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Abstract: Dioxin (DXN) is an organic pollutant emitted by the municipal solid 
waste incineration (MSWI) process. In industrial process, the DXN emission 
concentration is detected by using offline laboratory analysis method with a 
monthly/seasonal or un-determined period. In this paper, a soft measurement 
method of DXN based on deep forest regression (DFR) algorithm is proposed. 
First, the input layer forest model consists of multiple sub-forest models is 
trained and the layer regression vector is obtained. Then, the augmented layer 
regression vector that serial combine the layer regression vector with the raw 
features is used to train the middle layer forest model. Finally, the augmented 
layer regression vector of the middle layer forest is fed into the output layer 
forest model to produce the final DXN prediction. The effectiveness of the 
proposed method was verified by the benchmark data and the DXN emission 
concentration data of the actual MSWI process. 

Keywords: dioxin; DFR; deep forest regression; layer regression vector; 
augmented layer regression vector; MSWI; municipal solid waste incineration. 
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1 Introduction 

Municipal solid waste (MSW) continues to increase at rate of 8–10%/year in the world. 
This result has caused many cities to face the garbage siege crisis (Zhang et al., 2011). 
MSW incineration (MSWI) is one of the typical treatment methods to achieve waste 
reduction, recycling, and harmlessness jointly (Li et al., 2016). At present, the number of 
MSWI-based power plants in China mainland is increasing year by year, of which the 
mechanical grate-based MSWIs account for the largest proportion (Qiao et al., 2020).  
At the same time, as the rapid development of MSWI technology, there are still problems 
such as lack of operating experience and pollution supervision measures. Thus, it is 
difficult to meet the pollution emission standards (Lu et al., 2017). Therefore, the most 
important issue includes: how to control the pollution emissions of the MSWI process  
under the premise of satisfying economic benefits (Hu et al., 2018); and how to provide 
real-time DXN emission concentration data for the operation optimisation control of the 
MSWI process (Koloma et al., 2015). In the actual industrial process, the DXN emission 
concentration detection is mainly carried out through a combination of online sampling 
and offline experimental analysis. Although it can accurately measure the DXN 
concentration (Qiao et al., 2020), the relatively long period and high cost makes it 
difficult to give a direct support for the real-time optimised control of MSWI process 
(Zhang et al., 2008). 

The complex physical and chemical characteristics of the MSWI process make it 
impossible to establish a DXN emission concentration mechanism model (Stanmore, 
2002). Study shows that the online prediction of DXN emission is an indispensable and 
important issue for achieving optimal control of the MSWI process (Lavric et al., 2005). 
There are some researches for DXN online indirect detection (Li et al., 2015; Cao et al., 
2017; Nakui et al., 2011). The first step is to detect the content of DXN-related 
substances with expensive complex instruments. The second step is to achieve the DXN 
concentration by making a mapping relation. However, it has disadvantages such as large  
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time lag, expensive equipment. Moreover, it is also need the offline direct analysis to 
construct the mapping model (Zhang et al., 2008). 

The use of mechanism model or data-driven model can perform online detection of 
process parameters that are not easy to obtain (Tang et al., 2013). This approach has the 
advantages of faster and more economically than direct offline analysis and online 
indirect detection methods. It has widely used in actual industrial process (Souza et al., 
2016). Therefore, it is necessary to construct soft measurement model to achieve real-
time detection of DNX emission concentration. For the MSWI process, there have been 
studies using feature selection combined with neural networks to construct DXN 
emission predictive model (Bunsan et al., 2013; Chang and Chen, 2000; Wang et al., 
2008). However, due to the inherently small samples, high dimensions, and collinearity 
characteristics of the modelling data, these methods has disadvantages such as easily fall 
into local minimum and training over fitting. 

To some complex learning tasks, the performance of deep learning models is better 
than the traditional machine learning models. However, the learning behaviour of deep 
neural network (DNN) models is difficult to make analyse and interpret in theory. 
Moreover, it is difficult to apply to small sample data modelling. Recently, inspired by 
the DNN mechanism (Hinton et al., 2012), Zhou et al. proposed a deep forest (DF) 
algorithm for classification tasks (Zhou and Feng, 2017). It consists of multi-grained 
scanning and cascade forest. In nature, DF is a type of supervised non-neural network 
mode deep learning method based on the forest algorithm. It has good representation 
learning ability and can maintain good results when there are little training data. DF 
algorithm has been applied in many fields, such as video abnormal behaviour detection 
(Yang et al., 2019), flame feature extraction and flame recognition (Zhu et al., 2018), 
fault diagnosis of rolling bearings (Qi et al., 2018), etc. However, the above existing 
researches on DF is mainly used for classification problems. Therefore, the DF algorithm 
for the regression modelling problem has not been addressed at the present research. 

Motivated by the above problem, a non-neural network mode of deep forest 
regression (DFR) algorithm is proposed. The proposed DFR method improves the DF 
structure as follows:  

1 The bootstrap strategy and the random subspace method (RSM) are used to 
randomly sample the sample space and feature space, which replaces the multi-
grained scanning module and is used to construct each layer sub-forest model. 

2 The DFR structure of the three-layer architecture that analogous to the DNN is 
proposed, and the classification tree in the cascade forest is replaced by regression 
tree to complete the regression modelling tasks. Moreover, the adaptive selection of 
the middle layer number is realised. 

3 The features between two adjacent layers is represented by using the mean value of 
the sub-forest model prediction value vectors. This method is used to construct a soft 
measurement model of DXN emission concentration in the process of MSWI. 

2 MSWI process and DXN emission 

Figure 1 shows the process flow chart of a typical MSWI process in Beijing of China. 
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Figure 1 MSWI process (see online version for colours) 
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The MSWI process mainly converts MSW into residue, fly ash, flue gas and heat. In 
which the former three products are related to DXN emission (Mckay, 2002). There are 
more residues in the furnace, but the DXN concentration is lower. The amount of fly ash 
is less than the residue, and the DXN concentration is higher than the residue. The DXN 
concentration in the flue gas is between that of the residue and the fly ash, whose 
production includes the incomplete combustion and new synthesis reaction (Li et al., 
2005). At present, for DXN detection, MSWI companies and environmental protection 
departments conduct offline analysis with a monthly or quarterly period. This method is 
not only lag-time long but also cost expensive. Thus, the DXN modelling data has 
characteristic of small samples number and high dimension input feature. At the same 
time, there are also some objective problems, such as unknown DXN content in MSW, 
complicated mechanism of DXN generation and absorption. Therefore, the online 
prediction of DXN emission concentration using soft measurement technology is 
according with the actual needs of the industrial process. 

3 Modelling strategy 

The proposed modelling strategy includes three modules, i.e., input layer forest model, 
middle layer forest model and output layer forest model. The structure is shown in  
Figure 2. 
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Figure 2 The proposed DRF modelling strategy
1Cy  and

2Cy  is the mean value of the true value 
in the C1 and C2, respectively; Forestθ  is the sample threshold contained in the leaf node 
(see online version for colours) 
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ŷ

Output Layer Forest Model 
Module

output
1 ( )F ⋅

output
2 ( )F ⋅

output
3 ( )F ⋅

output
4 ( )F ⋅

output
4ŷ
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The description of symbols in Figure 2 is shown in Table 1. 

Table 1 Description of symbols 

Symbol Description 

D  Training set 
feaD  Raw feature set 

VD  Validation set 

ix  Feature vector of training set 

VX  Feature matrix of validation set 

yi  The truth value of the training set 

Vy  The truth vector of the validation set 

inputˆ py  Predicted value vector of the pth sub-forest model in the input layer forest 
model 

inputˆ py  The predicted mean of the pth sub-forest model in the input layer forest 
model 

regvec
inputŷ  Layer regression vector of input layer forest model 

,ˆ k py  The predicted value vector of the pth sub-forest model of the kth forest 
model in the middle layer model 

,ˆk py  The predicted mean of the pth sub-forest model of the kth forest model in the 
middle layer model 

regvecˆ ky  Layer regression vector of the kth forest model in the middle layer model 

outputˆ py  
Predicted value vector of the pth sub-forest model in the output layer forest 
model 

outputˆ py  The predicted mean of the pth sub-forest model in the output layer forest 
model 
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Table 1 Description of symbols (continued) 

Symbol Description 

ŷ  Predictive output of output layer forest model 

Tregvec
input

fea

ˆ

D

  
 
  

y  
Augmented layer regression vector of input layer forest model 

Tregvec

fea

ˆ k

D

  
 
  

y  
Augmented layer regression vector of the kth forest model in the middle 
layer model 

input ( )pF ⋅  The pth sub-forest model in the input layer forest model 

, ( )k pF ⋅  The pth sub-forest model of the kth forest model in the middle layer model 

{ }4

, 1
( )k p p

F
=

⋅  
The kth forest model in the middle layer forest model 

output ( )pF ⋅  The pth sub-forest model in the output layer model 

mse
ke  Validation error of the kth forest model in the middle layer model 

N  Number of samples in training set 

VN  Number of samples in validation set 

M  Number of features 
p  Number of sub-forests in each forest model 

K  The maximum depth (layers) of the deep forest regression model 

The functions are described as follows: 

1 Input layer forest model: At first, Bootstrap and RSM methods are performed on the 
training set to obtain the sub-training set. Then, the input layer forest model is 
constructed. The predicted mean value of these sub-forest models is combined to 
obtain the layer regression vector. Thirdly, it is combined with the raw feature set to 
obtain the augmented layer regression vector, which is used as input of the middle 
layer forest model. 

2 Middle layer forest model: The augmented layer regression vector of the input layer 
forest model is used as the input of the middle layer forest model. Then, we construct 
the middle layer forest model containing k layer forest model. By calculating the 
middle layer forest model’s error, the depth of the forest model is adaptive adjusted 
with the following criterion: when the validation error no longer decreases or the 
depth of the middle-layer forest model reaches the pre-set value, the construction of 
the middle-layer forest model is stopped, the regression vector of the middle layer 
and the raw feature set are re-combined as the augmented layer regression vector for 
output layer; otherwise, continue to build the next layer of the middle layer forest 
model. 
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3 Output layer forest model: The augmented layer regression vector output from the 
middle layer forest model is used as the input to train the output layer forest model. 
The final prediction value is obtained by simple average of the prediction mean value 
of each sub-forest model. 

4 Modelling methods 

4.1 Input layer forest model module 
At first, the construction of the pth sub-forest model in the input layer forest model is 
described. Random sampling based on bootstrap and RSM methods is made on the on 
training set D. It is shown as, 

( ), input
RSM Bootstrap( , ),{( , ) }=

j jj M j
i i p D N My f     x  (1) 

where N  is the number of samples in training set D ; , input{( , ) }
jj M j

i i pyx  is the jth training 
subset of the pth sub-forest; and jM  is the number of selected features, usually 

jM M<< . 
Repeat the above steps to obtain J training subsets, and then the J  regression trees of 

the pth sub-forest is constructed. We take the jth training subset ,
1{( , ) }jj M j N

n ny =x  as an 
example to describe the construction process. The best segmentation feature and feature 
value is find based on the following criteria, 

1 2

1 1 2 2

2 2
sel

1 Forest

2 Forest

 ( , ) min ( ) ( )

. .

C C
j j j

C C C CM s y y y y

C
s t

C
θ
θ

 
− + − 

 
 >                       

>

 =

 (2) 

where sel
jM  is the best segmentation feature; s is the value of the best segmentation 

feature; 1C  and 2C  is the two regions into which the sample is divided by the best 
segmentation feature; 

1

j
Cy  and 

2

j
Cy  is the true value in the 1C  and 1C  region, 

respectively; 
Based on the above criteria, the input feature space is divided into two regions by 

recursion all input features to find the optimal feature and segmentation value. Then 
repeat the above process for each region until the number of samples contained in the leaf 
node is less than threshold Forestθ . Finally, the input feature space is divided into Q  
regions. To obtain a regression tree model, we define the following function, 

input ,
, ,

1
( ) ( )

j
Q

q j M
p j p j q

q
c I R

=

Γ ⋅ = ∈ x  (3) 

where 

, Forest
1

1 ,
Rq

Rq q
Rq q

N
q j
p j n R

nR

c y N
N

θ
=

= ≤  (4) 
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where 
qRN  is the number of samples contained in the region qR ;

Rq

j
ny  is the th

qRn  

measurement of the thj  training subset in the qR  region; ( )I ⋅  is an indicator function, 

( )=1I ⋅  exists at , jj M
qR∈x , otherwise ( )=0I ⋅  exists. 

Repeat the above steps, we finally get the pth sub-forest model, 

input input
,

1

1( ) ( )
J

p p j
j

F
J =

⋅ = Γ ⋅  (5) 

These sub-forest models are construed with RF and CRF algorithms, which are shown in 
Tables 2 and 3. 

Table 2 RF algorithm 

Algorithm 1: RF 
Input: Training set D; number of regression trees J; number of selected features jM ; 

threshold of leaf node training samples RFθ  

Output: RF model RF ( )F ⋅  
Step 1: Use Bootstrap and RSM to randomly sample the training set samples and features to 

obtain J sub-training sets 
Step 2: For 1: J 
Step 3: Using the criteria in formula (2), traverse to find the best segmentation feature 

number and the value of the segmentation point 
Step 4: The input feature space is divided into Q regions 

Step 5: Get the tree model ( )RF
jΓ ⋅  

Step 6: End for 

Step 7: Return RF ( )F ⋅  

Table 3 CRF algorithm functions 

Algorithm 2:CRF 
Input: Training set D; number of regression trees J; number of selected features M j; 

threshold of leaf node training samples RFθ  

Output: RF model RF ( )F ⋅  

Step 1: Use Bootstrap and RSM to randomly sample the training set samples and features to 
obtain J sub-training sets 

Step 2: For 1: J 
Step 3: Adopt a random way to traverse to find the segmentation feature number and the 

value of the segmentation point 
Step 4: The input feature space is divided into Q regions 
Step 5: Get the tree model ( )CRF

jΓ ⋅  

Step 6: End for 
Step 7: Return CRF ( )F ⋅  
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Repeat the above steps, all the input layer forest models can be denoted as { }4input

1
( )p p

F
=

⋅ . 

Further, the generation process of the augmented layer regression vector of the input 
layer forest model is given as follows. After the J DXN emission prediction values 
generated by the pth sub-forest model input ( )pF ⋅  in the input layer forest model and the 
prediction value vector inputˆ py  is constituted, we calculate the predicted mean value inputˆ py  
of the thp  sub-forest model. Thus, the layer regression vector of the input layer forest 
model is obtained with, 

regvec input input
input 1 4ˆ ˆ ˆ{ , , }y y=y   (6) 

At last, the raw feature set feaD  and the layer regression vector regvec
inputŷ  are combined in 

series to obtain the augmented layer regression vector 
Tregvec

input

fea

ˆ

D

  
 
  

y
 of the input layer forest 

model. It is the input of the middle layer forest model. 

4.2 The middle layer forest model module 

The construction process of each layer forest model in the middle layer forest model is 
similar to that of the input layer forest model. The description takes the construction of 
the kth layer of the middle layer forest model as an example. The kth middle layer forest 
model training dataset kD  is the augmented layer regression vector output from the 
( 1)thk −  middle layer forest model, 

Tregvec
1

fea

ˆ
= ,k

kD
D

−
    
  
    

y
y

 (7) 

The number of features of the training set kD  is denoted as 4kM M= + . Same as that of 
the input layer forest, we take the pth training set of the thk  middle layer forest model as 
an example. The generation process of the training subset can be expressed as, 

{ } ( ),

1 RSM
,

Bootstrap( , ),{( , ) } =
jj Mk jj N

n n k
k p

D N My f=     x  (8) 

where{ },

1
,

{( , ) }
jj Mk j N

n n
k p

y =x  is the thj  training subset of the thp  sub-forest model in the 

thk  layer forest model; and j
kM  is the number of selected features, usually j

k kM M<< . 
We repeat the above steps to obtain J training subset, and then J regression trees in the 
pth sub-forest in the kth middle layer forest model is constructed. Here, we take the jth 

training subset { },

1
,

{( , ) }
jj Mk j N

n n
k p

y =x  as an example. Based on the criterion of equation (2), 

the following equation is used to obtain the regression tree model, 
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,
, ,

1

( ) ( )
j

Q
k q j M
p j p j q

q
c I R

=

Γ ⋅ = ∈ x  (9) 

where 

, Forest
1

1 ,
Rq

R qq
Rq q

N
q j
p j n R

nR

c y N
N

θ
=

= ≤  (10) 

Repeat the above steps to get the sub-forest model of the thk  middle layer forest model, 

, ,
1

1( ) ( )
J

k
k p p j

j
F

J =

⋅ = Γ ⋅  (11) 

Same as that of the input layer forest, all the kth layer middle-layer forest models 

constructed with RF and CRF algorithms can be denoted as { }4

, 1
( )k p p

F
=

⋅ . 

Further, the layer regression vector of the kth forest model is denoted as, 
regvec

,1 ,4ˆ ˆ ˆ[ , , ]k k ky y=y   (12) 

Then, the augmented layer regression vector of the middle layer forest model is denoted 

as 
Tregvec

fea

ˆ
.k

D

  
 
  

y
 However, the adaptive depth adjustment of the middle layer number have 

to be addressed for different modelling data. 
Here, the validation set of the DFR model is denoted as V ( 1)

V V{ , } N M
VD R × += ∈X y . 

The prediction value of the thk  forest model in the middle-layer forest model is 
calculated with, 

4

,
1

1ˆ ( )
4

i
k k p

p
y F

=

= ⋅  (13) 

where ˆ i
ky  is the prediction value of the kth forest model for the ith sample in the 

validation set; and VN  is the number of validation set samples. 
We calculate the prediction error of the kth layer forest model as, 

V
2

rmse V
1V

1 ˆ( )
N

k i i
k

i
e y y

N =

= −
 (14) 

where V
iy  is the true value in the validation set. 

Next, we compare rmse
ke  and 1

rmse
ke − : 

1 If 1
rmse rmse
k ke e −<  and ( 2)k K≤ − , the augmented layer regression vector of the kth 

forest model is obtained by using the layer regression vector regvec 4ˆ N
k R ×∈y  of the kth 

forest model and the raw feature set feaD . Then, the next layer forest model is be 
trained continually; 
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2 If 1
rmse rmse
k ke e −≥  or ( 2)k K> − , the number of the middle layer forest model is 

satisfied. The augmented layer regression vector
Tregvec

fea

ˆ k

D

  
 
  

y
 is used as the output of 

the middle layer forest model. 

4.3 Output layer forest model module 

The training set output output ,{( , y )}i iD = x  of the output layer forest model can be denoted 
as, 

Tregvec

output fea

ˆ
,kD

D

    =    
    

y
y  (15) 

Same as that of the input layer forest, Bootstrap and RSM methods are used again to 
generate the training subset. Taking the thp  training set as an example, it is shown as, 

{ } ( ),

1 RSM output
output,

Bootstrap( , ),{( , ) } =
jj Mk jj N

n n
p

D N My f=    x  (16) 

where { },

1
output ,

{( , ) }
jj Mk j N

n n
p

y =x  is the thj  training subset of the thp  sub-forest model in 

the output layer forest model. 
Further, based on the criterion of equation (2), the following equation is used to 

obtain the regression tree model, 

output ,
, ,

1
( ) ( )

j
Q

q j M
p j p j q

q
c I R

=

Γ ⋅ = ∈ x  (17) 

where 

, Forest
1

1 ,
Rq

R qq
Rq q

N
q j
p j n R

nR

c y N
N

θ
=

= ≤  (18) 

Repeat the above steps to get the pth sub-forest model of the output layer forest model. 

output output
,

1

1( ) ( )
J

p p j
j

F
J =

⋅ = Γ ⋅  (19) 

Same as that of the input layer forest, all the output layer forest models constructed with 

RF and CRF algorithms can be denoted as { }4output

1
( )p p

F
=

⋅ . Based on the J prediction 

values generated, a prediction value vector outputˆ py  is formed, and the prediction mean 
outputˆ py  of the pth sub-forest model in the output layer is calculated. Repeat the above steps 

to get the predicted output set { }4output

1
ˆ p p
y

=
 of the output layer forest model. Finally, the 
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predicted values of the output layer sub-forest model is calculated by simple average 
method, 

4
output

1

1ˆ ˆ
4 p

p
y y

=

=   (20) 

where ŷ  is the final predicted output. 

4.4 Algorithm pseudo code 

The pseudo code of the proposed DFR algorithm is shown in Table 4. 

Table 4 Pseudo code of DFR algorithm 

Algorithm 3:DFR 

Input: Training set ( 1){( , y ) } N M
i iD R × += ∈x ; Validation set V V{ , }VD = X y ; Number of 

features selected jM ; Number of regression trees J; Leaf node training sample 
threshold Forestθ ;Maximum number of layers K 

Output: Predictive value ŷ  

Step 1: For 1: / 2p  

Step 2: RF(D, J, M j, Forestθ ) 

Step 3: Calculate the predicted value of RF and put it into the layer regression vector regvec
inputŷ  

Step 4: CRF (D, J, M j, Forestθ ) 

Step 5: Calculate the predicted value of CRF and put it into the layer regression vector regvec
inputŷ  

Step 6: End for 
Step 7: Combine regvec

inputŷ  with the original feature set feaD  to get the augmented layer regression 

vector 
Tregvec

input

fea

ˆ

D

  
 
  

y
 of the input layer forest model 

Step 8: For 1: k 
Step 9: 

Combine the augmented layer regression vector 
Tregvec

1
fea

ˆ k

D
−  

 
  

y
 of the previous model (the 

augmented layer regression vector 
Tregvec

input

fea

ˆ

D

  
 
  

y
 of the input layer forest model in the first 

loop) with the DXN truth value of the training set to obtain the kth forest model of the 
middle layer forest model. Input training set ( 1)

,{( , y )} kN M
k k i iD R × += ∈x  

Step10: For 1:p 
Step11: RF(Dk, J, M j, Forestθ ) 

Step 12: Calculate the predicted value of RF and put it into the layer regression vector regvecˆ ky  
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Table 4 Pseudo code of DFR algorithm (continued) 

Algorithm 3:DFR 
Step 13: CRF(Dk, J, M j, Forestθ ) 

Step 14: Calculate the predicted value of CRF and put it into the layer regression vector regvecˆ ky  

Step 15: End for 
Step 16: Combine regvecˆ ky  with the original feature set feaD  to get the augmented layer regression 

vector
Tregvec

fea

ˆ k

D

  
 
  

y
 of the kth forest model in the middle-layer forest model 

Step 17: Calculate the prediction error rmse
ke  of the current layer forest model in the validation set 

Step 18: IF 1
rmse rmse
k ke e −<  and ( 2)k K≤ − ; Continue to build the next forest model of the middle 

forest model 
Step 19: IF 1

rmse rmse
k ke e −≥  and ( 2)k K> − ; Stop building the middle layer forest model and use 

the augmented layer regression vector 
Tregvec

fea

ˆ k

D

  
 
  

y
 as the output of the middle forest 

model 
Step 20: End for 
Step 21: Combine the augmented layer regression vector output from the middle layer forest 

model with the DXN truth value in the training set to obtain the output layer forest 
model input training set output( 1)

output output,{( , y ) } N M
i iD R × += ∈x  

Step 22: For 1: p 
Step 23: RF(Doutput,J, M j, Forestθ ) 

Step 24: Calculate the predicted mean outputˆ py  of the pth sub-forest model in the output layer 

Step 25: CRF(Doutput,J, M j, Forestθ ) 

Step 26: Calculate the predicted mean outputˆ py  of the pth sub-forest model in the output layer 

Step 27: End for 
Step 28: 

Obtain the predicted output set { }4output

1
ˆ p p
y

=
 of the output layer forest model, 

arithmetically average { }4output

1
ˆ p p
y

=
 to obtain the final DXN predicted value ŷ  

5 Simulation results 

5.1 Concrete compressive strength data 
5.1.1 Modelling data 
The concrete compressive strength data set provided by the University of California 
Irvine (UCI) platform (Yeh, 1998; Tang et al., 2012) was used to verify the DFR method. 
The data set contains 1030 samples and 8 features. In this paper, 1/2 of 1030 samples are 
selected as training samples, 1/4 as validation samples, and 1/4 samples as test samples. 
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5.1.2 Modelling results 

The number of input features and regression trees are selected as =4jM  and 500J =  
according to prior knowledge. Based on the number of training samples, the threshold 
interval of the leaf nodes is selected as [5, 50]. By set the maximum number of layers 

50K = , the relationship between the leaf nodes samples threshold (MinSamples) and the 
validation error is shown in Figure 3. 

Figure 3 shows that the validation error has the minimum RMSE with leaf nodes 
samples threshold value Forest =10θ . Therefore, we set Forest =10, 500, 50J Kθ =  = . The 
relationship between the number of input features and the validation error is shown in 
Figure 4. 

Figure 3 Validation error under different leaf nodes samples thresholds (see online version  
for colours) 

 

Figure 4 Validation error under different feature numbers (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   222 T. Jian et al.    
 

    
 

   

   
 

   

   

 

   

       
 
 

Figure 4 shows that the validation error decreases with the number of input features 
increase. When =8jM , the validation error reaches the minimum value. Therefore, we 
set Forest =10, =8, 50jM Kθ   = . The relationship between the validation error and the 
regression trees number J is shown in Figure 5. 

Figure 5 Validation error under different regression tree numbers (see online version for colours) 

 

Figure 5 shows that the validation error reaches the minimum with = 50J . 
Based on the above experimental analysis, the parameters of the DFR model are set 

as: Forest50, 10, =8, 50jK M Jθ=  =   = . 

5.1.3 Comparative results 
The testing curves of different methods are shown in Figure 6. 

Figure 6 Testing curves of concrete compressive strength data (see online version for colours) 
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The statistical results of different modelling methods are shown in Table 5. 

Table 5 Statistical results of different methods 

RMSE 
 

Training Validation Testing Remark 

CRF 8.8194 10.4088 10.2828  
RF 3.9796 6.4405 6.0188  

DBN 10.1151 10.3689 11.3083  
DFR 3.1368 6.3315 5.9825 Layer = 3 

Figure 6 and Table 5 show that:  

1 DBN has the largest prediction error on all data sets  

2 RF has better prediction performance than CRF duo to its minimum average error 
rule 

3 the proposed DFR method has the best prediction performance in all data set. 

However, the super parameters of DRF are not be optimised jointly. Thus, the prediction 
performance can be improved further. More researches should be done in the future 
study. 

5.2 DXN emission data of the MSWI process 

5.2.1 Modelling data 
The data come from the 1# and 2# furnaces of an actual MSWI process in Beijing of the 
past 6 years. The number of the samples and input feature are 67 and 287, respectively. In 
which, 1/2 of all 67 samples are used as training data, 1/4 is used as validation data, and 
1/4 is used as testing data. 

5.2.2 Modelling results 

According to empirical knowledge, the number of input features and regression trees are 
set as =17jM  and 500J = . By set the maximum number of layers 50K = , the 
relationship between the leaf node sample threshold Forestθ  and the validation error is 
shown in Figure 7. 

Figure 7 shows that the validation error has the minimum value with Forest =4θ . 
Further, by set Forest =4, 500, 50J Kθ  =  = , the relationship between the input features 
number jM  and the validation error is shown in Figure 8. 

Figure 8 shows that the validation error reaches the minimum with the features 
number =47jM . As the number of features increases, the validation error shows a 
significant downward trend. It shows that the modelling parameters can be further 
optimised. 

Then, we set Forest =4, =47, 50jM Kθ   = . The relationship between the regression trees 
number J  and the validation error is shown in Figure 9. 
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Figure 7 Validation error under different leaf node sample thresholds (see online version  
for colours) 

 

Figure 8 Validation error under different feature number (see online version for colours) 

 

Figure 9 shows that the validation error reaches the minimum value with = 350J . 
Based on the above experimental analysis, the parameters of the DXN soft sensor 

model are set as Forest50, 4, =47, 350jK M Jθ=  =   = . 

5.2.3 Comparative results 
The statistical results of different modelling methods are shown in Table 6. The 
prediction curves and RMSE statistical results are shown in Figure 10 and Table 2, 
respectively. 
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Figure 9 Validation error under different numbers of regression trees (see online version  
for colours) 

 

Table 6 Statistical results of different methods 

RMSE 
 

Train Validation Test Remark 

CRF 0.0167 0.0260 0.0218  
RF 0.0087 0.0205 0.0206  
DBN 0.0047 0.0158 0.0229  
DFR 0.0116 0.0228 0.0203 Layer = 3 

Figure 10 DXN testing data prediction curve (see online version for colours) 
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It can be seen from Table 6:  

1 DBN has the smallest prediction error in the training set and validation set of the 
DXN high-dimensional small sample data set, but its prediction performant in the 
test set is the worst. Thus, over fitting is one of the main reason;  

2 The DFR method using CRF and RF as the learner has the highest prediction 
accuracy for the DXN emission concentration in the testing set. It obtains the trade-
off between the training and testing accuracy. Thus, combined with the simulation 
experiment of the previous data set, it shows that DRF has better generalisation 
performance and stability than DBN approach;  

3 The results of CRF and RF model shows that different base learners have different 
prediction performance. Future research should address on how to choose more 
complementary base learners to improve diversity among different layer’s  
sub-models. 

6 Conclusions 

A soft measurement method of DXN emission concentration based on non-neural 
network mode deep learning regression forest algorithm is proposed. The innovation lies 
in proposing a new DFR algorithm for regression problem modelling. The detailed 
contribution include:  

1 the classification tree of original DF algorithm is modified into a regression tree  

2 the predicted values of the sub-forest models are used to augment feature 
representation among different layers 

3 at the same time, the validation error is added to the level of the middle layer forest 
model for realising the adaptive adjustment of the DFR model’s depth.  

Finally, the effectiveness of the proposed method was verified by using UCI benchmark 
data and actual industrial DXN data. One of the next research direction is how to make 
optimised selection of the super parameters of the proposed DRF method. 
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