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Abstract: Probabilistic models, which can model the process noise camd
handle the problem of missing data in the probabilistic feuork, recently have
been got much attention in process monitoring and faultriias area. This
paper presents a new probabilistic methodology for faukate®n and diagnosis
in nonlinear processes using a variational autoencodek&g)/models. Two
statistic index, based on the probability density distidouof measure variables
and latent structure variable, are built to monitoring falthen a probabilistic
contribution analysis method, based on the concept of ngssiriable estimation,
is proposed for fault diagnosis. The performance of faukcl#gon and diagnosis
is demonstrated through its application for the monitoohgennessee Eastman
(TE) industrial process, and the effectiveness is verified.
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1 Introduction

Industrial process monitoring and fault diagnosis is tteeatal measure to ensure process
safety and product quality stability, and is widely used ridustrial production. With
the rapid development of industrial automation and infdisagion, large-scale data has
been accumulated in industrial production, which provitlergy support for data-driven
methods. Data-driven process monitoring methods are milyreeceiving considerably
increasing attention both in application and in researahalns, especially the one based
on multivariate statistical process control (MSPC), sustp@ancipal component analysis
(PCA) (Nomikos and MacGregor, 1994), partial least squéreS) (Muradore and Fiorini,
2011), etc. And some extended methods are studied to refwhvigsues like nonlinear,
non-Gaussian, dynamic in academic communities and apiplieite range of industrial
applications for fault diagnosis (Peng et al., 2017, 2016, al., 2014; Choi et al., 2005;
Yinetal., 2016; Ding et al., 2009; Zhou et al., 2016; Zhou &@id, 2008; Chen et al., 2017).
However, most traditional MSPC methods are lack of propebabilistic mechanism for
modelling process uncertainties. To solve this problemrmestraditional MSPC methods
have been extended to their probabilistic model, and ard tmeprocess monitoring.
Probabilistic PCA (PPCA) is proposed by Tipping and Bishb§99) and used for process
monitoring by Kim and Lee (2003). Thenthe PPCA has been eetéto the PPCA mixture
model to deal with multimode data in industrial process rwimng (Ge and Song, 2010).
A probabilistic kernel PCA method is proposed for nonlingarcess monitoring (Ge and
Song, 2010). To realise non-Gaussian process modellingreomitoring, ICA has been
extended to probabilistic ICA (PICA) (Zhu et al., 2016).

In this paper, variational autoencoders (VAE) is introdit@ into nonlinear process
monitoring in the form of probability. VAE, proposed by Kimg and Welling (2013)), is a
probabilistic generative model that combines variatianfgirence with deep learning. As a
special kind of autoencoders, VAE can reduce dimensionginlaabilistically sound way,
and provide the reconstruction probability. Through thebyaibility density distribution of
measure variables and latent structure variables, thetorong index can be constructed
for process monitoring.
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A further contribution of this paper is due to the fault diagis method. In Chen
and Sun (2009)), the authors have developed a probabistittibution analysis method
based on missing variable approach. Once a fault is detetttednonitoring index will
be recalculated with on variable being missing. This willrepeated for all variables.
The variable corresponding to the smallest recalculatéebinvill be denoted as the risky
variable. The proposed idea has been extended to PPCA mixtodel for fault detection
and diagnosis in multimode processes.

Motivated by the above mentioned works, a fault diagnosied@n VAE is introduced
in this paper. Once a fault is detected, the monitoring inderach variables will be
recalculated by probability estimate of missing variables

The rest of this paper is organised as follows. In Sectione?\VAE is briefly introduced
. Section 3 describes the proposed monitoring approactedtidd 3, the method of missing
date estimate is inferred and the fault diagnosis appraagiaposed. In Section 4, the
study on the Tennessee Eastman (TE) benchmark case isg@adwidvaluate the efficiency
of the proposed method. Finally, a summary of the paper issmad

1.1 Variational AutoencodersAnalysis

The VAE is a directed probabilistic graphical model (DPGMjhicertain types of latent
variables, which forming an autoencoder-like architeztas show in Figure 1.

Figurel Encoder and decoder of a directed probabilistic graphicaeh(see online version
for colours)

94(z1x) = q(z f (x,4)) Po(x]2) = p(x:8(2,0))

% 8

The most essential of VAE is the evaluation of probabilitysiges of all variables in the
VAE model, which includey(z), andp(z|x). Thez ~ N(0,I) is already assumed. From
a coding theory perspective, The generative mogék|z) is the probabilistic decoder,
where the data is generated by the generative distributigiix|z) conditioned orz : z ~
po(z),  ~ po(x|z). For the continuous value af, a typical choice for the parameterised
distribution is to use a neural network where the input iand the output is a Gaussian
distribution overz. Due to the complex nonlinearity of the neural netwask(z|x) is
intractable. The recognition mode} (z|x) is introduced as the probabilistic encoder to
approximate the intractable true posteng(z|x) by a neural network witk: andx as its
input and output, respectively. A variational inferencetmoe is introduced for learning the
recognition model parameteggointly with the generative model parametérs

The Kullback-Leibler divergence (KL-divergence) betweeniz|X) and g4(2) is
defined as:

Dk rlge (2| X)|[po (2| X)] = Ez~q[log g4 (2| X) — log pe (2] X))
= Eznqllog gy (2] X) — log pe(X|z) 1)
—logpg(z) + log pe(X)]
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Becauséog py(X') does not depend an, then the formula can be rewritten as:

log po(X) — D1 (g4 (2| X)[po (2| X)] = E=~qllog po(X|2)] @
— Di1]gs (2| X)|po(2)]
The left hand side is something what we want to maximise, whiaximiselog pg(X),
and minimise i 1. [¢4 (2] X)||pe (2| X)]. The right hand side is something we can optimise
via stochastic gradient descent.
The objective of VAE is to maximise the following variatidhawver bound with respect
to the parametes and:

L(0, ¢;®)) = —Drr(4o(2[2)[|po(2)) + Eq, (z]2) [log po(x|2)] 3)

Here we give the solution when both the prips(z) ~ N(0,I) and the posterior
approximatiory, (z|x) are Gaussian. Lef be the dimensionality of. Let « ando denote

the variational mean an std. evaluated at datapeiaind Let;,; ando; simply denote the
jth element of these vectors. Then:

—Dx1(qs(2|)||pe(2)) = [ qo(2)(logpe(2z) —logqe(2))dz
J (4)
> (1 +1og((05)*) — (u5)* = (07)°)

Jj=1

l\DI»—* \

Then the variational lower bound can be represented as:

J
~5 > (L 1og((05)”) = () = (05)%)
= (5)

L
Z 0g Py X|Z

l\3|H

h|>—‘

wherez! = u + o © e ande® ~ N(0,1).
The algorithm for training the VAE is shown in Algorithm 1.

Algorithm 1 Minibatch version of the Variational autoeneodraining algorithm
0, ¢ < Initialise parameters
Repeat
XM + Random minibatch of M datapoints (drawn from full dataset)
e < Random samples from noise distributiofz)
g Voo LM(0,¢; XM &) (Gradients of minibatch estimator)
0, ¢ < Update parameters using gradientg of
Until convergence of parameteis ()
Returné, ¢
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1.2 The VAE-based fault detection method

A fault detection method that use VAE is proposed to caleutae probability score of
expectationZ(z|x) in the prior distributionpy(z) and the probability score of observed
dataz in the probability distributiop(x|2), which & denotes as the reconstructionaof
The calculation ok andz is show in Figure 2.

The fault detection based VAE is constructed as an unswgehiearning framework,
using only normal data to train the VAE. In the training presghe conditional probability
distribution of g, (z|x) in latent space angy(z|x) in original input space were learned
by optimising the variational lower bound. In the detectmncess, the detection data is
mapped to latent space by recognition model, and a humbemoples are drawn from
conditional probability distribution in latent space. Feach sample, the reconstruction
probability distribution is calculated by generative mbdéénally, the anomaly score were
calculated to predicate fault in latent space and origimalit space, respectively.

Figure2 The calculation ot andz (see online version for colours)
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1.2.1 Monitoring chart of latent variable

Since prior probability ~ N (0,1) is assumed, the squared Mahalanobis norgtfoflows
x2(J) distribution, which/ denotes as the dimensions of laten variable. Given testidata
z is the estimate of|z":

z = Elz|xi] = uym (6)

wherey.i, o.: is the mean and s.d., calculated by recognition mogét|x).
Then Hotelling’sT™ test statistic is denoted as:

T2 = ||z @)

The thresholds for the fault detection in latent space camldiermined with a given
confidence level as follows:

Jenr2 = xo(J) (8)

wherey? (.J) denotes the2-distribution with.J degrees of freedom andis user-specified
significance level.
We regard the process is normal whghfall into in-control witha LOS:

T2 = ||z|* < x2(J) )
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1.2.2 Monitoring chart of original input space

Given test datac;, then the posterior probability distributianac(i) ~ N(uyu),0,6)) can
be calculated.

ThenL samples is drawn fromV (u,), o, ). For each sample(7), the probability
distribution 2D |z(0) ~ N (ugan, 056.0)), Whereuza., oza. is the mean and s.d.,
calculated by generative model(z|x).

Then input variable:; can be transformed to the standard Gaussian via whitening:

T (10)
Oz(i.0)
Andx{; ) ~ N(0,I).
SPE (squared prediction error) test statistic denotes as:

1 L
72
=1

The thresholds for the fault detection in original inputepaan be determined with a given
confidence level as follows:

2

SPE = (11)

Jin spE = Xa(n) (12)

wherey? (n) denotes the?-distribution withn degrees of freedom andis user-specified
significance level.
Therefore, the detection logic is:

(13)

SPE < JmspE::de2 < Jin, 12, fault — free
SPE > Ji, spporT? > Jin, 12, faulty.

The calculate process of VAE-based fault detection allgoris shown in Algorithm 2.

Algorithm 2 Variational autoencoder based fault detection
0, ¢ < train a variational autoencoder using the normal datXset
Input: sample data:(”

Uyiy, 0y = fol(z]z™)
T° = |Ju|*
24D « Draw L samples fronz|z™ ~ N(u_qu),0,0))
for I=1toL do
Ugiin, 0gan = go(x|zD)
end for

2

L
1 TTULGED
I E Z pl%)

=1 %&b
if SPE < Jip,sppandT? < J,, 72 then
@ is an anomaly

SPE =

else
2@ is an faulty
end for
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2 TheVAE-based fault diagnosis method

Once the fault was successfully detected by the two monisiatistics, the root cause of
the fault should be find by fault diagnosis. A missing varedstimation-based contribution
analysis method is proposed for fault diagnosis. The olbjof contribution analysis is to
identify which variables are the most responsible for theuoence of the process fault. In
general contribution analysis may not explicitly revea thot-cause of the onset of faults,
but it is undoubtedly helpful in pinpointing the inconsist@ariables that should undergo
further diagnosis procedures. Assume that a fault is cabigélde change of one variable,
if the variable is changed by the estimation of other vadapthe fault should disappear.
Probabilistic model is used to estimate one variable byrothgables, then the estimated
variable is used to compufeP E andI™? test statistic. The estimated variable, which caused
fault, will reduce theS PE andT™ test statistic. In the diagnosis process, the key variables
can be observed from the chart which original signal tesisstasubtracted reconstruction
signal test statistic.

For n dimensional data:, each time one variable is regard as missing. £gtd =
1,2,...,n) be the missing variable, and_, denotes as the vector of other observed
variables inz. Ford = 1 : n, reconstructed variable,; can be calculated by the expected
value of missing variabl&,, ) (x4) giventhe other variables. Then the monitoring statistic
SPE, ande2 with z, is re-calculated. If theth variable contributes significantly to the
data being detected as faulty, then the re-calculategstatwill be much small than the
original monitoring statistic. Therefore, the differertaetween re-calculated statistic and
original statistic can measure the impact of missing véeiah the fault.

The contribution value of each variable in this work is defias:

RBCT =T? -T2

(14)
RBC3;FPE = SPE — SPE,

The rest of this section will discusses how to estimate thesimg variable.
The computation fop(x4|x_4) requires the marginalisation of the latent variabies
from the joint distributiorp(x 4, z|x _4).

p(@dlz—d) = / p(@a, 2le—a)dz

(15)
:/p(a:d|z)p(z|as_d)dz
Using Bayes formulap(z|x_4) can be formulated as:
p(x_a|2)p(2)
zlx_q) = 16
PR ) = (e (o)
The conditional distributiop(x4|x_,) can be re-written as:
pesles) = [ pleap(ela—)dz
(17)

_ [ p(zalz)p(z_a|2)p(2)dz
[ p(z—alz)p(2)dz
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Then the expectation af; can be expressed as:

E(wfd)(md) :/mdp(wd|m,d)dmd
_ J [xap(xa|z)p(x_g|2)dzedz
J P(x_i|z)P(z)dz
_ [ teuizp(2—alz)p(2)d=
[ p(x_qlz)p(z)dz

(18)

K
2 Ugy|z, P(®—d|2k)
k=1

K
> p(@—alzk)
k=1

wherey, |- iS the mean op(xq|z). Because of the assumption that all variables in data
are conditionally independent giventhe conditional distributiop(x _4|zx) andp(x4|z)
can be calculated by the generative mggéi|z). And the samples of can be drawn from
the recognition modej,(z|x). To improve estimation accuracy of variahtg, a k-step
iterative method is used in the estimation of missing vaeialvhich the estimated variable
replaces the original variable; to update the calculated value of missing variablg:by
times.

3 Casestudy

In this section, fault detection and diagnosis based on tlopgsed VAE method is
demonstrated on the Tennessee Eastman benchmark probdamg@and Vogel, 1993)).

Figure 3 illustrates the flowchart of the TE process with taapwide control structure
in ref (Nomikos and MacGregor, 1995)). The model is widelgegated as a challenging
benchmark for control and monitoring studies. Five majaitsjn.e., reactor, condenser,
separator, compressor and stripper, constitute the whaleeps. The process has 41
measurements and 12 manipulated variables. The measusemelnde 22 continuous
process measurements and 19 sampled process measurératitg 21 different faults
has been designed and the dataset used in this paper arengbléang and Russell (2000))
and is widely accepted for process monitoring and faultrdsgs, which can be downloaded
from http://web.mit.edu/braatzgroup/links.html. Theadeet includes 22 training sets and
22 testing sets. Except that one testing set was obtainedt nndmal operational condition,
the other 21 sets were collected under 21 different faulbhdd@mns for 48 operation hours
and 960 samples are obtained for each testing set. For ed&hfafilty testing sets, the
fault was introduced in at 8th operation hour (161th sam@ejilarly, the training sets
are also composed of one normal operational set and 21 fapéisational sets. These 21
process faults include 7 step faults, 5 random faults, &isticand slow change fault, and
6 unknown process faults.

3.1 Smulation and analysis

In this paper, a total of 33 process measurements are stkest@easured variables, listed
in Table 1. The testing set and training set collected unuemnbrmal situation are used
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as training dataset. The 21 faulty testing sets are usedittat@the performances of the
models.

Figure3 Flowchart of the TE process
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Tablel Monitored variables in the Tennessee Eastman process

ID  Variable description ID  Variable description

x1 A feed (Stream 1) x18  Stripper temperature

X2 D feed (Stream 2) x19  Stripper steam flow

x3 E feed (Stream 3) x20  Compressor work

x4  Aand C feed (Stream 4) x21  Reactor cooling water outleptrature
x5 Recycle flow (Stream 8) X22  Separator cooling water otel@perature
X6 Reactor feed rate (Stream 6) x23 MV to D feed flow (Stream 2)

X7 Reactor pressure x24 MV to E feed flow (Stream 3)

x8 Reactor level x25 MV to A feed flow (Stream 1)

x9 Reactor temperature x26 MV to total feed flow (Stream 4)
x10 Purge rate (Stream 9) x27  Compressor recycle valve

x11 Product separator temperature x28 Purge valve (Strgam 9

x12  Product separator level x29  Separator pot liquid flowe@h 10)
x13  Product separator pressure x30  Stripper liquid proffiowt(Stream 11)
x14  Product separator underflow (Stream 10) x31  Strippansi@lve

x15  Stripper level x32  Reactor cooling water flow

x16  Stripper pressure x33  Condenser cooling water flow

x17  Stripper underflow (Stream 11)

The detection process of proposed VAE method is applied toitwrothe TE process in
comparison with the traditional PPCA-based methods. Bulgenerative model and the
recognition model are set to 3-tier structure, which have lbdden layer, and the size of
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hidden layer is 50. The dimension of latent space is detexdlty 5-fold cross validation.
The relationship betwed, . |«)[log po (z|2)] and the dimension ofis shown in Figure 4.
Considering the complexity and performance of model, 1@liscded for the size of latent
variables. In order to be fair, the component numbers of PR®&els is also selected as
10. The confidence level of thresholdsP E andT™ is set as 99%. Tow types of fault are
enumerated to demonstrate the efficiency of VAE.

Figure4 The relationship between and the dimension of latent spaEednline version
for colours)
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Fault5 is a step change in the internal temperature of caaat@ooling water, and it causes
a step change in the flow rate of the outlet stream of the carmtewhich can affect the
temperature in the separator as well as the cooling wattteemperature of the separator.
The monitoring results of VAE and PPCA are show in Figure 5e Tdult was detected
by PPCA at the 161th sample, but it was soon compensated bgotiteol system and
its SPE test statistic went below the confidence limit at tBétl3 sample. The time that
fault was detected by VAE is 161th. And its test statisiie £ was still greater than the
confidence limit after the 394th sample. In Figure 6, thetflapt affecting variable 33.
The other variables were pulled back to their normal valétes 894th sample with system
compensation. The low value of variable 33 given a low deactte of PPCA. In contrast,
the method of VAE can detect the low change of variable 33.

Fault 10 is fault where a random variation is introduced ire€d temperature, which
may cause a change to the condition of stripper and condeRsermonitoring results
of VAE and PPCA are show in Figure 7. Fault 10 can be detectedR®A with a low
detection rate (34.1% fdF? and 39.1% foiS PE). The monitoring result of VAE is show
in Figure 7(a) and (b). It is obvious that the SPE statistimisch better than PPCA. The
fault detection rate of VAE is 82.4% for T2 and 32.0% for SPErtRariables are shown
in Figure 8. It can be seen that most variables changed lsligatween 350th sample and
600th sample. It cause the low detection rate of PPCA. Bufatk can still reflected in
SPE statistic of VAE.
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Figure5 Monitoring result of VAE (a) (b) and PPCA (c) (d) for fault 5efs online version
for colours)
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Figure6 Process variables in fault 5 (see online version for colours
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All monitoring results (FAR and FDR) on 21 types of fault by EAand PPCA are listed in
Table 2. Faults 3, 9, 15 are very subtle faults that are hadetect. Both PPCA and VAE
are failed to detect these faults. Except these faults,etexton rates of proposed method

are over 50%. Especially, the detection rates of VAE fortfapl0, 16, 19 and 20 are much
higher than PPCA.



240 P Tang et al.

Figure7 Monitoring result of VAE (a) (b) and PPCA (c) (d) for fault 18 online version
for colours)

|

VAET? VAE SPE

w
£ 1000 A
&

1 MW

i3 o
0

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
sample sample

(a) (b)

PPCAT? PPCA SPE

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
sample sample

(c) (d)

Figure8 Process variables in fault 10 (see online version for calour
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Fault 2 is a step change in the B composition and the A/C ratistant (stream 4). B is
the inert component, which will cause a change in the purgeira., variable No. 8 (Purge
rate) in stream 9. Furthermore, the A/C ratio constant véltéflected in stream 4, and the
action of some control loops will also change other procassbiles. Figure 9 shows part of
variables (Original variables and reconstruction vagapfor fault 2. The original variables
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are represented by bule lines, and the reconstructionblesiare represented by red lines.
Fault 2 were triggered after the 160th sample. Before thk acurred, reconstruction
variables can flow original variables well. While originalnables ware influenced by fault,
reconstruction variables can reduce the influence by eStigwaith other variables. And
reconstruction variables can also reduce signal nosigefdre, the approach, that missing
variables probability estimate of by VAE, is reasonablaidtfreconstruct. Figure 10 shows
the result of fault detection and diagnosis for fault 2. NO.(Rurge rate (Stream 9)) and
NO. 28 (Purge valve (Stream 9)) are identified as the primariables.

Table2 FDRs and FASs of the 21 faults in the TE benchmark

VAE(%) PPCA(%)
FAR FDR FAR FDR FAR FDR FAR FDR

Fault no. (SPE) (SPE) (7% (T?) (SPE) (SPE) (T% (T%
1 0.6 99.8 0.0 99.8 25 99.9 0.6 99.1
2 0.0 98.4 0.6 98.6 0.6 98.1 1.3 98.5
3 3.8 5.4 0.6 1.5 1.9 5.0 0.6 3.0
4 0.6 98.5 0.6 2.3 3.1 100.0 1.9 10.6
5 0.6 100.0 0.6 25.0 3.1 28.6 1.9 25.6
6 0.6 100.0 0.0 96.5 1.3 100.0 0.6 99.4
7 0.0 100.0 0.0 35.9 1.9 100.0 0.0 100.0
8 0.0 97.8 0.0 97.8 1.3 96.5 0.0 96.9
9 8.8 3.4 4.4 1.1 5.6 4.0 5.0 2.9
10 0.6 82.4 0.6 32.0 1.9 34.1 0.6 39.1
11 0.0 73.5 1.3 45 3.8 79.9 0.6 27.1
12 1.9 99.6 1.3 97.5 25 96.4 0.6 98.3
13 0.0 95.1 0.0 94.6 1.3 95.3 0.0 93.9
14 0.6 100.0 0.0 56.4 25 100.0 1.3 85.1
15 0.6 9.0 0.6 3.1 25 5.0 0.6 3.8
16 11.9 86.0 3.1 16.0 4.4 345 7.5 215
17 0.6 95.9 0.0 64.5 5.0 95.0 0.0 76.5
18 0.6 90.0 0.0 87.9 4.4 90.1 0.0 89.3
19 0.0 80.6 0.0 0.5 1.3 48.9 0.0 1.3
20 0.0 71.4 0.0 54.8 3.1 54.3 0.0 38.0
21 3.1 56.0 0.6 51.1 5.0 52.9 0.0 33.1

Fault 2 and 11 are used to test the performance of fault dggrand show in Table 3.

Table3 Descriptions of process faults

Fault no. Process variables Type
2 B composition,A/Crationconstant Step
11 Reactor cooling water inlet temperature variation

Fault 11 is the fault where a random variation is introduaethie reactor cooling water
inlet temperature, and the temperature of the reactor fitiesu And it will cause NO. 9
(Reactor temperature) and No. 32 (Reactor cooling wate) flowtuate sharply. Figure 11
shows the changed tend of two variables. The reconstruesidables eliminated fluctuate
during fault period. The fault detection and diagnosis lteste show in Figure 12. Fault
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11 can be detected by statisi® £ after the 167th sample, as shown in Figure 12(a). So
the S P E contribution plot is used to identify fault variables. Figi2(b) shows No. 9 and
No. 32 are the primary variables, in conformity with meclsamanalysis of fault 11.

Figure9 Original and reconstruction variables for fault 2 (seemalersion for colours)
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Figure10 Fault detection and diagnosis for fault 2 based on VAE: (alf fdetection result and
(b) fault diagnosis result (see online version for colours)
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Figure1l Original and reconstruction variables of no. 9 and no. 3Zdalt 11 (see online version
for colours)
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Figure12 Fault detection and diagnosis for fault 11 based on VAE:daltfdetection result and
(b) fault diagnosis result (see online version for colours)
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4 Conclusion

VAE, one kind of deep learning algorithm, is used in procesasitoring and fault diagnosis.
In monitoring process, the probability distribution of girial space and latent space are
calculated, then test statistics on the two space are dasigmonitoring fault. In diagnosis
process, a missing variable based contribution analysihadelogy is proposed. The
probabilistic framework of VAE provides a natural way of ldéing the missing variables
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that form the basis of the contribution analysis. The ajgpiie of PPCA and VAE to TE
process is discussed in detail. The case studies demantsteittcompare with PPCA, the
detection perform of VAE is greatly improved. And the propdsontribution analysis can
provide significant information to facilitate process fadibgnosis.

Future work is focused on extending the proposed contohusinalysis for the
monitoring of plant-level process.
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