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Abstract: This paper presents a non-fragile event-triggered coapptoach to

positive switched systems without/with input saturatibirst, a 1-norm based
on event-triggered mechanism is established for positiiecBed systems. By
using the matrix decomposition technique, a non-fragitgrasler based on event-
triggered mechanism is designed for positive switchedsysivithout saturation.

Then, the presented non-fragile event-triggered contedigh approach is
developed to positive switched systems with saturatiore Jdturation term is
transformed into interval form and a controller is desigtgdmeans of the

linear programming. The positivity and stability of the sbal-loop systems are
guaranteed under the designed controllers. Finally, a riaai@xample is given

to illustrate the effectiveness of the design.
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1 Introduction

Positive systems, whose states and outputs remain nomreegdten the initial states
and inputs are nonnegative, become a hot research topitgdast two decades (Farina
and Rinaldi, 2011; Lam et al., 2019). Indeed, such system®&xdensive encountered in
many real world applications, including electronic citsyichemical processes, storage
systems and so on. Positive switched systems, consistiagidyfof positive subsystems
and a switching law, are a special class of hybrid systems.stidy of positive switched
systems involves many typical control problems such asilgyabnalysis (Mason and
Shorten, 2007; Gurvits et al., 2007; Liu and Dang, 2011)iksation design (Benzaouia
and Tadeo, 2008; Blanchini et al., 2008; Briat, 201/xgain analysis (Xiang and Xiang,
2013), delayed transaction (Aleksandrov and Mason, 20i8gt.al., 2018) and so on.
The literature Colaneri et al. (2014) considered the ogticoatrol problem of positive
switched systems. Ah; finite-time controller was designed for positive switchethyed
systems under mode-dependentaverage dwell time conétrhin et al. (2015a). By using
Lyapunov-Krasovskii functions, the asynchronously shgid control was discussed for
discrete impulsive positive switched systems and somegrificonditions were derived to
ensure considered systems were finite-time stable (Liu,&G15b). In Zhang et al. (2017),
Zhang et al. proposed a novel computation method calledgainix decomposition for
positive switched systems, which is more practical and Emfi should be mentioned that
in practical applications, it is hard to meet the actual reguents of an accurate controller
owing to errors or uncertainties in the process of contralecution. Moreover, actuator
faults and input saturation are two important reasons thagmegative effects to the
system, such as performance decrease and even instabiligt @l., 2014; Sakthivel et al.,
2017). Research about actuator faults and saturation @fusasystems has accumulated
some results (Zuo et al., 2010; Selvaraj et al., 2017, 2018 .stabilisation problem was
considered for positive switched systems in the presen@etfator saturation and the
convex hull technique was employed to solve the saturatioblpm in Wang and Zhao
(2016). A non-fragile controller was designed for positMarkovian jump systems with
faults and saturation in Zhang et al. (2019a). In Park et@l182, the saturation control was
studied for single input positive Markovian jump systemieTiterature Qi et al. (2017)
addressed the problem of stabilisation for positive Maikovump systems subject to
actuator saturation by using convex analysis, then theipibgiand stochastic stability of
considered systemwere proved. In order to eliminate thativegeffect of actuator faults and
saturation on the system, a non-fragile reliable contrdsign approachis proposed, which
can tolerate admissible gain variations and failures. langhet al. (2014), the saturation
control of positive interval systems was investigated. liteeature Zhang and Raissi (2019)
presented an appropriate control approach for nonlinetécised systems on the basis of
positive systems and the control synthesis of nonlineatcbed systems in the presence
of input saturation. With the aid of a proper stochastic osiHive Lyapunov function,
the continuous-time and discrete-time were both consitienepositive Markovian jump
systems (Yang et al., 2019).

Inthe literature mentioned above, the sampling schemévaatime-periodic decision
ruling, which may results in heavy communication burden amagte of communication
resources. To overcome this issue, the author proposed aardgvol method called event-
triggered control in Dorf et al. (1962). Compare with the eutniggered mechanism,
the event-triggered sampling mechanism has more fleyitsétection of sampling time.
Due to the remarkable advantages of event-triggered dopitthas accumulated plentiful
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achievements (Heemels et al., 2008; Qi et al., 2019). Anteviggered predictive control
was considered for multi-agent systems in Zou et al. (2aQh3he work Yin et al. (2018),
the author addressed the event-triggered stabilisatiolblggm of positive systems subject
to saturation by constructing an event-triggered statdlfaek law. In Xiao et al. (2019),
a dynamic event-triggered scheme was proposed for poditamkovian systems with
the consideration of networked fault. By means of linearpw@ov functions integrated
with linear programming, an event-triggered controlleswasigned for positive switched
systemsin Liu etal. (2019). In Yang et al. (2019), a commaitidey network was modelled
via switched systems, for which the communication netwoas wivided into busy-time
and idle-time models. Noting the fact that the number of gaizkage is nonnegative, the
considered communication network can be regarded as atypsitive switched system.
Event-triggered control approach is effective for redgdime waste of network resources
and the design cost of controller. On the other hand, aatfeitare and saturation usually
occur in practice owing to the frequent use of componentsy Ty cause the performance
deterioration of systems and even lead to the instabilisysfems. Therefore, itis necessary
to design a non-fragile event-triggered controller of pesiswitched systems. However, as
far as we known, few results are concerned with the mentitop@d. Then, some questions
naturally arise: how to design a non-fragile controllerdositive switched systems based on
event-triggered mechanism, and how to deal with the nogitéravent-triggered controller
of positive switched systems? These motivate us to carryhisitvork.

This paper aims to design a non-fragile control of positivéched systems based on
event-triggered mechanism. First, an event-triggerecha@esm is introduced for positive
switched systems without saturation. Then, by means ofitiead co-positive Lyapunov
functionincorporated with matrix decomposition techrdgtine non-fragile event-triggered
control is proposed. Finally, the presented approachesxesded to saturation situation
for positive switched systems. Under the designed coetiathe closed-loop system is
positive and stable. The main contribution of this papesifodows:

i anon-fragile event-triggered controller is designeddositive switched systems

il aconeinvariant set is constructed for dealing with theisgion issue of positive
switched systems

iii alinear programming approach is employed for solvirigzahditions.

Through compared with existing results, the non-fragilergstriggered control presented
has more applications. The layout of this paper is as folldBection 2 presents the
preliminaries. Main results are addressed in Section 3.xamgle is given in Section 4 to
illustrate the effectiveness of the controller. SectiomBaudes this paper.

Notation.Let R, R™ (or R”'), R"*" be the sets of real numbers;dimensional vectors
(or nonnegative), ana x » matrices with real entries, respectively.and N* denote

the sets of nonnegative and positive integers, respegtivglimplies theith elements

of vectorz = (x1,...,2,)". For A = [a;;] € R"*", A >0 (> 0) means that,;; > 0

(ai; >0) Vi,j=1,...,n. A <0 (<0) means that;;; <0 (a;; <0) Vi,j=1,...,n.
Similarly, A > B (A < B) means that;; > b;;(a;; < b;;)Vi,j =1,...,n. Definel as

a identity matrix of an appropriate dimension. Given a makj F”' is its transpose, and
|F’| denotes the elements @f take the absolute values of its corresponding elements.
I - || indicates Euclidean norm. THenorm||z||; and infinite-norm of a vector € R™ are
defined ag|z||; = X" |z;| and||z]|c = max(|z1], |22, .., |zx|), respectively. Define
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1, =(1,...,1)7, 1 =(0,...,0,1,0,...,0)T, and letl,,, be then x n matrix with
— ——

T t—1 T—t
all elements 1co{-} denotes the convex hull. MatriX is called Metzler matrix if its
off-diagonal elements are all nonnegative real numbers.

2 Preliminaries

Consider switched continuous systems with actuator faults

#(t) = Agyz(t) + Bogryul ) (1), (1)
and switched systems subject to actuator faults and inpurtageon:

#(t) = Agyz(t) + Boysatul , (1)), )

wherex(t) € R™ anduﬁ(t) (t) € R" are system state and control input with actuator fault,
respectively. The functiom(¢) denotes the switching law, and it takes values on the
finite setS = {1,2,..., N}, N € N*. The function satf: R” — R" is said to be the
saturation function, that issat(u) = [sa(u1),sat(us), . .., sat(u,)]T, wheresat(u;) =
sgnu;) min{|u;|,1}, ¢ =1,2,...,r. In order to simplify the symbol, we assume that the
ith subsystem s activated whe(t) = i. Throughoutthis paper, assume tlagre Metzler
matrices with4; € R™*™ andB; = 0 with B; € R"*",

Next, we introduce some definitions and lemmas.

Definition 1 (Farina and Rinaldi, 2011; Lam et al., 2018)system is said to be positive if
its states and outputs are nonnegative for any initial a@di(t,) > 0 and control input
u(t) = 0.

Lemma 1 (Farina and Rinaldi, 2011; Lam et al., 201Systems (1) and (2) are positive if
and only if matrix4; are Metzler matrices ané; - 0.

Lemma 2 (Farina and Rinaldi, 2011; Lam et al., 2019) A is a Metzler matrix with
A e R™*" the following conditions are equivalent:

(i) The matrixA is a Hurwitz matrix.

(i) There exists a vectar > 0 such thatdv < 0.

Definition 2 (Hespanha and Morse, 199%efine N, (¢,ty) as the number of times the
switched system switches in the time interftgl ¢], where0 <ty < ¢. If

t—1o

*

No’(t07t) S NO +

)

whereN is a positive constant and > 0 stands for the average dwell time.

Lemma 3 (Farina and Rinaldi, 2011; Lam et al., 2018)atrix A is Metzler if and only if
there is a positive constantsuch that4d + 67 = 0.
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Throughout this paper, we introduce a non-fragile contall
ui(t) = (F; + AF)x(t), 3

whereF; € R"™*™ are normal gain matrices)\F; = E; H; are gain perturbation matrices,
H,; € R™*™ are decision variables to be designed alide R"*" are known nonnegative
matrices satisfying

0.1 < E; < 051 4)

for 0 < 61 < 65 < 1. The controller with actuator fault can be defined as

ul (t) = Liug(t), (5)
whereL; = diag(l;1, l;2, - - . , l;) are uncertainty fault matrices but bounded:

0= L4 2 Li 2 Ly; 2 vLai, (6)
wherey > 1, Ly; and L,,; are given matrices satisfyinby; = diag(l4i1, lai2; - - -, lair) and
Ly = diag(luit, luiz, - - -, luir ), TESPECtively.

Lemma 4 (Hu et al., 2002)Given vectors; € R” andv € R”, let||v|l < 1. Then
salu) € co{Giu+ Gy v,...,Garu+ G50},
whereg =1,2,...,2", G4 is anr x r diagonal matrix with either O or 1 elements and

Gy+ G, =1
From equation (8), we have

2"
sat(u) = Zﬂg(Ggu + G, ),

g=1

where the constart; satisfies) < /, < 1 and 25;1 ¢y = 1. A cone domairf2(v;, 1) is
defined as

Q(’Ui, ].) = {QZ S Ri | CET’UZ' < 1},
wherev; > 0 with v; € R". SetM; < 0 with M; € R"™*™ and define a polyhedron:

wherej =1,2,...,r,4 € S andM;; is thejth row of M;.
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3 Main results

In this section, the non-fragile event-triggered conédlare designed for systems (1) and
(2) by using matrix decomposition technique and sufficientitions are proposed in terms
of linear programming. First, we consider the non-fragilerg-triggered control of positive
switched systems without actuator saturation.

Considering the non-fragile control law (3), the non-flagivent-triggered feedback
control law can be expressed as:

ui(t) = (F + AF)Z(t), t € [tp, tpr1),

wherep € N, ¢ty = 0, t,, represents the moment when fith event is triggered ant{(t) =
x(t,) is the sampling state.
The event-triggered condition is given as:

lze(@)llx > allz(@)], )

where0 < a < 1 andx.(t) = &(t) — z(¢) is the sample error. Combined with form of
controller given in equation (5), the non-fragile evenggered controller with actuator
fault can be written as follows:

ul (t) = Li(F, + B:H)i(t). 8)

Then, the closed-loop system (1) is
’I‘(t) = (Az —+ BszE —+ BZLZEZHZ)LB(t) —+ (BZLZE —+ BZLZEZHZ)ZCQ (t) (9)

Theorem 1: If there exist constants > 0, u > 0, A > 1, v > 1 and vectors; > 0 with
v; € R &N = 0withgh € R, & < 0with¢,, € R™, &5 = Owithé € R, ¢ < Owith
& eR™ (= 0with ¢ e R, ¢, <0with ¢, € R?, ¢ = 0with ¢ e R, (7 <0
with ¢;~ € R™ such that

XisAi + Lis1 Z 1T + Ty Z 1,

=1 =1

- . 10a
T SOG4 D 30100, T (102)
=1 =1
+6:1 = 0,
A vi + & + Ve +0.7¢F (106)
+ 01V ¢ + pv; <0,
v; = )\’Uj, (10C)
G R&h 6 =6, =11, (10d)

Gh=¢h ¢ =<¢,v=1,...,m (10e)

70 S
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hold V(i,j) € S x S, i # j, s =1,...,71, Xis = 1 L§; Bl vy, Dis1 = 2 BiLai, Lisa =
vBiLai, U'is3 = %BiLdiEi, Lisa =vBiLaiEi, Y =1 — alyxn, T =1+ alyx,, then
under the control law (8) with; = F," + F,", H; = H;” + H, , and

= 1TLTBT Z

1
- _ ()
= o 6

=1

1
+ E : +T
Hi lT[TBTU 1( )CL
=1

1
H = - 1( ) -
‘ lgﬂLgiBiTvZ Z

(11)

the resulting closed-loop system (9) is positive and stabite the average dwell time
switching satisfying
In A

Proof By 1, >0, Lg = 0, B; = 0andv; = 0, we havel? L2 BTv; > 0. This together
with & =0, &, <0, ¢ =0 and(;, <0, we can getF;" =0 F,” <0, H =0 and
H; < 0. Then, we have

LaiF;" + LyiF, + Ly E;H + L EH;
< LiFEY + LiF, + LiEHY + LEH; (13)
= LyiF" + LaiF + Ly E;H + Lg; E;H;

Furthermore,
A; + BiLg;F;" + B;Ly;F; + B;Lg; E;H;” + B;L.;E;H;
< A + B,L,F;" + B;L;F;] + B,L,E;H;} + B;L;E;H; (14)
= Ai + B;Ly;F;" + BiLg;F;” + B;Ly;E;H;" + B;Lg; B;H; .

Given any initial statex(¢y) = 0, we can obtain from equation (7) thiate. (to) 1< « ||
z(to) 1= a1lz(to). Thus,

—alpxnz(to) = ze(to) = alnxnz(to). (15)

Substituting; = F;" + F;~, H; = H;” + H;”, and equation (15) into equation (9), it
follows that

#(to) = (A; + BiL;F;* U + B,L,F, T
+ B,L; E;H;"V + B,L; E; H; Y)x(to).
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Using equations (6), (11) and (14), we have
. L BiLaiy. _ 1$-L)§,-+T
ta) = Ai - =1 i
#to) = (At Z =177, 1.7 BT v,
1 BiLyE; S 1Y BiLyE: S 1YW T
_ d ZL:I Cu \If +'Y d ZL:I T

Bl Y, 176"

U+ vy

T)x(to).

From equation (10a), it is easy to obtain

r () ¢+T r (L) ¢=T
Fis — ]-’I“ i Fis — ]-r i
Ai + 1 ZL—I gu U+ 2 ZL_l gu T
Xis Xis
"' () 4T T (L) p—T
Lis: 1 1r°¢ [is 1 LG 0;
+ 3 ZL—I Cu \I/ + 4 ZL—l Cu fr + —I
Xis Xis Xis
L BiLai 3o, 16"
ol 17L1. BT,
1 BiLaiLi Zle lv(”L)CiJLFT + i
BiL#iE; Yy, 15-L)C,;T
]-ZLdiBiTvi

BiLaiy. 4 1Y 2 1
1?[131;3?1]1

U+

+ T+ A; = 0.

ﬁ[ >~ 0. This together with Lemma 3 gives thatl; + B;L4F, V¥ +
BZ-LME‘TJFBZ-LMEZ-H;“\I/ +B;L.;H; Y is a Metzler matrix. This implies that
A; + BZLZF;'_\I/ + BszFL_T -+ BZLZEZH:'_\I/ + BszEzHL_T is Metzler. Define a
class of indicators := {i : z;(t) = 0}. Then, for somep € S, we obtainz;(t) >
e Oz (t) wherei € S, A, = A, + ByL,F; U + B,L,Fy T + B, L, E,H W +
B,L,E,H, Y andOy” is theith row jth column element of\,,. SinceA,, is a Metzler

matrix, it is easy to g@ﬁ,”) > 0 fori # j. Thus, we have;(to) > 0, thatis,z;(ty) > 0.
We obtainz(t) > 0 by using recursive derivation for any initial stat&) > 0. Then, the
resulting closed-loop system (15) is positive by Definitlon

Choose a linear co-positive Lyapunov function as

V(z(t)) = 7 (t)v;. (16)

Give a switching intervalt,, ts1+1) and the event-triggered intenjal, t,,1+1 ). Assume that
the switched system is switched froirto j, Vi,j € S at the switching instant,. The
stability of the system (9) is discussed in two cases.

Case 1:Assume that there is no any event-triggered time instarterirtterval[t,, ts11),
thatis,t, < t, andt,+1 > te11. Then

V(x(t)) = ((A; + B;LiF; + BiL;E;H;)x(t)

- (17)
+ (BiL;F; + B;L; E;H;)x.(t))" v;,
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wheret € [ts,ts4+1). Using equations (4), (10d), (10e), (14) and (15), we obtain

. T B; L1, “TB.Lail, TR E,
V(z(t) <z(t)" (A + r&i & d ¢

" \IICi_TBiLdiEilr o (18)
171 Bl v, ’

< a(t)"(ATvi + Y& + V& + 0 +609¢).

Connecting equations (10b) and (18), we hee(t)) < — Vo) (x(ts)). Taking integral
for both sides of it gives

V(x(t) < e IV (2(ts)), t € [ts, tor)- (19)

Case 2 Assume that there are some event-triggered time instafts i41). Denote the
switching sequence by, <t, <t,y1 <tpi2 <...<tpy <tsr1, VI € N. Combining
equations (17) and (18), it follows that

V(a:(t)) < _NVa(tM,,L)(m(tp-&-l))v t € [tpsi o)
Taking integration both sides of it from,y; to ¢t yields that V(z(t)) <
e Mt=toen) Vo (2(tp4d)). Then, we have

V(:E(t)) < eiﬂ(titpHil)VU(tprl) (x(thrl*l))a (20)

where ¢ € [t,11-1,tp+1). Next, we can obtain similar inequalities in the form of
equation (19) for each subinterval as well. With the ta@t) = o (tp41) = ... = o (tp41),

it is easy to get a similar result to equation (19). Using ¢igua (10c) and (19), we
haveV (z(t)) < Ae #( =tV (x(ts)). Supposethal =ty <ty <ty <...<t, =

I, (t0,4) < t is the switching time sequences®ft) in the intervall0,¢). The rest of the
proof can be obtained using a similar method used in Zhandraieki (2019). Hence, the
resulting closed-loop system (9) is stable. O

Remark 1: The event-triggered control of positive systems is diffeéfeom the one of
general systems (Heemels et al., 2008; Qi et al., 2019; Zal,,&2019). Under the event-
triggering condition, the error term in general systems loartransformed into the term
related to the state. Thus, the stability is achieved unglapunov functions. For positive
systems, the first step is to guarantee the positivity ofliheec-loop systems, which contain
the error term. Therefore, the positivity criterion (e.@nhma 1) cannot be directly used. To
solve thisissue, Theorem 1 transforms the original systéorain interval uncertain system,
which only contains the state term. Thus, the positivitynef §ystems can be obtained by
considering the lower bound system of the interval system.

Remark 2: Theorem 1 considers the fault problem of the actuator anththesnce from
the fluctuation of the actuator parameters. Supposetihat= 0 andL; = I, the controller
in Theorem 1 becomes an event-triggered controller of pesgwitched systems (Liu
et al., 2019). Furthermore, the controller in Theorem 1 isadesfeedback controller of
positive switched systems (Xiang and Xiang, 2013; Liu et2015a, 2018; Zhang et al.,
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2017) provided the event-triggering condition is removEderefore, the event-triggered
controller in Theorem 1 is more practical and general thastiey ones in literature.

Next, the positivity and stability of positive switched syt1s with actuator saturation
is discussed in Theorem 2.

Theorem 2:If there exist constantg > 0,z > 0, A > 1, and vectorg; > 0withv; € R™,

T-0owithe! e R, & <0with ¢, e R, &P = 0with & e R™, & < 0with &, €
R™, ¢ = 0 with ;7 € R®, ¢;, < 0 with ¢, € R™, ;" = 0 with ¢ € R, ¢, < 0 with
¢; € R"such that

T T
NisAi + S »_ 1V + S0 > 10T

=1 =1

+ i3 Zr: 19T + S zr: 10¢, 7 (212)

+ NS5 T + 61 = 0,
Af v + Y&+ WET +0:,0¢ +010¢;

+ UM G "B vi + i < 0,Gig # 1,Gig #0, (210)
Alv; + Y& + V& + 0,7 + 60,0¢;

+pv; <0,Gig =1, (21c)
Alvi + UM G T Bl vi + pwi < 0,Gig = 0, (21d)
v; 2 A, (21e)
§“_§ L&, u=1,...,m (211)
Grh=GhG =G e=1,...,1 (219)
vi + ME >0, (21h)

hold ¥(i,7) € S x S, i # j, s = 1,...,r, Niy = 17L5,GE BT vi, Su = 2B,GigLas,
Sise = vBiGigLai, Sis3 = %BiGingiEh Sisa = vBiGigLai B, Siss = BiG,,M;,and
U =1 —alyxn, ¥ =1+ al,x,, then under the control law (8) with; = F;* + F,",
H; = H;" + H; , and

1 T
+_—§: (v)
Fi _1TLTGTBT A
=1

. 1
Fi T 1TLT.GT BTy, Z i
(22)

T

1
+ _ 2 (¢) +T
i = 17LT.GY Bl v, G
=1

L)
Hi 1TLT GT BTUZ Z



Non-fragile event-triggered control of positive switcr®dtems 183

the resulting closed-loop system (2) is positive and stabite the average dwell time
switching law (12). In addition, the system states starfiogr :(t) € Q(v;, 1) will remain
inside(J; ©(v;, 1), whereN, = 0.

Proof. By equation (8), the system (2) with state saturation carebgitten as:
By Lemma 4, we have

B(t) = 2, Lig[Aia(t) + BiGig Li(F, + E;H,)a(t)

M BiGigLi(F; + E;H;)x(t) (23)
+ BiG, M;) (2(t) + ze(t))].

Noting the conditionG;, = 0, we obtain1] K G}, B{ v; > 0. Then, for initial state
conditionz(tp) = 0, one can obtain from equations (6), (14) and (15) that

2" T (¢) o+T
. 1 BiLai ., 117§,
t - gz Az - =1 i
sz Sotalac S P

BiL4iy 4 1£L)€Z—:T
1 B;Lg;E; Y., 1$'L)Cz'+LT (24)
0l 17 LY,Gig Bl v;
BT 1967

By equation (21a), we have

C\is " 17("L) +T\I/ C\is " 17("L) '_TT
Ai + Sisl ZL:I gu + 5 QZLZI gu

Nis Nis
Sis S 1YGTU S S 1T
* N * N
18 18

d;
+ Siss L + N_I > 0.

18

Thus,

Ai + BiGiy LiFY VW + B,Giy LiF Y + BiGiy L E;H U
0;
BiGiyLiE;H Y + B;G MY 4 ——
R e R e ¥ ¥ e 1
- 0.

BiGigLiEH; Y + B;G; M;Y is a Metzler matrix. Hence, 23;1 liglA; +
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BiGiyLiF;"V + B;G;yL;F; Y + B;Giy LiE; H;"V + B;G,, L, E;H; Y + B;G,,M;Y]
is Metzler. Similar to the method used in Theorem 1, we caninlihe rest of the proof.

Choose a linear co-positive Lyapunov function as (16), then

V(x(t) = ligl(BiGig Li(F; + E;H,)x(t)

+ (BiGigL;iF; + B;GigL; E; H;)x.(t

+ BZG;gMZ(’I'(t) + Ze (t)) + AZCE(t)]T’UZ

By equation (15), we have

or
g=1

+ BiGigLiF,V + B,Giy L, B; H' ¥

+ BiGigLi B H; V + B;G; M; W] v;.

Using equations (21f), (21g), and (22) follows that

S &1 LT G BT v,

(BiGig i) 17LT.GE Bl v
+57 1 WT T AT BT

< §i e L GigBi vi <&t

- 17 LL.GT Bl v, o

S & 1T LT G BT v,

—\T,, _—
(BiGigLiFy") vi = 17 LT GT BT,
T 1 otg 1
& X 1T LEGE BT

ig1 —
- T7rT AT RT,,. i
17LT.GT BT,

LG WTEILICLB
- 17LT.GT BT, <G
rHur g Tt

(Bi GigLiEi Hii )T’Ui
LGS WL G B
= 17LL,GT BT,

< 91@7

(25)

(26a)

(26b)

(26¢)

(26d)

Case 1WhenG;, # I andG;, # 0, we obtain from equations (25) and (26) that

V(z@t)) < 2T (t)(ATv; + Y& + W +0,7¢H

+ 6,9 + MG Bl v).

(27)



Non-fragile event-triggered control of positive switcr®dtems 185

Case 2ZWhenGy = 1,

(BiGig LiF;) vy < &5, (BiGigLiF7 ) vy < &7,
(BiGigLiE;H; ) "v; < 602G, (28)
(BiGigLiEiHZ-—)TUi < 91CZ_,BLGZ_QML =0.

By equations (25) and (28), we have

V(z(t) <2t (t)(Af v + TEF + we

(29)
+ 020 + 619¢).

Case 3WhenG;, = 0,

(BLGLQKLFLH;’_)TUL = O7 (BiGigKiFiHi_)TUi = 0,
Connecting equations (25) and (30) gives

V(x(t) < 2" (t)(ATvi + UM G Bl vy). (31)
Using equations (21b)—(21d), (27), (29), and (31) yields

V(z(t) < —pxT (t)v;. (32)

The rest of the proof can be obtained by using the similar otkith Theorem 1.
Finally, we will discuss the invariance of the system (2)ivilig from (32), we can get
thatz” (t)v; < e Noln AT (¢9)v; < 1, whereNy = 0. Thatmeans:(t) € Uf Q(v;, 1) for

anyz(to) € U,}]Q(vi, 1). From (21h), it implies tha®(v;, 1) C T'(M;). Consequently, the
U;] Q(v;, 1) is an estimate of domain of attraction. O

Theorem 1 only considers the problem of actuator fault ofitmesswitched systems.
Indeed, actuator saturation is an inevitable phenomenautimal control systems due to
the limited capacity of components and the constraints dflées. Actuator saturation
will deteriorate the system performances and even leacetm#tability of systems. Thus,
actuator saturation is taken into account in Theorem 2. fidme@ designs a non-fragile
event-triggered controller. Under the designed contrdghe considered systems are positive
and stable even if the systems are subject to faults. Thikashat the systems can resist
the risk from the faults of the actuator.

Remark 3: In Wang and Zhao (2016), Zhang et al. (2019a), Park et al (R@i8et al.
(2017), Zhang et al. (2014) and Zhang and Raissi (2019)atiueztion problem of positive
systems was explored. However, these literature ignoeeplrécticability of the design and
the fragility of the controller owing to the parameter fluation. The obtained controller
may fail when the systems are subject to uncertain fluctnaionsidering these problems
in the literature, Theorem 2 proposes the non-fragile etraygered control design. The
designed controller in Theorem 2 can resist the risk fronfadhés of the actuator and the
parameter fluctuation of the controller gain.
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Remark 4: In Zuo et al. (2010), a saturation avoidance feedback appraas proposed
to deal with the saturation issue. In Selvaraj et al. (2002,82, the saturation term was
represented in terms of convex hull. The conditions in ttexdture were determined by
using linear matrix inequalities. Linear matrix inequalt are more complex than linear
programming. In particular, it is not easy to guarantee stpvity of the systems under
the framework of linear matrix inequalities. What's moreese existing results are all
based on the time-triggered control strategy. Considehage points, Theorem 2 designs
a non-fragile event-triggered controller for positive ®hied systems in terms of linear
programming.

Remark 5: Theorem 1 investigates the non-fragile event-triggeremtrob of positive
switched systems with actuator faults and Theorem 2 furdwersiders the actuator
saturation issue. Indeed, the systems may be subject tdraions in practice (Mayne
et al., 2000; Zhang et al., 2016, 2019b). In Zhang et al. (BDZOmodel predictive control
controller was designed for positive systems with conséaistate and input by virtue of
linear programming. Motivated by these results, it is ieging and possible to consider the
non-fragile event-triggered control of constrained pesiswitched systems in the future
work.

4 lllustrative example

In Yang et al. (2019), a communication network with three emavas established via
positive switched systems in Figure 1. The communicatitwork has two modes, namely,
busy time and idle time, and switches between the two modgwdctice, it is clear that

the communication is always subject to faults and saturatioing to the frequent use
and too many users. It implies that the model in (2) is moréable for describing the

communication network. To avoid the network crash, it isessary to restrict the speed
of some communication channel at some time. This is a tyeant-triggered problem.

Considering these points, we will continue to study the camitation network under the

control strategy in this paper.

Consider the system (2) with:

—21 1.6 15 0.1 0.25
A= 2 -18 2 |,Bi=[02501 ],
1.3 1.3 -25 0.150.25
—2.1 1.8 0.7 0.2 0.3
Ap=| 25 -21 15 | ,Bo={ 0402
1.3 14 -23 0.150.2
Given
0.25 0 0.3 0 0.33 0
B = < 0 0.25> L = < 0 0.2) L = ( 0 0.26)’
0.65 0 0.42 0 0.42 0
E2< 0 O.65>’Ld2< 0 0.3>’L“2( 0 0.35)’
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Ap _ (—0.03-0.04-003) ,  (-0.05-0.04-0.03
171 =0.05-0.05-0.04) "2~ {=0.04 —0.06 —0.04 ) *

then §; = 0.25 and 6, = 0.65. Choosey = 0.2, A=1.1, y=1.1, and o = 0.15. By
Theorem 2, we get

157.4397 —95.6526 149.7315

vy = | 145.6831 | & = | —99.9504 | & = | 148.5994 | |
148.4657 —97.7878 149.7920
156.2888 —71.5978 158.0387

G = 1544419 | ¢ = | —72.2095 | ;v = | 147.8074 | ,
157.4469 —71.8075 133.5772
143.6352 —113.1081 152.2234

& = (1454154 | &5 = | —98.4270 | ,¢f = | 153.8178 | ,
149.2430 —54.8880 157.8917
—66.5949

¢; = | —63.2587 | |6, = 199.4658, 5, = 277.5274,
—43.9530

7 > 0.4766.

Then,

o 1.71211.5851 1.6959
L \1.67261.6746 1.6727 )~

1.99701.89312.0357
1.98511.92252.0286 ) °

—8.4347 —9.6408 —8.6827
—8.5210 —8.3283 —8.6947 )’

Hf =
Fr

- — —6.1276 —6.2604 —6.1527
b7\ —6.1398 —6.1247 —6.1512 )

o 1.07291.1858 1.1201
2 7 \1.02801.11101.4166 / ’

et — 1.38001.47541.4185
~ \1.3406 1.3960 1.7269 /
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e —8.2851 —6.8274 —5.3568
~ \—7.6407 —6.7329 —2.6148 / ’

- — —4.4992 —4.1893 —3.3239
2 7\ —4.3220-4.1613 —2.5157 ) °

Choosel; = (0'5’20%5) , Lo = (0640%3) and denote

Ni= A+ Y0 4y(BiGrgLiFf + BiGig L1 Fy
+ BiGiy L E\HY + B1G1, L E\H{ + B1G1, M),

Na= Ay + Y0 £y(BoGagLoFy + BaGagLoFy
+ ByGag Lo By Hy + ByGagLoEyHy + ByGyy My).

Then, under the event-triggered control law (8), we have

—2.4783 1.2046 1.1136
Ny = | 1.5850 —2.2697 1.5729
0.8589 0.8305 —2.9513

)

—2.8038 1.1235 0.3873
Ny = | 1.4647 —2.9513 0.9955
0.7329 0.9240 —2.5270

The simulation of system states is showed in Figures 2 withirthial conditionz(¢y) =

[0.5 0.2 0.3]7, and the event-triggered signal can be found in Figure 3, @domain of
attraction can be seen in Figure 4.

Figure 1 Data communication network consisting of three nodes

control
center
-

/
communication

terminal
5 ‘\ 1"
communication ;S N
_____________________ i’
networks >
idle-time
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Figure 2 Simulation results of the system statg) under ADT switching (see online version
for colours)

05

— 0
0.45 o A

0.4 | I — = =0
1

035 il

State state x(t)
[=]
N
4]

Ys)

Figure 3 The event-triggered signal (see online version for colpurs
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0.35 |- 1

0.3 - 1

0.25 |- 1

0.2 - 1

0.15 1

0.1 b
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5
t(s)

Figure 4 Domain of attraction (see online version for colours)

5 Conclusions

This paper proposed a non-fragile control approach for tpesiswitched system
without/with actuator saturation based on event trigggriRirst, an event-triggering
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mechanism is established in the form of 1-norm. On this béséscontroller is designed
considering non-fragile control integrated with evenddering mechanism. A new type
matrix decomposition technique was employed to dividedgii@ matrix into a normal
gain matrix and a gain perturbation matrix. Then, actuadtsrsition is taken into account.
All the conditions given in this paper are obtained by linpesgramming. In the future
work, the presented non-fragile event-triggered contestiework can be extended to other
hybrid positive systems in the presence of actuator saburat
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