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1 Introduction

Positive systems, whose states and outputs remain nonnegative when the initial states
and inputs are nonnegative, become a hot research topic during last two decades (Farina
and Rinaldi, 2011; Lam et al., 2019). Indeed, such systems are extensive encountered in
many real world applications, including electronic circuits, chemical processes, storage
systems and so on. Positive switched systems, consisting a family of positive subsystems
and a switching law, are a special class of hybrid systems. The study of positive switched
systems involves many typical control problems such as stability analysis (Mason and
Shorten, 2007; Gurvits et al., 2007; Liu and Dang, 2011), stabilisation design (Benzaouia
and Tadeo, 2008; Blanchini et al., 2008; Briat, 2017),L1-gain analysis (Xiang and Xiang,
2013), delayed transaction (Aleksandrov and Mason, 2018; Liu et al., 2018) and so on.
The literature Colaneri et al. (2014) considered the optimal control problem of positive
switched systems. AnL1 finite-time controller was designed for positive switched delayed
systems under mode-dependentaverage dwell time constraint in Liu et al. (2015a). By using
Lyapunov-Krasovskii functions, the asynchronously switched control was discussed for
discrete impulsive positive switched systems and some sufficient conditions were derived to
ensure considered systems were finite-time stable (Liu et al., 2015b). In Zhang et al. (2017),
Zhang et al. proposed a novel computation method called gainmatrix decomposition for
positive switched systems, which is more practical and simpler. It should be mentioned that
in practical applications, it is hard to meet the actual requirements of an accurate controller
owing to errors or uncertainties in the process of controller execution. Moreover, actuator
faults and input saturation are two important reasons that bring negative effects to the
system, such as performance decrease and even instability (Jin et al., 2014; Sakthivel et al.,
2017). Research about actuator faults and saturation of various systems has accumulated
some results (Zuo et al., 2010; Selvaraj et al., 2017, 2018).The stabilisation problem was
considered for positive switched systems in the presence ofactuator saturation and the
convex hull technique was employed to solve the saturation problem in Wang and Zhao
(2016). A non-fragile controller was designed for positiveMarkovian jump systems with
faults and saturation in Zhang et al. (2019a). In Park et al (2018), the saturation control was
studied for single input positive Markovian jump systems. The literature Qi et al. (2017)
addressed the problem of stabilisation for positive Markovian jump systems subject to
actuator saturation by using convex analysis, then the positivity and stochastic stability of
considered system were proved. Inorder to eliminate the negative effect of actuator faults and
saturation on the system, a non-fragile reliable controller design approach is proposed,which
can tolerate admissible gain variations and failures. In Zhang et al. (2014), the saturation
control of positive interval systems was investigated. Theliterature Zhang and Raïssi (2019)
presented an appropriate control approach for nonlinear switched systems on the basis of
positive systems and the control synthesis of nonlinear switched systems in the presence
of input saturation. With the aid of a proper stochastic co-positive Lyapunov function,
the continuous-time and discrete-time were both considered for positive Markovian jump
systems (Yang et al., 2019).

In the literature mentioned above, the sampling scheme involve a time-periodic decision
ruling, which may results in heavy communication burden andwaste of communication
resources. To overcome this issue, the author proposed a newcontrol method called event-
triggered control in Dorf et al. (1962). Compare with the time-triggered mechanism,
the event-triggered sampling mechanism has more flexibility selection of sampling time.
Due to the remarkable advantages of event-triggered control, it has accumulated plentiful
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achievements (Heemels et al., 2008; Qi et al., 2019). An event-triggered predictive control
was considered for multi-agent systems in Zou et al. (2019).In the work Yin et al. (2018),
the author addressed the event-triggered stabilisation problem of positive systems subject
to saturation by constructing an event-triggered state feedback law. In Xiao et al. (2019),
a dynamic event-triggered scheme was proposed for positiveMarkovian systems with
the consideration of networked fault. By means of linear Lyapunov functions integrated
with linear programming, an event-triggered controller was designed for positive switched
systems in Liu et al. (2019). In Yang et al. (2019), a communication network was modelled
via switched systems, for which the communication network was divided into busy-time
and idle-time models. Noting the fact that the number of datapackage is nonnegative, the
considered communication network can be regarded as a typical positive switched system.
Event-triggered control approach is effective for reducing the waste of network resources
and the design cost of controller. On the other hand, actuator failure and saturation usually
occur in practice owing to the frequent use of components. They may cause the performance
deteriorationof systems and even lead to the instability ofsystems. Therefore, it is necessary
to design a non-fragile event-triggered controller of positive switched systems. However, as
far as we known, few results are concerned with the mentionedtopic. Then, some questions
naturally arise: how to design a non-fragile controller forpositive switched systems based on
event-triggered mechanism, and how to deal with the non-fragile event-triggered controller
of positive switched systems? These motivate us to carry outthis work.

This paper aims to design a non-fragile control of positive switched systems based on
event-triggered mechanism. First, an event-triggered mechanism is introduced for positive
switched systems without saturation. Then, by means of the linear co-positive Lyapunov
function incorporated with matrix decomposition technique, the non-fragile event-triggered
control is proposed. Finally, the presented approaches areextended to saturation situation
for positive switched systems. Under the designed controller, the closed-loop system is
positive and stable. The main contribution of this paper is as follows:

i a non-fragile event-triggered controller is designed forpositive switched systems

ii a cone invariant set is constructed for dealing with the saturation issue of positive
switched systems

iii a linear programming approach is employed for solving all conditions.

Through compared with existing results, the non-fragile event-triggered control presented
has more applications. The layout of this paper is as follows: Section 2 presents the
preliminaries. Main results are addressed in Section 3. An example is given in Section 4 to
illustrate the effectiveness of the controller. Section 5 concludes this paper.

Notation.Let R, Rn (or Rn
+), Rn×r be the sets of real numbers,n-dimensional vectors

(or nonnegative), andn× r matrices with real entries, respectively.N andN
+ denote

the sets of nonnegative and positive integers, respectively. xi implies theith elements
of vector x = (x1, . . . , xn)

T . For A = [aij ] ∈ R
n×n, A � 0 (≻ 0) means thataij ≥ 0

(aij > 0) ∀i, j = 1, . . . , n. A � 0 (≺ 0) means thataij ≤ 0 (aij < 0) ∀i, j = 1, . . . , n.
Similarly, A � B (A � B) means thataij ≥ bij(aij ≤ bij)∀i, j = 1, . . . , n. DefineI as
a identity matrix of an appropriate dimension. Given a matrix F , FT is its transpose, and
|F | denotes the elements ofF take the absolute values of its corresponding elements.
‖ · ‖ indicates Euclidean norm. The1-norm‖x‖1 and infinite-norm of a vectorx ∈ R

n are
defined as‖x‖1 = Σn

i=1|xi| and‖x‖∞ = max(|x1|, |x2|, . . . , |xn|), respectively. Define
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1r = (1, . . . , 1
︸ ︷︷ ︸

r

)T , 1(ι)
r = (0, . . . , 0

︸ ︷︷ ︸

ι−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

r−ι

)T , and let1n×n be then× n matrix with

all elements 1.co{·} denotes the convex hull. MatrixA is called Metzler matrix if its
off-diagonal elements are all nonnegative real numbers.

2 Preliminaries

Consider switched continuous systems with actuator faults:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u
f
σ(t)(t), (1)

and switched systems subject to actuator faults and input saturation:

ẋ(t) = Aσ(t)x(t) +Bσ(t)sat(uf
σ(t)(t)), (2)

wherex(t) ∈ R
n anduf

σ(t)(t) ∈ R
r are system state and control input with actuator fault,

respectively. The functionσ(t) denotes the switching law, and it takes values on the
finite setS = {1, 2, . . . , N}, N ∈ N

+. The function sat(·): Rr → R
r is said to be the

saturation function, that is,sat(u) = [sat(u1), sat(u2), . . . , sat(ur)]
T , wheresat(ui) =

sgn(ui)min{|ui|, 1}, i = 1, 2, . . . , r. In order to simplify the symbol, we assume that the
ith subsystem is activated whenσ(t) = i. Throughout this paper, assume thatAi are Metzler
matrices withAi ∈ R

n×n andBi � 0 with Bi ∈ R
n×r.

Next, we introduce some definitions and lemmas.

Definition 1 (Farina and Rinaldi, 2011; Lam et al., 2019): A system is said to be positive if
its states and outputs are nonnegative for any initial condition x(t0) � 0 and control input
u(t) � 0.

Lemma 1 (Farina and Rinaldi, 2011; Lam et al., 2019): Systems (1) and (2) are positive if
and only if matrixAi are Metzler matrices andBi � 0.

Lemma 2 (Farina and Rinaldi, 2011; Lam et al., 2019): If A is a Metzler matrix with
A ∈ R

n×n, the following conditions are equivalent:

(i) The matrixA is a Hurwitz matrix.

(ii) There exists a vectorv ≻ 0 such thatAv ≺ 0.

Definition 2 (Hespanha and Morse, 1999): DefineNσ(t, t0) as the number of times the
switched system switches in the time interval[t0, t], where0 ≤ t0 ≤ t. If

Nσ(t0, t) ≤ N0 +
t− t0

τ∗
,

whereN0 is a positive constant andτ∗ > 0 stands for the average dwell time.

Lemma 3 (Farina and Rinaldi, 2011; Lam et al., 2019): Matrix A is Metzler if and only if
there is a positive constantδ such thatA+ δI � 0.
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Throughout this paper, we introduce a non-fragile controller:

ui(t) = (Fi +∆Fi)x(t), (3)

whereFi ∈ R
r×n are normal gain matrices,∆Fi = EiHi are gain perturbation matrices,

Hi ∈ R
r×n are decision variables to be designed andEi ∈ R

r×r are known nonnegative
matrices satisfying

θ1I � Ei � θ2I (4)

for 0 < θ1 < θ2 < 1. The controller with actuator fault can be defined as

u
f
i (t) = Liui(t), (5)

whereLi = diag(li1, li2, . . . , lir) are uncertainty fault matrices but bounded:

0 � Ldi � Li � Lui � γLdi, (6)

whereγ ≥ 1,Ldi andLui are given matrices satisfyingLdi = diag(ldi1, ldi2, . . . , ldir) and
Lui = diag(lui1, lui2, . . . , luir), respectively.

Lemma 4 (Hu et al., 2002): Given vectorsu ∈ R
r andv ∈ R

r, let ‖v‖∞ < 1. Then

sat(u) ∈ co{G1u+G−

1 v, . . . , G2ru+G−

2rv},

whereg = 1, 2, . . . , 2r, Gg is an r × r diagonal matrix with either 0 or 1 elements and
Gg +G−

g = I.

From equation (8), we have

sat(u) =
2r∑

g=1

ℓg(Ggu+G−
g v),

where the constantℓg satisfies0 ≤ ℓg ≤ 1 and
∑2r

g=1 ℓg = 1. A cone domainΩ(vi, 1) is
defined as

Ω(vi, 1) = {x ∈ R
n
+ | xT vi ≤ 1},

wherevi ≻ 0 with vi ∈ R
r. SetMi ≺ 0 withMi ∈ R

r×n and define a polyhedron:

T (Mi) := {x ∈ R
n
+ | |Mijx| ≤ 1},

wherej = 1, 2, . . . , r, i ∈ S andMij is thejth row ofMi.
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3 Main results

In this section, the non-fragile event-triggered controllers are designed for systems (1) and
(2) by using matrix decomposition technique and sufficient conditions are proposed in terms
of linear programming.First, we consider the non-fragile event-triggered control of positive
switched systems without actuator saturation.

Considering the non-fragile control law (3), the non-fragile event-triggered feedback
control law can be expressed as:

ui(t) = (Fi +∆Fi)x̂(t), t ∈ [tp, tp+1),

wherep ∈ N, t0 = 0, tp represents the moment when thepth event is triggered and̂x(t) =
x(tp) is the sampling state.

The event-triggered condition is given as:

‖xe(t)‖1 > α‖x(t)‖1, (7)

where0 < α < 1 andxe(t) = x̂(t)− x(t) is the sample error. Combined with form of
controller given in equation (5), the non-fragile event-triggered controller with actuator
fault can be written as follows:

u
f
i (t) = Li(Fi + EiHi)x̂(t). (8)

Then, the closed-loop system (1) is

ẋ(t) = (Ai +BiLiFi +BiLiEiHi)x(t) + (BiLiFi +BiLiEiHi)xe(t). (9)

Theorem 1: If there exist constantsδi > 0, µ > 0, λ > 1, γ ≥ 1 and vectorsvi ≻ 0 with
vi ∈ R

n, ξ+iι ≻ 0with ξ+iι ∈ R
n, ξ−iι ≺ 0with ξ−iι ∈ R

n, ξ+i ≻ 0with ξ+i ∈ R
n, ξ−i ≺ 0with

ξ−i ∈ R
n, ζ+iι ≻ 0 with ζ+iι ∈ R

n, ζ−iι ≺ 0 with ζ−iι ∈ R
n, ζ+i ≻ 0 with ζ+i ∈ R

n, ζ−i ≺ 0
with ζ−i ∈ R

n such that

χisAi + Γis1

r∑

ι=1

1
(ι)
r ξ+T

iι Ψ+ Γis2

r∑

ι=1

1
(ι)
r ξ−T

iι Υ

+ Γis3

r∑

ι=1

1
(ι)
r ζ+T

iι Ψ+ Γis4

r∑

ι=1

1
(ι)
r ζ−T

iι Υ

+ δiI � 0,

(10a)

AT
i vi + Υξ+i +Ψξ−i + θ2Υζ+i

+ θ1Ψζ−i + µvi ≺ 0,
(10b)

vi � λvj , (10c)

ξ+iι � ξ+i , ξ
−

iι � ξ−i , ι = 1, . . . , r, (10d)

ζ+iι � ζ+i , ζ−iι � ζ−i , ι = 1, . . . , r, (10e)
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hold ∀(i, j) ∈ S × S, i 6= j, s = 1, . . . , r, χis = 1
T
r L

T
diB

T
i vi, Γis1 = 1

γBiLdi, Γis2 =

γBiLdi, Γis3 = 1
γBiLdiEi, Γis4 = γBiLdiEi, Ψ = I − α1n×n, Υ = I + α1n×n, then

under the control law (8) withFi = F+
i + F−

i , Hi = H+
i +H−

i , and

F+
i =

1

1T
r L

T
uiB

T
i vi

r∑

ι=1

1
(ι)
r ξ+T

iι ,

F−

i =
1

1T
r L

T
diB

T
i vi

r∑

ι=1

1
(ι)
r ξ−T

iι ,

H+
i =

1

1T
r L

T
uiB

T
i vi

r∑

ι=1

1
(ι)
r ζ+T

iι ,

H−

i =
1

1T
r L

T
diB

T
i vi

r∑

ι=1

1
(ι)
r ζ−T

iι ,

(11)

the resulting closed-loop system (9) is positive and stablewith the average dwell time
switching satisfying

τ∗ ≥
lnλ

µ
. (12)

Proof: By 1r ≻ 0, Ldi ≻ 0, Bi � 0 andvi ≻ 0 , we have1T
r L

T
diB

T
i vi > 0. This together

with ξ+iι ≻ 0, ξ−iι ≺ 0, ζ+iι ≻ 0 and ζ−iι ≺ 0, we can getF+
i ≻ 0 F−

i ≺ 0, H+
i ≻ 0 and

H−

i ≺ 0. Then, we have

LdiF
+
i + LuiF

−

i + LdiEiH
+
i + LuiEiH

−

i

� LiF
+
i + LiF

−

i + LiEiH
+
i + LiEiH

−

i

� LuiF
+
i + LdiF

−

i + LuiEiH
+
i + LdiEiH

−

i .

(13)

Furthermore,

Ai +BiLdiF
+
i +BiLuiF

−

i +BiLdiEiH
+
i +BiLuiEiH

−

i

� Ai +BiLiF
+
i +BiLiF

−

i +BiLiEiH
+
i +BiLiEiH

−

i

� Ai +BiLuiF
+
i +BiLdiF

−

i +BiLuiEiH
+
i +BiLdiEiH

−

i .

(14)

Given any initial statex(t0) � 0, we can obtain from equation (7) that‖ xe(t0) ‖1≤ α ‖
x(t0) ‖1= α1T

nx(t0). Thus,

−α1n×nx(t0) � xe(t0) � α1n×nx(t0). (15)

SubstitutingFi = F+
i + F−

i , Hi = H+
i +H−

i , and equation (15) into equation (9), it
follows that

ẋ(t0) � (Ai +BiLiF
+
i Ψ+BiLiF

−

i Υ

+BiLiEiH
+
i Ψ+BiLiEiH

−

i Υ)x(t0).
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Using equations (6), (11) and (14), we have

ẋ(t0) � (Ai +
1

γ

BiLdi

∑r
ι=1 1

(ι)
r ξ+T

iι

1T
r L

T
diB

T
i vi

Ψ+ γ
BiLdi

∑r
ι=1 1

(ι)
r ξ−T

iι

1T
r L

T
diB

T
i vi

Υ

+
1

γ

BiLdiEi

∑r
ι=1 1

(ι)
r ζ+T

iι

1T
r L

T
diB

T
i vi

Ψ + γ
BiLdiEi

∑r
ι=1 1

(ι)
r ζ−T

iι

1T
r L

T
diB

T
i vi

Υ)x(t0).

From equation (10a), it is easy to obtain

Ai +
Γis1

∑r
ι=1 1

(ι)
r ξ+T

iι

χis
Ψ+

Γis2

∑r
ι=1 1

(ι)
r ξ−T

iι

χis
Υ

+
Γis3

∑r
ι=1 1

(ι)
r ζ+T

iι

χis
Ψ+

Γis4

∑r
ι=1 1

(ι)
r ζ−T

iι

χis
Υ+

δi

χis
I

=
1

γ

BiLdi

∑r
ι=1 1

(ι)
r ξ+T

iι

1T
r L

T
diB

T
i vi

Ψ+ γ
BiLdi

∑r
ι=1 1

(ι)
r ξ−T

iι

1T
r L

T
diB

T
i vi

Υ

+
1

γ

BiLdiEi

∑r
ι=1 1

(ι)
r ζ+T

iι

1T
r L

T
diB

T
i vi

Ψ+
δi

1T
r L

T
diB

T
i vi

I

+ γ
BiLdiEi

∑r
ι=1 1

(ι)
r ζ−T

iι

1T
r LdiB

T
i vi

Υ+Ai � 0.

Thus, Ai +BiLdiF
+
i Ψ+BiLuiF

−

i Υ+BiLdiEiH
+
i Ψ+BiLuiEiH

−

i Υ+
δi

1T
mLdiBT

i
vi
I � 0. This together with Lemma 3 gives thatAi +BiLdiF

+
i Ψ+

BiLuiF
−

i Υ+ BiLdiEiH
+
i Ψ +BiLuiEiH

−

i Υ is a Metzler matrix. This implies that
Ai +BiLiF

+
i Ψ+BiLiF

−

i Υ+BiLiEiH
+
i Ψ+BiLiEiH

−

i Υ is Metzler. Define a
class of indicators:ℑ := {i : xi(t) = 0}. Then, for somep ∈ S, we obtain ẋi(t) ≥
∑

j /∈ℑ
Θ

(ij)
p xj(t)wherei ∈ ℑ,Λp = Ap +BpLpF

+
p Ψ+BpLpF

−
p Υ+BpLpEpH

+
p Ψ+

BpLpEpH
−
p Υ andΘ(ij)

p is theith row jth column element ofΛp. SinceΛp is a Metzler

matrix, it is easy to getΘ(ij)
p ≥ 0 for i 6= j. Thus, we havėxi(t0) ≥ 0, that is,xi(t0) ≥ 0.

We obtainx(t) � 0 by using recursive derivation for any initial statex(t0) � 0. Then, the
resulting closed-loop system (15) is positive by Definition1.

Choose a linear co-positive Lyapunov function as

V (x(t)) = xT (t)vi. (16)

Give a switching interval[ts, ts+1) and the event-triggered interval[tp, tp+1). Assume that
the switched system is switched fromi to j, ∀i, j ∈ S at the switching instantts. The
stability of the system (9) is discussed in two cases.

Case 1:Assume that there is no any event-triggered time instant in the interval[ts, ts+1),
that is,tp ≤ ts andtp+1 ≥ ts+1. Then

V̇ (x(t)) = ((Ai +BiLiFi +BiLiEiHi)x(t)

+ (BiLiFi +BiLiEiHi)xe(t))
T vi,

(17)
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wheret ∈ [ts, ts+1). Using equations (4), (10d), (10e), (14) and (15), we obtain

V̇ (x(t)) ≤ x(t)T (Ai +Υ
ξ+T
i BiLui1r

1T
r L

T
uiB

T
i vi

+Ψ
ξ−T
i BiLdi1r

1T
r L

T
diB

T
i vi

+Υ
ζ+T
i BiLuiEi1r

1T
r L

T
uiB

T
i vi

+Ψ
ζ−T
i BiLdiEi1r

1T
r L

T
diB

T
i vi

)T vi

≤ x(t)T (AT
i vi +Υξ+i +Ψξ−i + θ2Υζ+i + θ1Ψζ−i ).

(18)

Connecting equations (10b) and (18), we haveV̇ (x(t)) ≤ −µVσ(ts)(x(ts)).Taking integral
for both sides of it gives

V (x(t)) ≤ e−µ(t−ts)Vσ(ts)(x(ts)), t ∈ [ts, ts+1). (19)

Case 2: Assume that there are some event-triggered time instants in [ts, ts+1). Denote the
switching sequence bytp ≤ ts < tp+1 < tp+2 < . . . < tp+l ≤ ts+1, ∀l ∈ N. Combining
equations (17) and (18), it follows that

V̇ (x(t)) ≤ −µVσ(tp+n)(x(tp+l)), t ∈ [tp+l, ts+1).

Taking integration both sides of it fromtp+l to t yields that V (x(t)) ≤
e−µ(t−tp+n)Vσ(tp+l)(x(tp+l)). Then, we have

V (x(t)) ≤ e−µ(t−tp+l−1)Vσ(tp+l−1)(x(tp+l−1)), (20)

where t ∈ [tp+l−1, tp+l). Next, we can obtain similar inequalities in the form of
equation (19) for each subinterval as well. With the factσ(ts) = σ(tp+1) = . . . = σ(tp+l),
it is easy to get a similar result to equation (19). Using equations (10c) and (19), we
haveV (x(t)) ≤ λe−µ(t−ts)Vσ(ts−1)(x(ts)). Suppose that0 = t0 < t1 < t2 < . . . < ts =
tNσ(t0,t) < t is the switching time sequences ofσ(t) in the interval[0, t). The rest of the
proof can be obtained using a similar method used in Zhang andRaïssi (2019). Hence, the
resulting closed-loop system (9) is stable. �

Remark 1: The event-triggered control of positive systems is different from the one of
general systems (Heemels et al., 2008; Qi et al., 2019; Zou etal., 2019). Under the event-
triggering condition, the error term in general systems canbe transformed into the term
related to the state. Thus, the stability is achieved under Lyapunov functions. For positive
systems, the first step is to guarantee the positivity of the closed-loopsystems, which contain
the error term. Therefore, the positivity criterion (e.g. Lemma 1) cannot be directly used. To
solve this issue, Theorem 1 transforms the original system into an interval uncertain system,
which only contains the state term. Thus, the positivity of the systems can be obtained by
considering the lower bound system of the interval system.

Remark 2: Theorem 1 considers the fault problem of the actuator and theinfluence from
the fluctuation of the actuator parameters. Suppose that∆Fi = 0 andLi = I, the controller
in Theorem 1 becomes an event-triggered controller of positive switched systems (Liu
et al., 2019). Furthermore, the controller in Theorem 1 is a state-feedback controller of
positive switched systems (Xiang and Xiang, 2013; Liu et al., 2015a, 2018; Zhang et al.,
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2017) provided the event-triggering condition is removed.Therefore, the event-triggered
controller in Theorem 1 is more practical and general than existing ones in literature.

Next, the positivity and stability of positive switched systems with actuator saturation
is discussed in Theorem 2.

Theorem 2:If there exist constantsδi > 0,µ > 0,λ > 1, and vectorsvi ≻ 0 withvi ∈ R
n.

ξ+iι ≻ 0 with ξ+iι ∈ R
n, ξ−iι ≺ 0 with ξ−iι ∈ R

n, ξ+i ≻ 0 with ξ+i ∈ R
n, ξ−i ≺ 0 with ξ−i ∈

R
n, ζ+iι ≻ 0 with ζ+iι ∈ R

n, ζ−iι ≺ 0 with ζ−iι ∈ R
n, ζ+i ≻ 0 with ζ+i ∈ R

n, ζ−i ≺ 0 with
ζ−i ∈ R

n such that

ℵisAi + ℑis1

r∑

ι=1

1
(ι)
r ξ+T

iι Ψ+ ℑis2

r∑

ι=1

1
(ι)
r ξ−T

iι Υ

+ ℑis3

r∑

ι=1

1
(ι)
r ζ+T

iι Ψ+ ℑis4

r∑

ι=1

1
(ι)
r ζ−T

iι Υ

+ ℵisℑis5Υ+ δiI � 0,

(21a)

AT
i vi + Υξ+i +Ψξ−i + θ2Υζ+i + θ1Ψζ−i

+ΨMT
i G−T

ig BT
i vi + µvi ≺ 0, Gig 6= I,Gig 6= 0,

(21b)

AT
i vi + Υξ+i +Ψξ−i + θ2Υζ+i + θ1Ψζ−i

+ µvi ≺ 0, Gig = I, (21c)

AT
i vi +ΨMT

i G−T
ig BT

i vi + µvi ≺ 0, Gig = 0, (21d)

vi � λvj , (21e)

ξ+iι � ξ+i , ξ
−

iι � ξ−i , ι = 1, . . . , r, (21f)

ζ+iι � ζ+i , ζ−iι � ζ−i , ι = 1, . . . , r, (21g)

vi +MT
is � 0, (21h)

hold ∀(i, j) ∈ S × S, i 6= j, s = 1, . . . , r, ℵis = 1
T
r L

T
diG

T
igB

T
i vi, ℑis1 = 1

γBiGigLdi,

ℑis2 = γBiGigLdi,ℑis3 = 1
γBiGigLdiEi,ℑis4 = γBiGigLdiEi,ℑis5 = BiG

−

igMi,and

Ψ = I − α1n×n, Υ = I + α1n×n, then under the control law (8) withFi = F+
i + F−

i ,

Hi = H+
i +H−

i , and

F+
i =

1

1T
r L

T
uiG

T
igB

T
i vi

r∑

ι=1

1
(ι)
r ξ+T

iι ,

F−

i =
1

1T
r L

T
diG

T
igB

T
i vi

r∑

ι=1

1
(ι)
r ξ−T

iι ,

H+
i =

1

1T
r L

T
uiG

T
igB

T
i vi

r∑

ι=1

1
(ι)
r ζ+T

iι ,

H−

i =
1

1T
r L

T
diG

T
igB

T
i vi

r∑

ι=1

1
(ι)
r ζ−T

iι ,

(22)
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the resulting closed-loop system (2) is positive and stablewith the average dwell time
switching law (12). In addition, the system states startingfromx(t) ∈ Ω(vi, 1) will remain
inside

⋃J
i Ω(vi, 1), whereN0 = 0.

Proof: By equation (8), the system (2) with state saturation can berewritten as:

ẋ(t) = Aix(t) +Bisat(Li(Fi + EiHi)x̂(t)).

By Lemma 4, we have

ẋ(t) =
∑2r

g=1 ℓig[Aix(t) +BiGigLi(Fi + EiHi)x(t)

+BiGigLi(Fi + EiHi)xe(t)
+BiG

−

igMi)(x(t) + xe(t))].

(23)

Noting the conditionGig � 0, we obtain1T
r KdiG

T
igB

T
i vi ≥ 0. Then, for initial state

conditionx(t0) � 0, one can obtain from equations (6), (14) and (15) that

ẋ(t0) �

2r∑

g=1

ℓig[Ai +
1

γ

BiLdi

∑r
ι=1 1

(ι)
r ξ+T

iι

1T
r L

T
diG

T
igB

T
i vi

Ψ

+ γ
BiLdi

∑r
ι=1 1

(ι)
r ξ−T

iι

1T
r L

T
diG

T
igB

T
i vi

Υ

+
1

γ

BiLdiEi

∑r
ι=1 1

(ι)
r ζ+T

iι

1T
r L

T
diGigB

T
i vi

Ψ

+ γ
BiLdiG

T
igEi

∑r
ι=1 1

(ι)
r ζ−T

iι

1T
r L

T
diG

T
igB

T
i vi

Υ

+BiG
−

igMiΥ]x(t0).

(24)

By equation (21a), we have

Ai +
ℑis1

∑r
ι=1 1

(ι)
r ξ+T

iι Ψ

ℵis
+

ℑis2

∑r
ι=1 1

(ι)
r ξ−T

iι Υ

ℵis

+
ℑis3

∑r
ι=1 1

(ι)
r ζ+T

iι Ψ

ℵis
+

ℑis4

∑r
ι=1 1

(ι)
r ζ−T

iι Υ

ℵis

+ ℑis5Υ+
δi

ℵis
I � 0.

Thus,

Ai +BiGigLiF
+
i Ψ+BiGigLiF

−

i Υ+BiGigLiEiH
+
i Ψ

+BiGigLiEiH
−

i Υ+BiG
−

igMiΥ+
δi

1T
r L

T
diG

T
igB

T
i vi

I

� 0.

By Lemma 3, Ai +BiGigLiF
+
i Ψ+BiGigLiF

−

i Υ+BiGigLiEiH
+
i Ψ+

BiGigLiEiH
−

i Υ+BiG
−

igMiΥ is a Metzler matrix. Hence,
∑2r

g=1 ℓig[Ai +
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BiGigLiF
+
i Ψ+BiGigLiF

−

i Υ+BiGigLiEiH
+
i Ψ+BiGigLiEiH

−

i Υ+BiG
−

igMiΥ]
is Metzler. Similar to the method used in Theorem 1, we can obtain the rest of the proof.

Choose a linear co-positive Lyapunov function as (16), then

V̇ (x(t)) =
2r∑

g=1

ℓig[(BiGigLi(Fi + EiHi)x(t)

+ (BiGigLiFi +BiGigLiEiHi)xe(t)

+BiG
−

igMi(x(t) + xe(t)) +Aix(t)]
T vi.

By equation (15), we have

V̇ (x(t)) ≤
2r∑

g=1

ℓigx
T (t)[Ai +BiGigLiF

+
i Υ

+BiGigLiF
−

i Ψ+BiGigLiEiH
+
i Υ

+BiGigLiEiH
−

i Ψ+BiG
−

igMiΨ]T vi.

(25)

Using equations (21f), (21g), and (22) follows that

(BiGigLiF
+
i )T vi =

∑r
ι=1 ξ

+
iι1

(ι)T
r LT

i G
T
igB

T
i vi

1T
r L

T
uiG

T
igB

T
i vi

�
ξ+i

∑r
ι=1 1

(ι)T
r LT

i G
T
igB

T
i vi

1T
r L

T
uiG

T
igB

T
i vi

≺ ξ+i ,

(26a)

(BiGigLiF
−

i )T vi =

∑r
ι=1 ξ

−

iι1
(ι)T
r LT

i G
T
igB

T
i vi

1T
r L

T
diG

T
igB

T
i vi

�
ξ−i

∑r
ι=1 1

(ι)T
r LT

i G
T
igB

T
i vi

1T
r L

T
diG

T
igB

T
i vi

≺ ξ−i ,

(26b)

(BiGigLiEiH
+
i )T vi

�
ζ+i

∑r
ι=1 1

(ι)T
r ET

i L
T
i G

T
igB

T
i vi

1T
r L

T
uiG

T
igB

T
i vi

≺ θ2ζ
+
i ,

(26c)

(BiGigLiEiH
−

i )T vi

�
ζ−i

∑r
ι=1 1

(ι)T
r ET

i L
T
i G

T
igB

T
i vi

1T
r L

T
diG

T
igB

T
i vi

≺ θ1ζ
−

i .
(26d)

Case 1:WhenGig 6= I andGig 6= 0, we obtain from equations (25) and (26) that

V̇ (x(t)) ≤ xT (t)(AT
i vi +Υξ+i +Ψξ−i + θ2Υζ+i

+ θ1Ψζ−i +ΨMT
i G−T

ig BT
i vi).

(27)
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Case 2:WhenGig = I,

(BiGigLiF
+
i )T vi ≺ ξ+i , (BiGigLiF

−

i )T vi ≺ ξ−i ,

(BiGigLiEiH
+
i )T vi ≺ θ2ζ

+
i ,

(BiGigLiEiH
−

i )T vi ≺ θ1ζ
−

i , BiG
−

igMi = 0.

(28)

By equations (25) and (28), we have

V̇ (x(t)) ≤ xT (t)(AT
i vi +Υξ+i +Ψξ−i

+ θ2Υζ+i + θ1Ψζ−i ).
(29)

Case 3:WhenGig = 0,

(BiGigKiE
+
i )T vi = 0, (BiGigKiE

−

i )T vi = 0,

(BiGigKiFiH
+
i )T vi = 0, (BiGigKiFiH

−

i )T vi = 0,
(30)

Connecting equations (25) and (30) gives

V̇ (x(t)) ≤ xT (t)(AT
i vi +ΨMT

i G−T
ig BT

i vi). (31)

Using equations (21b)–(21d), (27), (29), and (31) yields

V̇ (x(t)) ≤ −µxT (t)vi. (32)

The rest of the proof can be obtained by using the similar method in Theorem 1.
Finally, we will discuss the invariance of the system (2). Driving from (32), we can get

thatxT (t)vi ≤ e−N0 lnλxT (t0)vi ≤ 1, whereN0 = 0. That meansx(t) ∈
⋃J

i Ω(vi, 1) for
anyx(t0) ∈

⋃J
i Ω(vi, 1). From (21h), it implies thatΩ(vi, 1) ⊆ T (Mi). Consequently, the

⋃J
i Ω(vi, 1) is an estimate of domain of attraction. �

Theorem 1 only considers the problem of actuator fault of positive switched systems.
Indeed, actuator saturation is an inevitable phenomenon inactual control systems due to
the limited capacity of components and the constraints of variables. Actuator saturation
will deteriorate the system performances and even lead to the instability of systems. Thus,
actuator saturation is taken into account in Theorem 2. Theorem 2 designs a non-fragile
event-triggered controller. Under the designedcontroller, the consideredsystems are positive
and stable even if the systems are subject to faults. This implies that the systems can resist
the risk from the faults of the actuator.

Remark 3: In Wang and Zhao (2016), Zhang et al. (2019a), Park et al (2018), Qi et al.
(2017), Zhang et al. (2014) and Zhang and Raïssi (2019), the saturation problem of positive
systems was explored. However, these literature ignored the practicability of the design and
the fragility of the controller owing to the parameter fluctuation. The obtained controller
may fail when the systems are subject to uncertain fluctuation. Considering these problems
in the literature, Theorem 2 proposes the non-fragile event-triggered control design. The
designed controller in Theorem 2 can resist the risk from thefaults of the actuator and the
parameter fluctuation of the controller gain.
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Remark 4: In Zuo et al. (2010), a saturation avoidance feedback approach was proposed
to deal with the saturation issue. In Selvaraj et al. (2017, 2018), the saturation term was
represented in terms of convex hull. The conditions in the literature were determined by
using linear matrix inequalities. Linear matrix inequalities are more complex than linear
programming. In particular, it is not easy to guarantee the positivity of the systems under
the framework of linear matrix inequalities. What’s more, these existing results are all
based on the time-triggered control strategy. Consideringthese points, Theorem 2 designs
a non-fragile event-triggered controller for positive switched systems in terms of linear
programming.

Remark 5: Theorem 1 investigates the non-fragile event-triggered control of positive
switched systems with actuator faults and Theorem 2 furtherconsiders the actuator
saturation issue. Indeed, the systems may be subject to constraints in practice (Mayne
et al., 2000; Zhang et al., 2016, 2019b). In Zhang et al. (2019b), a model predictive control
controller was designed for positive systems with constrained state and input by virtue of
linear programming. Motivated by these results, it is interesting and possible to consider the
non-fragile event-triggered control of constrained positive switched systems in the future
work.

4 Illustrative example

In Yang et al. (2019), a communication network with three nodes was established via
positive switched systems in Figure 1. The communication network has two modes, namely,
busy time and idle time, and switches between the two modes. In practice, it is clear that
the communication is always subject to faults and saturation owing to the frequent use
and too many users. It implies that the model in (2) is more suitable for describing the
communication network. To avoid the network crash, it is necessary to restrict the speed
of some communication channel at some time. This is a typicalevent-triggered problem.
Considering these points, we will continue to study the communication network under the
control strategy in this paper.

Consider the system (2) with:

A1 =





−2.1 1.6 1.5
2 −1.8 2
1.3 1.3 −2.5



 , B1 =





0.1 0.25
0.25 0.1
0.15 0.25



 ,

A2 =





−2.1 1.8 0.7
2.5 −2.1 1.5
1.3 1.4 −2.3



 , B2 =





0.2 0.3
0.4 0.2
0.15 0.2



 .

Given

E1 =

(
0.25 0
0 0.25

)

, Ld1 =

(
0.3 0
0 0.2

)

, Lu1 =

(
0.33 0
0 0.26

)

,

E2 =

(
0.65 0
0 0.65

)

, Ld2 =

(
0.42 0
0 0.3

)

, Lu2 =

(
0.42 0
0 0.35

)

,
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M1 =

(
−0.03−0.04−0.03
−0.05−0.05−0.04

)

,M2 =

(
−0.05−0.04−0.03
−0.04−0.06−0.04

)

,

then θ1 = 0.25 and θ2 = 0.65. Chooseµ = 0.2, λ = 1.1, γ = 1.1, and α = 0.15. By
Theorem 2, we get

v1 =





157.4397
145.6831
148.4657



 , ξ−1 =





−95.6526
−99.9504
−97.7878



 , ξ+1 =





149.7315
148.5994
149.7920



 ,

ζ+1 =





156.2888
154.4419
157.4469



 , ζ−1 =





−71.5978
−72.2095
−71.8075



 , v2 =





158.0387
147.8074
133.5772



 ,

ξ+2 =





143.6352
145.4154
149.2430



 , ξ−2 =





−113.1081
−98.4270
−54.8880



 , ζ+2 =





152.2234
153.8178
157.8917



 ,

ζ−2 =





−66.5949
−63.2587
−43.9530



 , δ1 = 199.4658, δ2 = 277.5274,

τ∗ ≥ 0.4766.

Then,

F+
1 =

(
1.7121 1.5851 1.6959
1.6726 1.6746 1.6727

)

,

H+
1 =

(
1.9970 1.8931 2.0357
1.9851 1.9225 2.0286

)

,

F−

1 =

(
−8.4347−9.6408−8.6827
−8.5210−8.3283−8.6947

)

,

H−

1 =

(
−6.1276−6.2604−6.1527
−6.1398−6.1247−6.1512

)

,

F+
2 =

(
1.0729 1.1858 1.1201
1.0280 1.1110 1.4166

)

,

H+
2 =

(
1.3800 1.4754 1.4185
1.3406 1.3960 1.7269

)

,
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F−

2 =

(
−8.2851−6.8274−5.3568
−7.6407−6.7329−2.6148

)

,

H−

2 =

(
−4.4992−4.1893−3.3239
−4.3220−4.1613−2.5157

)

.

ChooseL1 =

(
0.32 0
0 0.25

)

, L2 =

(
0.4 0
0 0.33

)

and denote

N1 = A1 +
∑2r

g=1 ℓg(B1G1gL1F
+
1 +B1G1gL1F

−

1

+B1G1gL1E1H
+
1 +B1G1gL1E1H

−

1 +B1G
−

1gM1),

N2 = A2 +
∑2r

g=1 ℓg(B2G2gL2F
+
2 +B2G2gL2F

−

2

+B2G2gL2E2H
+
2 +B2G2gL2E2H

−

2 +B2G
−

2gM2).

Then, under the event-triggered control law (8), we have

N1 =





−2.4783 1.2046 1.1136
1.5850 −2.2697 1.5729
0.8589 0.8305 −2.9513



 ,

N2 =





−2.8038 1.1235 0.3873
1.4647 −2.9513 0.9955
0.7329 0.9240 −2.5270



 .

The simulation of system states is showed in Figures 2 with the initial conditionx(t0) =
[0.5 0.2 0.3]T , and the event-triggered signal can be found in Figure 3, and the domain of
attraction can be seen in Figure 4.

Figure 1 Data communication network consisting of three nodes

,

,

,


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Figure 2 Simulation results of the system statex(t) under ADT switching (see online version
for colours)

Figure 3 The event-triggered signal (see online version for colours)
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Figure 4 Domain of attraction (see online version for colours)
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5 Conclusions

This paper proposed a non-fragile control approach for positive switched system
without/with actuator saturation based on event triggering. First, an event-triggering
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mechanism is established in the form of 1-norm. On this basis, the controller is designed
considering non-fragile control integrated with event-triggering mechanism. A new type
matrix decomposition technique was employed to divided thegain matrix into a normal
gain matrix and a gain perturbation matrix. Then, actuator saturation is taken into account.
All the conditions given in this paper are obtained by linearprogramming. In the future
work, the presented non-fragile event-triggered control framework can be extended to other
hybrid positive systems in the presence of actuator saturation.
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