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1 Introduction

During last decades, the control system design has been @ortant issue in the field
of engineering. Several times, the controller design medecomes very complex due
to uncertainty in the system which arises because of vanaif system parameters, un-
modelled dynamics, nonlinear dynamics of the plant, idieation error, etc. It is quite
difficult to take care of these uncertainties. To tackle ¢hpsoblems associated with
uncertainty, robust controller is good choice.

Robust stability is covered in detail in literature. Popaitesion is generalised to
problems with parametric uncertainty by Dahleh et al. ()99&i (1994) stabilised linear
time-invariant plants via constant state feedback con®bieh et al. (1995) digitally
redesigned the cascaded analogue controller for the sdrdpta interval system. The paper
(De Santis and Vicino, 1996) utilised diagonal dominanceHe robust stability of MIMO
interval plants. Shieh et al. (1996) formulated a robusttaligontrol law from a robust
analogue control law for hybrid control of uncertain systeby converting continuous
interval systems into discrete interval systems. Kimu@8#) designed a fixed controller
for a class of transfer functions using the Nevanlinna-Bielory. A few are also available
on the robust stability Chapellat et al. (1993) of interwedtem.

Recently, several methods to design controllers for uagergystems are proposed
(Matus and Prokop, 2016; Patre and Bhiwani, 2013; Kumar amehiviadi, 2020). In Matus
and Prokop (2016), authors proposed a technique to desid¢ip addtroller for interval
systems. This technique is based on plotting the stabiliynblary locus in P-I plane.
Patre and Bhiwani (2013) suggested a method of designingustaontroller for fuzzy
parametric uncertain systems (FPUS). The method is bassditohing of the FPUS into
an interval state space controllable canonical form ofesyist

This manuscript is an extension of the Nevanlinna-Pick thékimura, 1984) to the
interval system using the Kharitonov theorem. It proposesigorithm to reduce the order
of unstable high order interval system into an unstablecedwrder model (UROM) using
Routh approximants and time-moment matching techniqueepled by designing robust
controllers to stabilise such UROM. As Kharitonov (199@}stl that every interval system
could be written in the form of the Kharitonov rational syste Keeping this in mind,
Kharitononv theorem is applied to UROM to convert it intoioatl systems. Later, the
Nevanlinna-Pick theory is utilised to design controllensafnstable systems around a certain
uncertainty of unstable rational systems (Kimura, 1984).

The advantage of the proposed method is that it providesatertfor unstable high
order uncertain system in fixed range of uncertainty. Theruat system is defined by
one interval equation, but, controller designed is not egped in terms of single interval
equation. It is the limitation of the proposed method. Hinaln illustrative example is
discussed which explains the method and its usefulness.
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The remaining outline of the investigation is as followsctmn 2 describes Kharitonov
theorem, Section 3 explains the procedure of model ordectemh, the definition of robust
stabilisability is given in Section 4, the Nevanlinna-Pils&ory is discussed in Section 5, the
condition for robust stabilisability is specified in Secti6, Section 7 justifies the method
with an illustrative example, and finally conclusion is pmd in Section 8.

2 Kharitonov theorem

Kharitonov (1990) suggested that an interval polynomiallmaexplained by its four vertex
polynomials. Let,P; be an interval polynomial where

Pr = [a(ﬂ a0+] + [a;a af]s +ooe Tt [a’r:—17 a:—l]sn_l + [ar_zv az]s” (1)
Then, it's four vertex polynomials can be written as

p1:a5+afs+a§r52+~~
- + + .2
p2=ag tays+ays +---
&)

pgzaar—&-afs—&—a;sQ—&—---

pr=af +als+ays>+--

In this manner, each numerator and denominator of interysiem has four vertex
polynomials. Consider a proper interval systéngiven as

[”57”3]+[”fanf]5+“'

Ty = —= = = 3)
[dy ,dg ]+ [dy, df]s + [dy , df]s® + - --
For equation (3), numerator vertex polynomials can be ermitis
ny =ng +nfs+n§r52+~~
ng =ng +nfs+ngs’+-- @
ngznér—&—nfs—&—n;sQ—&—---
n4:na'+nfs+n2_52+~~
and in the same manner, denominator vertex polynomialS8jare given as
dy=dy +dys+dfs*+ -
dy=dy +dfs+dfs*+--
®)

ds =df +dys+dys*+ -
dy=di +dfs+dys*+--
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Total 16 rational transfer functions can be framed from ¢iqua (4) and (5) as presented
by equation (6).

ni1 ni1 ny ni1

11 d1 s L 12 d2 ;413 d5 s L 14 d4

Ty = @,ng — @,Tzs — @7T24 _ 2
dy da ds dy (6)

Ty = -2, Tao = —2 Tyg = —2> Ty = —>

31 dl y 432 d2 » 433 d3 s 434 d4

na na na na

Ty =—Ty=—T, =7, ===

41 d1 s L 42 d2 ;443 d5 s L 44 d4

3 Model order reduction

In the proposed method, initially high order unstable ivaésystem is converted into a
multiplication of two systems, i.e., stable high order systand unstable system. Later,
stable high order system is converted into reduced ordeehfB®M) using the techniques
proposed in Dolgin (2005) and Singh et al. (2017). In thishndf the denominator and
numerator of ROM are derived by Dolgin (2005) and Singh e{(2017), respectively.
The reason behind doing this is that the use of Dolgin (2008)lyces stable ROM for
stable system. Simultaneously, derived formulation foetmoments in Singh et al. (2017)
confirms better steady-state response matching. The eufithe method is given as
follows.
Let high order unstable interval system be

Tor = 7
U = s )+ (s 4T Js + [ G157+ ot [ "
It can also be re-written (Appendix A) as
Yl ntlst 3 g nls
Tvr == =770 X7 0 (8)
z‘:o[dz'uvdiu]S > imold Zs,dz's]s
Tvr =Tvr,Tsar 9

whereTy r, is unstable interval system afdd is high order stable transfer function.
From (8),Tsyr is given as

r—1 _ P
Z;'L:o [nz ) ”Z]St

T = = -, 10
S > icold™is, d;g]s’t (10)
For the sake of calculations, equation (10) can also be ddrast
S y—1
Tomp — ng +ni1s -+ +ny—18 (11)

d()+d1$++dy8y

Tsyr is converted intdl s gy, i.€., stable ROM. In this work, firstly, the denominator of
ROM is obtained from the method proposed in Dolgin (2005)latet, numerator of ROM
is calculated by the time moment matching technique prapos8ingh et al. (2017). The
detailed procedure for obtaining the denominator and natoers discussed as follows.
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3.1 Denominator

Let the denominator of high order interval system (11) be
Drpyyp = [dgs,d(i] + [d;s,dlt]s+ o [dy dY]s" (12)

T VT

Routh table for (12) is given as

Table 1 Routh table

SI [d;57d;<] [d(_zfg)ud?;fg)s]
z—1 - + = sy
s [d<x_1)svd(x—1)s] [d(ac—3)57d(ac—3)s
: B o

8 [z, i, )

s° [d. dt

(z+1,1) 7 "(z+1,1)

where

J(i—ll)

di ). = di—2,511), — X d(i—2,j+1), (13)

(i—1,1)
In equation (13), the interval subtraction operation DoI#005) is taken as
[a1, az] = [b1,b2] = [a1 — b1, a2 — 2] (14)

To ensure the existence af)(fi,j)s Dolgin (2005), the uncertainty it;_, 1), is narrowed
in the following way:

. 1
di-1,5+1), = |Maz(di-1,441),> dG-1,5+1), — 5E-Lii-2,5+1)
(15)

. ) 1
min(d(i—1,j+1),» di-1,541), + 5K Li-2,541))

whereL;_s jy1) = dgi—2 j41). — d(i,%ﬁl)s, ci(i,%,jﬂ)s andd;_» 1), are upper limit

and lower limit of interval coefficient;_» ;1 1)., d(, ;. is the mid-point of the interval

A dei ‘
dg ., andK = —1du-ru. :
(B:)s ld(i—1,2)51F|d(i—1,1),

Using Table 1, denominator of ROM can be written as

Drgpay = Ay piy 1y @iy 8"+ A ryn) Al gy Js" -+ (16)
For the sake of calculation, the denominator of ROM is dethate

Drgpy = dps” + dyp 18"+ o+ dus + do (17)
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3.2 Numerator

After evaluating denominator, numerator of ROM can be dated as follows.
Suppose

S o —1 X R
Nrgpay = Mps” +0p_18" ~ + ..+ 015+ Nyg

Using equations (17) and (18), ROM can be written as follows

In terms of time-moments, equations (11) and (19) can alspves as
Tspr =to+1t1s+ t252 + ...

Tsmwm = to +t1s +tas® + ...

where
k=1 5 -
~ N d ,iti
Bo="2 Y B k=012,
dO i=0 0
and
k—1
nk d—it;
ty = — k=0,1,2,...
k o +Z o

1=0
On comparing time-moments as

fe=trk=0,1,2, ...

numerator coefficients of ROM can be calculated.

4 Robust stabilisability

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Robust stabilisability Kimura (1984) is a very importaninddion for interval in class.

Following definitions are used for robust stabilisability.

Definition 1: A classC/(fo(s), v(s)) is defined for a rational transfer functigis) if

e f(s)andfy(s) must have same number of poles on right hand side-@iain

(unstable poles).

o [f(s) = fo(s)| <u(s)], [v(s)] > 0, Vs
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where,s = jw andw is a real number.
In this definition, f(s) is nominal transfer function ands) is uncertainty in the form
of proper transfer function.

Definition 2: As shown in Figure 1, a closed loop system with negative faekiis stable
iff for each f(s) in classC(fo(s), v(s)), there exists a controller(s). An inequality is
proposed in Kimura (1984), for achievement of this purpose.

[v(jw)e(jw)| < |1 + fo(jw)e(jw)|, Vw (25)

Later using equation (25), equality is defined as

1+ foljuleliv) = S5 (26)
Hence
_ )
and controllek(s) can be written as
_ )
= T o) )

Figure 1 Controller with plant

hx C(s) o f(s) >

5 The Nevalinna-Pick theory

In complex analysis, interpolation of data utilises holeptoc function (Ball and Trent,
1998). Later is obtained by Nevanlinna-Pick theory (NPTpaAndix B). It is also used
in circuit theory Delsarte et al. (1981), signal processigwilde et al. (1978) and
approximation problems Kimura (1983).

Definition 3: Consider an analytic functiof(s) with Re(s) > 0 satisfying the inequality
|6(jw)| < 1,Vw (29)
The inequality (29) is bounded real (BR). But if

[p(jw)| < 1,Vw (30)
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thenitis called strongly bounded real (SBR). Now, integpioln problem is formulated for
SBR or BR functions. These are called Nevanlinna-Pick @noisl

Let us say, there argn complex numbers;, d;, : = 1,2, ...,n, are following the
inequality as given by

Re[xi] > 0,]8;] < 1,i=1,2,...,n (31)
NPT is used to determing(s), which fulfills the following relation

o(xi) =0,1=1,2,..,n (32)
Itis accomplished by forming Fenyves arri@y; as given by

51'71 = 52,1 = 1, 2, e n

(X + X5)(9ij = 95,5)
(Xi = x3) (1 = di,305,5)
Pj =9j; (33)

0ij+1 = 1<j<i-1<n-1
Thus,(s) is solved by iterating linear fractional transformatioss a

(s = x5)0j+1(s) + pi(s + Xj)
s+ Xj + pj(s — Xxj)Pj+1(s)

QSJ(S): 7].:77/;”71;-";17 (34)

P(s) = ¢1(s) (35)

In (34), é,+1(s) is SBR function. Initialisation and termination condit®are given as

$(0) = do

¢(OO) = 5n+1 (36)
where

|(50| < 1, |6n+1| <1 (37)

6 The condition of robust stabilisability

Let, fo be ann' order nominal transfer function and it contaips 2, ..., xx Wherek is
the number of unstable poles. Blaschke product Kimura (Lfa84hese unstable poles can
be written as follows

_ i —s)lxk —9)
Bls) = (X1 +8)--(xx +5) (38)

It will satisfy the condition as written by

|B(jw)| = 1, Vw (39)
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Suppose

Jo(s) = foB(s)

5, = Umlxi) 40
f(xi) “0)
Applying equations (34), (35), (38) and (4@).s) can be formulated as follows
B(s)
pls) = 90 (41)

whereuv,,(s) is an arbitrary SBR function. Controlle(s) is designed using equations (28)
and (41).

7 Example
Let an unstable interval transfer function,

2,3]s® + [19.5,21.5]s + [32.5,34.5]s + [15, 16]
2,3]s4 + [15.7,22.2]s3 + [26.9,61.2]s2 + [4.3,71.9]s + [-9.7, 30.1]
_sHLy 2,3]s% 4 [317.5,18.5]s + [15, 16]
s+ [—0.45,1.4] © [2,3]s3 + [17,18]s2 + [35, 36]s + [20.5, 21.5)]
=Tur, X Tsur

TUF:[

(42)

whereTy r, stands for unstable interval transfer function &id; » stands for stable high
order interval transfer function.

In proposed techniqué,sy i, i.€., high order system is converted into stable ROM
using technique proposed in Singh et al. (2017). Then, obhatis designed for the product
of TUF1 andTSHF.

Using equations (8)—(24),sras, i-€., ROM of T's iy  can be written as

[0.44,0.52]
T =7 T 43
SEM = S 170.62, 0.67] (43)
So, from equations (42) and (43), it is obtained
Turm = Tur1 X Tsrm
__s+@L1 [044,0.52 (4a)
54 [—0.45,1.4] s +[0.62,0.67]
Hence
0.44,0.52])(s + 1
Torm = 5= [ ( Dis+1) (45)

0.17,2.07)s + [—0.30, 0.94]
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Now, Kharitonov polynomials fo¥;; g, can be written as

[0.44,0.52](s + 1)

Jor = (s +0.64)(s — 0.47) (46)
[0.44,0.52](s + 1)
fo. = (s +2.21)(s — 0.14) (47)
[0.44,0.52](s + 1)
Jos = (s + 1.40)(s + 0.67) (48)
and

0.44,0.52](s + 1)
= 4
fos (s+0.09— 0.97i)(s + 0.09 + 0.974) (49)

Using the proposed algorithm, controllers are designedifstable systems around a certain
uncertainty of first two unstable rational systems (ifg.andfo, ). Remaining systems (i.e.,
fosandfy,) are stable. So, there is no need to design controller fdr systems. Leaving
the interval coefficient, the step wise controller desigrpnocedure forfy, is given as

As provided in equation (46), suppose

by =1
x = 0.47
by = 0.64 (50)
Using
(S + bl)
=0 ) &1
Applying equation (38), it is obtained
_X—S
X+
047 — s
047+ (52)
Using equations (52), (40) is given
fo=DB=x fo (53)
Let, the SBR functiony,,, is given by
° (54)

Um = 77—~
(s+1)
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and applying equation (40), it is obtained

0.47
§0-47 — fo
1 7

=
—(b(s + 32)(5 + 155))

5()‘47 _
' (s+1)2

(55)

Puttingx = 0.47 in equation (55), it is obtained
6947 ~ —0.48b
Using the inequality of equation (37), it can be written as
6747 <1 (56)
Hence
b] < 2.07 (57)
and from equation (56), it is obtained
k=2.07 (58)
Using equations (33), (34), (35) and (41), it is obtained
b
p1 = E
_ _bxs
kxs+k

((s = b1) * 2 + p1* (s + b2))
((s+b2) +p1* (s —ba) x ¢2)

= Bx L (59)

Um

b2

¢1 =

Finally, using equation (28), controller for the cl&3&fy, , v,,, ) of unstable transfer functions
is given by

M1
g =— 60
! 1*f01*u1 ( )

—125.265° — 209.18s* — 86.3s% 4 11.43s% + 22.68s + 8.85
[(30.24b% + 254.96)s% + (19.35b2 + 647.79)s3 + (591.58 — 66.80b2)s2
+(246.52 — 4.27b%)s + 477.74] , (61)

c1 =

where0 < b < 2.07.
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Applying same procedure as above, the controller for th&scld fo, , v,, ) is given as

(—267.23s5 — 954.015% — —899.39s3 — 209.99s2 + 8.41s + 5.78)
[(67.57b% + 531.13)s* + (159.516% + 1589.09)s3 + (1378.75 — 1.33b%)s2

+(350.93 — 2.93b%)s + 30.14] , (62)

Cy =

where0 < b < 1.98.

After calculating the range ob for each unstable nominal transfer function of
equation (45), a random value bffrom each range is selected. Corresponding to these
values, unstable transfer function and controller for egahks is derived, after that using
these two of the same class, closed loop transfer functioedoh class is calculated, as
given in Table 2.

Table 2 Information regarding step and impulse responses

Sep and
impul se responses
of corresponding

Unstable transfer- Random closed loop

function Corresponding Range value of systemi.e.
S no. f=fo, + ﬁ‘l; controller of b b lfrfcf inFigure 2
1. f=fo+5 1 0<b<2.07 1.1 F11 and F12
2. f=fo.+ 7 c1 0<b<1.98 1.2 F21 and F22

Figure 2 Controller with plant (see online version for colours)

Step Response (F11) Impulse Response (F12)
30
g 2120
2 2
a a
g g10
-10 0
0 0.5 1 1.5 0 0.5 1 1.5
Time (seconds) Time (seconds)
Step Response (F21) Impulse Response (F22)
0 ——=
100
@ @
2 E
[ £ s
< <
-10
0
0 1 2 1] 0.2 1.4 0.6

Time (seconds) Time (seconds)



Controller design via model order reduction for interval systems 205

Figure 3 Impulse response of unstable system using technique pdgnsMatus and Prokop
(2016) (see online version for colours)

Impulse Response

150

100

50 5

Amplitude

-50 +
0 2 L) 6
Time (seconds)

Further, step responses (i.e., F11 and F21) and impulsenssg(i.e., F12 and F22) of these
closed loop transfer functions are plotted in Figure 2. ttlesar from this figure that step
response of each system reaches to a steady state value@unddmesponse diminishes
to zero which is necessary and sufficient condition for $tgbi.e., bounded output for
bounded input (BIBO).

Simultaneously, impulse responses of the systems (i.@.aRtl F22) with respective
controllers proposed by Matus and Prokop (2016) are proviid€igure 3. Itis clear from
Figures 2 and 3 that time taken by the output to reach steatly galue by the proposed
technique is less than MatuS and Prokop (2016). Also, theulsepresponses given in
Figure 3 contain overshoots which are absent in Figure Zhdtvs effectiveness of the
controller designed by the proposed method over Matus apkbpr(2016).

8 Conclusion

In this article, a process of controller design by model ordduction of interval system is
discussed. In this process, high order interval systemrisarted into ROM using Routh
approximants and time moment matching technique followezbimtroller design for ROM
using Kharitonov theorem and Nevalinna-Pick theory. Kioaidv theorem is applied to
convert interval system into equivalent rational syste@mntrollers are designed around
these rational systems in a certain range of uncertaintygusevanlinna-Pick theory. It
shows that Nevanlinna-Pick theory can also be used for tataisility. Robust stability and
condition for robust stability of uncertain system are digsed. At the last, an illustrative
example of fourth order unstable interval system is disedisResults prove the usefulness
of applied method.
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Appendix A

Consider amth order interval system:

(M1 4]+ [,y mt_5]s" 2+ -+ [ng ,nd]
[d’;v d;{]s" + [d:z—la d:—1]5n71 4t [daa d(T]

Tf = (A1)
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The denominator of  is given by
D, = [d,,d}]s" + [d,_,,df ]s" "+ +[dy, df] (A.2)

noon n—1»%n—1

Let, factorization of (64) is given by

Dy = (s + [og  ag DB, Br_als™ + [Br_a, Bi_ols" ™%+ + 165, [B5]) (A3)
If we consider the coefficient o from equations (64) and (65), then

log s ag ] x 1By, B5] = [dy » dg] (A4)

In equation (66), there are four unknowns (i, o , 3, andj3q) and two equations as
given by

ag By =dy
ag By =di (A5)

So, there will be many solutions of (67). From above analysis clear that factorization
of an interval polynomial is not unique.

Appendix B

The Nevanlinna- Pick theorem given as: Let,, ws - -+ , wy, 21, 22, . .., 2, € D. There

exists a holomorphic functiofi : D — D such thatf(w;) = z; (whereD is unit disc in
complex plane whose centre is at origin), iff the Pick matrix

( 1—- 2%z, )”
1 —wiw; /=1

is positive semi-definite.





