 0

0 0 0 0 0 0

0.5374,1.5374 1.379,2.379 1,2

1 4 0

1.379,2.379 4 0.5374,1.5374 1,2 0

, , ,

, , ,

d d d d d d

d d d d d d

          
−

     +     

 

Table 5 Routh like array for ( )11Q s  and ( )M s  

[ ]
[ ]
[ ]

[ ]

[ ]
[ ]
[ ]

1 1

1 1 0 0

0 0

1 1

0 0 0 0

1 1

1.00721,2.00721
0.622,1.622 1.00721,2.00721

0.622,1.622

1 4 0

1.00721,2.00721

0.622,1.622 1.00721

4 0

,
, ,

,

,

.622,1.62

,

, 2

,

e e
e e e e

e e

e e

e e e e

e e

   +              
−

   +  
    +    
 

    

[ ],2.00721 0

 

By equating the like coefficients of third row of Tables 4 and 5, it is obtained as 

[ ]
[ ]
[ ]

0 0

1 1

0 0

, 0.5036, 2.0072

, 0.0365, 4.727

, 1,1

d d

e e

e e

  
  

  = 

=

=

 (44) 

Putting the values from (44), the first-order transfer function (39) becomes 

( ) ( )
( )

[ ]
[ ] [ ]

11
11

11

0.5036,2.0072
0.0365,4.727 1,1

D s
R s

E s s
= =

+
 (45) 

In similar manner, the transfer functions 12R , 21R , and 22R  obtained are 

( ) ( )
( )

12
12

12

[358.1326,716.62653]
[0.3111, 2.2018] [1,1]

D s
R s

E s s
= =

+
 (46) 

( ) ( )
( )

21
21

21

[2.4294,5.8589]
[0.1330,1.1712] [1,1]

D s
R s

E s s
= =

+
 (47) 

( ) ( )
( )

22
22

22

[500.2742,1001.5484]
[0.3347,1.9035] [1,1]

D s
R s

E s s
= =

+
 (48) 
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The models proposed by Sastry and Rao (2003) for MIMO continuous interval system 
(33) are 

( ) [ ]
[ ] [ ]11

0.2115,2.9
1,1 0.2,2.9

sR s
s

=
+

 (49) 

( ) [ ]
[ ] [ ]12

150.206,1038.58
1,1 0.2, 2.9

sR s
s

=
+

 (50) 

( ) [ ]
[ ] [ ]21

1.0204,8.49
1,1 0.2,2.9

sR s
s

=
+

 (51) 

( ) [ ]
[ ] [ ]22

210.12,1452.24
1,1 0.2,2.9

sR s
s

=
+

 (52) 

The step and impulse responses of second-order interval transfer function (34), its 
proposed model (45) and model (49) as proposed by Sastry and Rao (2003) are plotted in 
Figure 2. From Figure 2, it is seen that the step response of proposed model (45) is nearer 
to that of the system (34) than that of the model given in equation (49). Also, it can be 
observed that the steady state of proposed model (45) is matching to that of the system 
(34) while it is deviating largely in case of equation (49). From the impulse responses as 
given in Figure 2, it is evident that the impulse response of proposed model (45) is closer 
to that of the system (34) when compared to the impulse response of equation (49). This 
proves that proposed model (45) is better approximant of the system (34) than model 
given in equation (49). 

Figure 2 Step and impulse responses of system ( )11G s  and models ( )11R s  and 11
sR  (see online 

version for colours) 
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Figure 3 depicts the step and impulse responses of interval transfer function (35), its 
proposed model (46) and model (50) as proposed by Sastry and Rao (2003). It is clear 
from Figure 3 that the step response of proposed model (46) is in better proximity to that 
of the system (35) than that of model given in equation (50). It is also clear that the 
steady state of proposed model (46) is matched to that of the system (35) however is 
deviating for (50). The impulse responses provided in Figure 3 also show better matching 
of proposed model (46) to the system (35). So, it can be concluded that (46) is better 
approximant of equation (35) when compared to equation (50). 

Figure 3 Step and impulse responses of system ( )12G s  and models ( )12R s  and 12
sR  (see online 

version for colours) 

 

The step response and impulse response of interval transfer function (36), its proposed 
model (47) and model (51) as proposed in equation (Sastry and Rao, 2003) are given in 
Figure 4. It can be seen from Figure 4 that the step response of proposed model (47) is 
closer to that of the system (36) than that of model given in equation (51). Also, it can be 
seen that the steady state of proposed model (47) is matched to the system (36) while is 
holding some deviation in case of equation (51). The impulse responses as provided in 
Figure 4 also depict better matching of proposed model (47) to the system (36). So, it can 
be said that (47) is better approximant than other. 

Figure 5 plots the step and impulse responses of interval transfer function (37), its 
proposed model (48) and model (52) as derived in equation (Sastry and Rao, 2003). It is 
evident from Figure 5 that the step response of proposed model (48) is better matched to 
the step response of the system (37) than that of model given in equation (52). The same 
is true for impulse responses as plotted in Figure 5. So, it can be concluded that proposed 
model (48) is providing better approximation than (52). 
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Figure 4 Step and impulse responses of system ( )21G s  and models ( )21R s  and 21
sR  (see online 

version for colours) 

 

Figure 5 Step and impulse responses of system ( )22G s  and models ( )22R s  and 22
sR  (see online 

version for colours) 

 

7 Conclusion 

In the present investigation, a multi-point Padé approximation is presented to reduce the 
order of continuous interval systems. First 2k expansion points are chosen around which 
the responses of higher order continuous interval system and its model are to be matched, 
where k is the order of model. It is observed in responses that approximation is improved 
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due to matching around multi-points in case of multi-point Padé approximation. To show 
the efficacy of proposed method, first it is applied to a test case for SISO system. Then 
the same method is extended for reduction of MIMO interval system. A test case for 
reduction of MIMO interval system is also considered. From the results obtained  
for SISO case and MIMO case, it is confirmed that multi-point Padé approximation for 
continuous interval systems is producing better results. It is worth mentioning here that 
multi-point Padé approximation may produce even better results if combined with other 
reduction methods. 
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