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price that is within a limited range. Thus, the estimation of the ‘fair’ value 
of the asset will be complex and the existing trading strategies that focus 
only on observed prices will be inefficient. In this paper we will discuss the 
impact of price limitations on the stock returns behaviour and develop an 
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the shadowing prices based on truncated population. Finally, we develop a 
heuristic truncated normality test based on the JB test.
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1 Introduction

In order to limit the volatility of asset prices, many stock exchanges lay down daily price
limits, i.e., prices of today cannot be out of a certain range that depends on yesterday
closing price. The debate about the usefulness of price limits is a long run debate that
dragged the financial community for decades. On one hand, price limit advocates claim
that price limits decrease stock price volatility, counter overreaction, and do not interfere
with trading activity. On the other hand, price limit critics advance that price limits cause
several negative effects: higher volatility levels on subsequent days (volatility spill-over
hypothesis), prevent prices from efficiently reaching their equilibrium level (delayed
price discovery hypothesis), and interfere with trading due to limitations imposed by
price limits (trading interference hypothesis).

Many academics showed interest to study several phenomena related to price limits.
Kim and Rhee (1997) stated that price limits prevent stock prices from falling below
or rising above predetermined boundaries. This allows them to control for volatility
by establishing constraints and providing time for rational reassessment during panic
times. They check whether price limits increase volatility levels on the upcoming days,
if they do not allow prices to reach their equilibrium levels and whether they interfere
with trading because of the limitations they impose. Their study is conducted on the
Tokyo Stock Exchange price limits system. To do so, they use daily stock price data
between 1989 and 1992 and compare stocks reaching price limits to those that almost
attained their limits on volatility, price continuation, reversal and trading activities levels.
Their findings suggest that for stocks that reached the price limits, volatility does not
return to normal level as fast as those that did not attain the price limits. Besides, price
continuation occurs more frequently when the price limits are reached. Finally, it is
documented that price limits cause trading activities to increase. These results lead the
authors to question the effectiveness of price limits in reducing volatility.

Chen et al. (2005) checked the effectiveness of the price limits system in the
Shanghai and the Shenzhen Stock Exchanges, more specifically the A shares, by
testing the volatility spillover hypothesis of Fama (1989), the delayed price discovery
hypothesis of Fama (1989) and the trading interference hypothesis of Lauterbach and
Ben-Zion (1993). Moreover, they test if stocks that hit the price limits have certain
attributes such as being volatile, being actively traded, having small capitalisation, etc.
to do so, they used Chinese A share individual stock prices and volume between
December 1996 to December 2003. The findings show that the effect of the price limits
is asymmetric for the upwards and downwards movement and different for the bullish
and bearish sample periods. During the bullish periods, price limits effectively reduce
the stock volatility for the downwards movement but not for the upwards movement,
while it is the opposite case for the bearish sample period. In addition, price limits delay
efficient price discovery for only the upward price movements. Also, actively traded
stock hit their price limits more frequently, specifically the lower boundary when the
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market is bearish while stock with high book to market hit the upper limit more often.
Finally, no evidence showing that price limits badly interfere with the trading process
was documented.

Wang et al. (2014) studied the effects of price limits on the Chinese stock market
during periods of global instability. The purpose is to examine the characteristics of
stocks that hit the price limits more frequently during periods of turmoil. Specifically,
these periods are the Asian financial crisis of 1997 and the global financial crisis. To
do so, they tackled volatility spillovers, delayed price discovery and trading interference
with such periods using daily A-share stock prices and trading volume from the
Shanghai Stock Exchange and the Shenzhen Stock Exchange. The findings are quite
interesting. First, the price limits mechanism increases the volatility significantly,
especially in the downward movement, during the global financial crisis. Second, they
found that the efficient price discovery is delayed by price limits. Moreover, price limits
interfere in the trading activity one day after the stock hitting that limit, in the upwards
movement. Finally, actively traded stocks in the property and industrial sectors which
are highly and positively correlated with the market reach the price limits frequently
while those with large book to market value or large size hardly reach the upper price
limit during periods of turmoil.

Errais and Bahri (2016) claim that for investors trading across assets and countries
with different price limits, volatility estimates (measured by standard deviation) are
biased. This biasness is due to the fact that price limits are imposed. When this happens,
equilibrium prices are unobservable and observed prices are truncated, which is the
cause of the bias. Their methodology consists in using censored stochastic volatility
(CSV) model and options’ pricing. The findings show that the prices of stocks traded
on markets with price limits exhibit an option’s lookalike payoff. Consequently, when
options are inexistent in a market, traders gain options’ payoff as well as the regular
linear payoff observed in stocks.

Mathematically, if we denote today’s price by {p0t}t∈T we can write:

p0t ∈ [dtp
0
t−1, utp

0
t−1] dt < ut (1)

By simply deviding p0t by p0t−1 from equation (1) we can notice that the returns are
limited as well:

R0
t :=

p0t
p0t−1

∈ [dt, ut] (2)

if we suppose that these limits are symmetric and time independant, there exists a limit
0 6 l 6 1 such as:

dt = 1− l ut = 1 + l

With this configuration, one can think about censored time series to model {R0
t }t∈T ′

as R0
t being a stochastic process with a finite support. We will see in this paper that

the observed returns {R0
t }t∈T ′ have similar but not identical features to truncated time

series when we establish its link with the shadowing returns. Thus the price limits do
not boil down to truncating or censoring a time series.

The purpose of this paper is to discuss in more details the impacts of price
limits requirements on the behaviour of stock returns and on decision parameters
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estimation (mean, variance, covariance, etc.), then, propose an estimation methodology
to reconstruct the unobserved returns density function. Hence, we will try to answer
these questions: how does limited price rules influence both traders’ decision making
and valuation of assets? How can we model the observed returns to link them with
equilibrium prices?

The paper is organised as follows. In Section 2, we discuss the impact of
price limitations on the behaviour of stock returns. Section 3 sets up the theoretical
background of censored and truncated time series. Section 4 presents an estimation
methodology of shadowing returns density function based on maximum entropy methods
and kernel estimation. Section 5 analyses the relevant normality tests for truncated times
series. Section 6 runs empirical examples from the Tunisian Stock Exchange (TSE).
Section 7 concludes.

2 Impact of price limits on the behaviour of stock returns

The impacts of price limits on the behaviour of stock returns can be devided into two
major effects:

• Valuation effect: Imposing price limits on future returns influences the value of
asset today. If we suppose that there is a stochastic discount factors series
{mt}t∈T , the unconditional equilibrium prices {πt}t∈T and the conditional
equilibrium prices {pt}t∈T can be defined as:

πt := Et

 ∑
i∈{x|t+x∈T}

mt+iXt+i

 (3)

pt := Et

 ∑
i∈{x|t+x∈T}

mt+iX̄t+i

 (4)

with

1 {Xt}t∈T : Cashflow series generated by the asset.

2 {X̄t}t∈T : Cashflow series generated by the asset when price limits are
imposed.

• Value effect: From equation (4), we do not have any guarantee that pt is
convergent and thus authorised under price limit imposition. If we suppose that pt
at time t is known, we can define the observed price {p0t}t∈T as follows

p0t := arg min
p∈At

|pt − p| At := [dtp
0
t−1, utp

0
t−1] (5)

Equation (5) means that the observed price is the most accepted price close to the
shadowing price. This is true if we suppose that the investor will exercice the pt. With
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minor manipulations we can reformulate (5) to get a more explicit relationship between
p0t and pt:

p0t =


dtp

0
t−1 if

pt

p0
t−1

< dt

pt if dt 6 pt

p0
t−1

6 ut

utp
0
t−1 if

pt

p0
t−1

> ut

(6)

from equation (6), we can define the observed return as

R0
t :=

p0t
p0t−1

=


dt if pt

p0
t−1

< dt
pt

p0
t−1

if dt 6 pt

p0
t−1

6 ut

ut if pt

p0
t−1

> ut

(7)

if we have dt 6 pt

p0
t−1

6 ut, we cannot guarantee that R0
t = Rt as p0t−1 can be different

from pt−1.
To make the treatment simpler, we will supose that price limitiations are time

independant and symmetric, thus, we will have dt = 1− l and ut = 1 + l. The
following example will help illustrating the difference between a simple censored series
and the process described by equation (7).

Example 1: Suppose the following configuration

pt−1 = (1 + l + d)pt−2 with d > 0

pt = (1 + rt)pt−1 with 0 6 rt < l

p0t−2 = pt−2

we will have according to equation (6):

pt−1

p0t−2

= (1 + l + d) ⇒ R0
t−1 = 1 + l

pt
p0t−1

=
(1 + rt)(1 + l + d)

(1 + l)
= (1 + rt) +

d(1 + rt)

(1 + l)

for d > (l − rt)
1+l
1+rt

, R0
t = 1 + l.

For d < (l − rt)
1+l
1+rt

, p0t = pt, and R0
t = (1 + rt) +

d(1+rt)
(1+l) .

From the example above we can conclude that

P[R0
t = 1 + l] ̸= P[Rt > 1 + l]

P[a < R0
t < b] ̸= P[a < Rt < b]; a, b ∈ [1− l; 1 + l]

Theorem 1: If R0
t−1 ̸= (1± l) then

R0
t =

1− l ifRt < 1− l
Rt if 1− l 6 Rt 6 1 + l
1 + l ifRt > 1 + l
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Proof: If R0
t−1 ̸= (1± l) then R0

t−1 = pt−1

p0
t−2

⇔ pt−1 = R0
t−1.p

0
t−2 = p0t−1. Thus, using

equation (7) we have:

R0
t =


1− l ifRt < 1− l
pt

p0
t−1

= pt

pt−1
= Rt if 1− l 6 Rt 6 1 + l

1 + l ifRt > 1 + l

�

Theorem 1 allows us to make a link between the process of observed returns {R0
t } and

censored and truncated variables.

3 Truncation

Truncation and censoring are sampling-related phenomena; truncation occurs when the
sample is drown from a non-fully representative subpopulation, while censoring occurs
when a group of values is replaced by a unique value. Greene (2003) used the example
of “studies of income based on incomes above or below some poverty line” to explain
the difference between the two phenomena: truncation occurs when out we totally
neglect observations that are out of the subpopulation studied, i.e., observations with
income higher or lower than the chosen poverty line while censoring occurs when we
replace these observations by ‘higher than’/‘lower than’ the chosen poverty line.

3.1 A brief history

The early statistical treatment of truncation dates back to 1897, the date by which
Galton (1897) published his “an examination into the registered speeds of American
trotting horses, with remarks on their value as hereditary data.” In this article, the
author studied the speed of trotting horses from samples published by The American
Trotting Association. However the association did not reported the speed of unsuccessful
trollers, that is, the horses with a speed below a certain threshold were not reported.
This is what we can call in modern econometrics language a left truncation. Galton
(1897) considered that his sample is normal N (µ, σ) and used the sample mode as an
estimator for µ, then he used sample inter-quartile to estimate the standard deviation.
This procedure was juged satisfactory of the author’s needs. Pearson (1902) criticised
this procedure and proposed the use of fitting parabolas to the logarithms of the sample
frequencies, however the results were slightly different from those found by Galton
(1897). Later on, Pearson continued his investigation on the truncated normal samples,
Pearson and Lee (1908) used the method of moments to derive estimators of the mean
and standard deviation of left truncated normal distribution. Fisher (1931) used the
maximum likelihood method to estimate the normal distribution parameters.

The treatment of censored samples needed to wait until 1937. Bliss and Stevens
(1937) derived maximum liklihood equations to estimate normal parameters for singly
and doubly truncated.

Further development of statistical methods to deal with truncated and cosored
samples continued with many other scholars such as Cohen, Saw, Whitten, etc.
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3.2 Truncation

We will focus in this subsection on parallel truncation, that is when we truncate the
distribution from above and below:

X|d 6 X 6 u d, u ∈ R

Figure 1 (–5, 5) – truncated Cauchy (x0, 1) PDF (see online version for colours)

Figure 2 (–5, 5) – truncated Cauchy (0, α) PDF (see online version for colours)

3.2.1 Effects of truncation on distribution moments and characteristics

The study of truncated moments may be of negligeable importance in infering the full
population moments if we have no or limited information on the population distribution.
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In fact, the mean of any continuous random variable on a finite support is finite even if
this random variable is the truncation of a random variable that has an infinite or even
undefined mean. To see this we can use for example the Cauchy distribution that has
an undefined mean. There are two main reasons for exploring some properties of the
truncated cauchy distribution: the first concerns the fact that the Cauchy distribution is
amongst the few stable distribution that have a density function. The second concerns
the presence of fat tails in returns distribution (Fama, 1963; Lux, 1998; Tsay, 2005;
etc.) which is captured with the Cauchy distribution.

Example 2: Let X ∼ Cauchy(x0, α).
We have

fX|d6X6u(x) :=
fX(x)

P(d 6 X 6 u)
= c.

1[
1 +

(
x−x0

α

)2] d 6 x 6 u

where c :=
[
α
(
arctan

(
u−x0

α

)
− arctan

(
d−x0

α

))]−1.
Now we can calcualte for example the mean of the truncated variable:

E(X|d 6 X 6 u) =

∫ u

d

x.fX|d6X6u(x)dx

=
cα2

2

[
ln
(
(x− x0)

2 + α2 + x0α arctan
(
x− x0

α

))]u
d

∈ R

However, having a prior knowledge of the full population distribution may lead to
a complete knowledge of its moments from the truncated ones. This is the case for
example of normal random variables.

Example 3: Let X ∼ N (µ, σ).
We have:

fX|d6X6u(x) :=
fX(x)

P(d 6 X 6 u)
=

1

σ

ϕ
(
x−µ
σ

)
Φ(ū)− Φ(d̄)

d 6 x 6 u (8)

where ū := u−µ
σ , d̄ := d−µ

σ , ϕ(•): the standard normal density function and Φ(•) The
standard normal cumulative density function.

Similarly to the untruncated normal distribution, we can relate the truncated
moments with a recursive formula (Orjebin, 2014):

mk = (k − 1)σ2mk−2 + µmk−1 − σ
bk−1ϕ(υ)− ak−1ϕ(δ)

Φ(υ)− Φ(δ)
(9)

with mk := E(X|d 6 X 6 u) for k > 1,m0 = 1 andm−1 = 0.
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Figure 3 (–5, 5) – truncated normal (µ, 1) PDF (see online version for colours)

Figure 4 (–5, 5) – truncated normal (0, σ) PDF (see online version for colours)

4 Estimation approach

In this section, we will develop parametric method to estimate a reconstruction of the
parent distribution of returns. We will limit our focus on the special case of log normal
returns.

From the results obtained in Section 2, we should proceed to some restrictions of
the data in order to obtain a truncated or censored sample. However, in this article we
will focus only on using truncation method and leave the case of censoring for further
invistigations. In this section we will restrict the full sample T to τ difined as follows:
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τ := {t ∈ T |Rt ̸= (1± l) andRt−1 ̸= (1± l)}with card (τ) = θ

We can easilly see that in the restricted sample τ the observed returns coincide with
shadowing returns. It thus a truncated sample of the shadowing price.

The general hypothesis retained here is that {R0
t }t∈τ is an iid sample of the

variable R|u < R < d. Statistically speaking, the object of this section is to estimate the
distribution of R.

The log-normality of returns is an assumption that is commonly used in financial
litterature (Tsay, 2005). It combines two important features:

• It has a bijective link with normal distribution: this makes the switch between the
two distributions quite easy and direct.

• It can model the boundedness from below of gross returns.

The first step is to log-transform the observed return to obtain {rt}t∈τ which is now an
iid sample of r|δ < r < υ where r := log(R), υ := log(u) and δ := log(d).

As R is considered here to follow a log normal distribution, r will follow a normal
distribution with mean µ and standard deviation σ. In order to estimate the population
parameters, we will only need the first and second order moments estimators. However,
we will need the third and forth moments estimators in order to test the hypothesis of
log-normality.

From equation (8), we have

r ∼ N (µ, σ)

fr|δ<r<υ(x) =
1

σ

ϕ
(
x−µ
σ

)
Φ(ῡ)− Φ(δ̄)

d 6 x 6 u

Cohen (1950, 1959) used two ways for estimating the moments of normal distribution
from truncated samples using the method of maximum likelihood then the method of
moments.

4.1 The MLE estimator

By using the results found in equation (8) we can deduce directly the liklihood function:

L({r0t }t∈τ ;µ;σ) :=
∏
t∈τ

1

σ

ϕ
(
rt−µ
σ

)
Φ(ῡ)− Φ(δ̄)

by applying the log we can find:

logL =
∑
t∈τ

−(logσ + log(Φ(ῡ)− Φ(δ̄))) + log
(
ϕ

(
rt − µ

σ

))

=
∑
t∈τ

−(logσ + log(Φ(ῡ)− Φ(δ̄)))− 1

2

(
rt − µ

σ

)2

+ log
(

1√
2π

)
As we can see, log-liklihood is more complex that its equivalent in the case of no
truncation. This is due to the presence of the log(Φ(ῡ)− Φ(δ̄)) term which, we should
remind, incorporates µ and σ. By taking the derivative we obtain:
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∇µ,σ logL =

[
θ
σ

φ(ῡ)−φ(δ̄)

(Φ(ῡ)−Φ(δ̄))
+ 1

σ2

∑
t∈τ [rt − µ]

− θ
σ2

φ(ῡ)−φ(δ̄)

(Φ(ῡ)−Φ(δ̄))
− θ

σ + 1
σ3

∑
t∈τ [rt − µ]

]′

The maximum likelihood estimator of µ and σ, denoted µ̂ML and σ̂ML, can be obtained
by equating the gradient to 0.[

θ
σ

φ(ῡ)−φ(δ̄)

(Φ(ῡ)−Φ(δ̄))
+ 1

σ2

∑
t∈τ [rt − µ]

− θ
σ2

φ(ῡ)−φ(δ̄)

(Φ(ῡ)−Φ(δ̄))
− θ

σ + 1
σ3

∑
t∈τ [rt − µ]

]
=

[
0
0

]
However the nonlinearity of the system of equations obtained due to the presence
of φ(ῡ)−φ(δ̄)

(Φ(ῡ)−Φ(δ̄))
makes the solution quite complex and needs a numeric computational

assistance.
Cohen and Whitten (1988) gave an approach to find a solution and provided tables

for this task. However we will use a nonlinear optimisation algorithm directly in the
empirical part.

4.2 Impacts of using the (untruncated) normal distribution MLE estimators

Remark 1: If X ∼ N u
d (µ, σ), with u = µ+ l and d = µ− l for l ∈ R+, we can prove

using the truncated normal distribution expectation formula (Greene, 2003) and the
symmetry of φ

E(X) = µ+
φ
(
− l

σ

)
− φ

(
l
σ

)
Φ
(
l
σ

)
− Φ

(
− l

σ

) = µ =
u+ d

2

This result can be easilly to be proven to work in the other direction.
Let X ∼ N u

d (µ, σ) with E(X) = µ, we have then:

φ
(

d−µ
σ

)
− φ

(
u−µ
σ

)
Φ
(
u−µ
σ

)
− Φ

(
d−µ
σ

) = 0 ⇔
{
d− µ = u− µ ⇔ d = u
u− µ = µ− d = l

If X is non-degenerated, we have X ∼ N µ+l
d−l (µ, σ).

We have (by applying the strong law of large numbers):

r̄τ :=

∑
t∈τ

θ

a.s→ E(r) = µ+
φ
(

δ−µ
σ

)
− φ

(
υ−µ
σ

)
Φ
(
υ−µ
σ

)
− Φ

(
δ−µ
σ

)
For a sufficiently large θ, if we have, that the sample mean ρ̄τ = δ − l = υ + l, for
l > 0 (i.e., ρτ = υ+d

2 ). We can assume (for a well behaving r̄τ ) r̄τ
a.s→ υ+d

2 which means
(as both E(r) and υ+d

2 are real scalars) that

E(r) =
υ + d

2
⇔ E(r) = µ ⇔ r̄τ

a.s→ µ

Thus, by using the sample mean simply we can find a consistant estimator for µ without
the complicated calculation needed for the MLE estimator. For the estimation of σ, we
can use either the method of moments or the MLE.
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4.2.1 Assymptotic bias of the sample mean

Let ε ∈]− l,+∞[, we will focus here on truncated normal distribution of the r ∼
N µ+l

µ−l−ε(µ, σ), we have now:

E(r) = µ+
φ
(
− l+ε

σ

)
− φ

(
l
σ

)
Φ
(
l
σ

)
− Φ

(
− l+ε

σ

) = µ+
φ
(
l+ε
σ

)
− φ

(
l
σ

)
Φ
(
l
σ

)
+Φ

(
l+ε
σ

)
− 1

It follows that:

E(r̄τ )− µ = E(r)− µ =
φ
(
l+ε
σ

)
− φ

(
l
σ

)
Φ
(
l
σ

)
+Φ

(
l+ε
σ

)
− 1

=: β(λ, ϵ)

with λ = l
σ and ϵ = ϵ

σ .

Note 1: We should note here that µ, l, ε are related by the following system:

[
1 1 0
1−1−1

]µl
ε

 =

[
υ
δ

]

Which happends to be underspecified. We will carry here the analysis in terms of
these unknowns to have an understanding of the factors that impact the bias and its
seriousness.

The two equations above shows that the bias of the estimator depends on the relative (to
σ) importance of truncation from above and from below and not the width of truncation
in general. In other words, both the width of truncation and its position around the mean
are what impacts the bias of the sample mean. For example, N 1.2

−0.8 (0, 1), we have β
(1, 0.2) = 0.066, for N 1.4

−0.6 (0, 1), we have β (1.2, 0.4) = –0.1 and for N 1.2
−1 (0, 1), we

have β (1.2, 0.2) = –0.05 > while the first two distributions are restricted to the same
intevrval width of 1.8. and that the first and the last share the same truncation position
(ϵ), all three distribution induced different biases.

The assymetry of β(λ, ϵ) over ϵ around 0, is thus explained by the fact that negative
ϵ induces a wider truncation range, while a positive ϵ induces a tighter truncation range.

However, the most practicle remark about β is that for large λ (even for λ = 10),
β(λ, ϵ) becomes negligeable.

4.2.2 Efficiency of the sample mean

We have

σr̄ =
1√
n
σr =

1√
n

If we have a sufficiently large sample, the sample mean will have an acceptable level
for efficiency.

As it was mentioned several times here, the maximum liklihood estimator needs
elaborated calculations. We will look in the next subsection to the quality of this
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estimator using various simulations.

Note 2: The statistical litterature produced other estimators for the truncated normal
distribution parameters based on the method of moments. However many studies
confirmed its higher bias and lower eficiency compared to the MLE method.

5 Testing for truncated normality

5.1 The use of the ordinary JB test

As discussed earlier in the previous section, the effects of truncation on the first and
second moments of normal variable gets lower as the truncation range gots wider
and in case of symmetric truncation around the mean. We can intuitivly extend this
result to higher order moments and in particular skewness and curtosis. This being
said, a truncated normal sample, on a large truncation range (compared to its standard
deviation) can pass the JB test.

Table 1 Acceptance rate of H0 of JB test for a sample following N l
−l(0, 1) at 5%

l
Size

10 100 1,000

1 0.9983 0.8293 0.0000
2 0.9964 0.9991 0.0001
3 0.9935 0.9928 0.9547
4 0.9892 0.9610 0.9640
5 0.9902 0.9563 0.9519
6 0.9901 0.9550 0.9512
7 0.9886 0.9555 0.9497
8 0.9903 0.9604 0.9498
9 0.9905 0.9629 0.9494
10 0.9898 0.9599 0.9501

Table 2 Acceptance rate of H0 of JB test for a sample following N 10
−10+e(0, 1) at 5%

e
Size

10 100 1,000

1 0.985 0.530 0.000
2 0.994 0.952 0.038
3 0.994 0.974 0.954
4 0.993 0.960 0.957
5 0.99 0.96 0.952
6 0.991 0.963 0.959
7 0.992 0.974 0.956
8 0.992 0.949 0.038
9 0.986 0.538 0.000
10 0.956 0.04 0.000
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We have assessed the efficiency of the JB test through a series of simulations.
We can conclude that a symmetrically truncated normal sample have a great chance

to pass the JB test of normality if the sample size is small or medium or if the truncation
range exceeds six time the standard deviation. Unlike range, assymetry do not have a
monotone impact on the chance of the truncated normal sample to pass the JB test. In
the next subsections we will try to modify the ordinary JB test to enhance its efficiency
to detect truncated normal samples.

5.2 The modified JB test

In this subsection, we will develop a Jarque and Bera (1980) normality test that takes
into account the truncation effects on moments

5.2.1 Linear transformation of a truncated normal variable

X ∼ N u
d (µ, σ) ⇔ fX(x) =

1

σ

ϕ
(
x−µ
σ

)
Φ(ῡ)− Φ(δ̄)

LetZ = aX + b, a ∈ R∗
+, b ∈ R

For x ∈ [δ, υ], z = ax+ b ∈ [aδ + b, aυ + b] we have:

FZ(z) = P(Z 6 z) = P

(
X 6 z − b

a

)
= FX

(
z − b

a

)

fZ(z) =
d

dz

(
Fx

(
z − b

a

))
=

1

a
fX(z)

=
1

aσ

ϕ
(

z−(aµ+b)
aσ

)
Φ(ῡ)− Φ(δ̄)

(10)

∝ ϕ

(
z − µ′

σ′

)
;µ′ = aµ+ b, σ′ = aσ

The result found in equation (10) yields that:

Z = aX + b ∼ N aυ+b
aδ+b (µ

′, σ′)

by taking a = 1
σ and b = −µ

σ we get,

Z ∼ N
υ−µ
σ

δ−µ
σ

(0, 1)

5.3 Kurtosis and skewness of a truncated standard normal variable

After understanding the effects of linear transformation of a truncated normal variable,
we can focus now on deriving the kurtosis and skeweness of a truncated standard normal
variable.

Let Z ∼ N u
d (0, 1), we have
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E(Z3) =

∫ u

d

x3fZ(x)dx =
1

(Φ(d)− Φ(u))

∫ u

d

x3φ(x)dx

=
1

(Φ(d)− Φ(u))
[(x2 + 2)φ(x)]ud = ς(d, u)

E(Z4) =

∫ u

d

x4fZ(x)dx =
1

Φ(u)− Φ(d)

∫ u

d

x4φ(x)dx

=
1

(Φ(d)− Φ(u))

[
1

8
√
2
erf(x)−

(
1

2
x3 +

3

4
x

)
φ(x)

]u
d

= κ(d, u)

Remark 2:

lim
+∞

ς(−x, x) = lim
+∞

1

(Φ(d)− Φ(u))
[(x2 + 2)φ(x)]ud = 0

lim
+∞

κ(−x, x) = lim
+∞

1

(Φ(d)− Φ(u))

[
1

8
√
2
erf(x)−

(
1

2
x3 +

3

4
x

)
φ(x)

]u
= 3

5.4 Test hypothesis and statistic

Let {Xi} be an iid sample of X v N b
a .

This test is used to check whether the data have a normalised skewness and kurtosis
of a truncated normal variable:

H0 :

(
S̃

K̃

)
=

(
ς(d, u)
κ(d, u)

)
Ha :

(
S̃

K̃

)
̸=
(
ς(d, u)
κ(d, u)

)
with 

S̃ =
∑(

Xi−µ
σ

)3
K̃ =

∑(
Xi−µ

σ

)4
d = σa− µ

σ
u = σb− µ

σ

The test statistic can be written as follows:

J̃B =
N

6

(Ŝ − ς̂(d̂, û))2 +

(
K̃ − κ̂(d̂, û)

3

)2


with 

Ŝ =
∑(

Xi−µ̂
σ̂

)3
K̂ =

∑(
Xi−µ̂

σ̂

)4
d̂ = a−µ̂

σ̂

û = b−µ̂
σ̂

N = Samplesize
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The smaller the J̃B statistic, the more likely the sample to be drown from a truncated
normal population. We will use simulation techniques to derive the distribution of J̃B
for different population sizes and truncation limits.

6 Application to the TSE

In this part we have used the log-return data from the most liquid 17 different stocks of
the TSE.

TSE was created in February 1969 as a state owned institution. Afterwards, in
November 1995, it was established as a private company equally owned by the 23
brokers. The TSE is positioned in the heart of the Tunisian financial system – which
contains the brokers that represent the trading monopoles, the financial market council
as the legal authority supervising the financial system of the country and the guarantee
funds which job is to protect investors from various risks. The TSE is made of the
principal market which contains the listed big companies, the alternative market in
which small and medium size firms are listed, the bond market, the mutual funds market
and the hors cote market (designed for unlisted firms that desiring financing).

The normal trading hours start at 9 am and end at 2 pm, with a pre-opening session
from 9 to 10 am and a pre-closing session from 2 to 2:05 pm. Trading has to be within
a ±3% window of the previous closing price. Once the price of a stock hits this limit,
its trading is stopped for 15 minutes. As a result, the ceiling and floor are increased by
an extra 1.5% until the limit of 6.09% of yesterday’s closing price is reached

6.1 A first look to the data

6.1.1 Log-returns distribution

Figure 5 TSE stock exchange log-return distribution (see online version for colours)
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Figure 5 TSE stock exchange log-return distribution (continued) (see online version
for colours)

6.1.2 Log-returns main statistics

We display in Table 3 the main statistics of the selected stocks along with the JB
statistic.

Table 3 Main statistics of daily log-returns

Mean SD Skewness Kurtosis

ASSAD 0 0.003 0.290 5.331
GIF 0 0.016 0.381 4.361
WIFACK LEASING 0 0.005 0.141 4.473
ESSOUKNA 0 0.006 0.334 4.102
SITS 0 0.006 0.393 4.592
ADWYA 0 0.006 0.185 4.989
SOPAT 0 0.008 0.922 8.122
TPR 0 0.004 0.413 6.730
ARTES 0 0.004 –0.075 8.377
POULINA 0 0.006 0.142 5.339
CIMENTS DE BIZERTE 0 0.007 0.317 3.420
SERVICOM 0 0.009 0.283 3.496
ASSURANCE SALIM 0 0.008 –0.078 3.036
TUNIS RE 0 0.007 0.467 5.274
CARTHAGE CEMENT 0 0.007 0.561 5.155
ENNAKL AUTOMOBILE 0 0.006 0.196 5.955
MODERN LEASING 0 0.008 0.187 3.216

6.2 Use of truncation method

We remark here that σ̂ for all the 17 daily log-returns are significantly lower than theire
empiric standard deviation which is not a plausible result. As the truncation range is
wide, it is better to use the empiric standard deviation to calculate the J̃B test statistic.
The result of the calculation are in Table 4.
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Table 4 MLE estimation results for daily log-returns

µ̂ σ̂

ASSAD 0 0.000
GIF 0 0.000
WIFACK LEASING 0 0.001
ESSOUKNA 0 0.001
SITS 0 0.000
ADWYA 0 0.000
SOPAT 0 0.000
TPR 0 0.000
ARTES 0 0.000
POULINA 0 0.000
CIMENTS DE BIZERTE 0 0.000
SERVICOM 0 0.001
ASSURANCE SALIM 0 0.001
TUNIS RE 0 0.001
CARTHAGE CEMENT 0 0.000
ENNAKL AUTOMOBILE 0 0.001
MODERN LEASING 0 0.001

Table 5 J̃B test statistics for daily log-returns

JB J̃B

ASSAD 198.029 57.589
GIF 90.109 39.919
WIFACK LEASING 69.154 18.841
ESSOUKNA 54.181 24.235
SITS 106.459 41.856
ADWYA 141.890 38.613
SOPAT 1,017.540 10.103
TPR 490.258 138.615
ARTES 972.870 241.908
POULINA 186.480 48.122
CIMENTS DE BIZERTE 17.487 13.385
SERVICOM 19.164 12.791
ASSURANCE SALIM 0.667 0.635
TUNIS RE 216.365 76.904
CARTHAGE CEMENT 203.430 82.757
ENNAKL AUTOMOBILE 292.572 76.189
MODERN LEASING 5.971 4.803

The J̃B was smaller for all the 17 daily log-returns. This mean that the modified JB test
statistic succeded in capturing the impact of truncation on the skewness and kurtosis.
However no other daily log-return succeded the J̃B test than the ones that already pqssed
the JB test.
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7 Conclusions and recommendations

7.1 Conclusions

• In the case of log-normal daily returns (and other thin tailed distributions) taking
into account the effect of truncation is of significant interest if the truncation
range is wide enough and symmetric around the mean.

• The majority of daily log return of stocks studied in this dissertation fail to pass
the JB and J̃B tests. It is not probable that they follow a log-normal distribution.

• The observation of daily returns that hit the price limit in the TSE are
negligeable, in fact, for 5 years and 17 stocks, the price limit was hitted 3 times.

The impact of price limits (if it exists) cannot related to the exercice of prices
(shadowing prices) that exeed the limits. However this impact maybe more important in
the estimation of shadowing price in itself. The price limits sets a psychological barrier
for stock exchange agents for what they believe is a ‘fair price’.

7.2 Recommendations

It is highly important for the development of the stock exchange activities and the
implication of its stakeholder to understand the psychological effects of price limits
on the behaviour of stock returns. In fact, if this psychological effect is making the
stock exchange agents underevluating the stock prices (and thus the attractiveness of the
investment in stocks), authorities can boost the activity of stock exchange by reducing or
eleminating the price limits. In the other hand, if price limits are giving stock exchange
agents more secured in the market, authorities should preserve the price limits or tighten
them. Thus, it is a question of finding the optimal price limits that will give enough
security to the stock exchange agents without pushing them to underevaluate the stock
prices
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Appendix

Assessmment of MLE estimator of truncated normal distribution

A1 Simulation script (R)

install.packages (“tmvtnorm”)
library (“tmvtnorm”)
#set the distribution parameters
lower = d
upper = u
mu = m
sigma = s
#inicite the simulation parameters and variables
repetion = 100,000
mu mle = sigma mle = matrix (nrow = 1, ncol = 3)

for (i in seq (1, repetion)) {
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for (size in seq (1:3)) {
#Create a sample of (lower, upper) – truncated normal (mu, sigma)
X <- rtmvnorm (n = 10ˆsize, mu, sigma, lower, upper)
method <- ‘BFGS’
#Estimate the parameters of the created sample using MLE
mle.fit1 <- mle.tmvnorm (X, lower = lower, upper = upper)
#Extract the estimated variables for each sample size
mu mle[size] <- mle.fit1@coef[1]
sigma mle[size] <- mle.fit1@coef[2]

}
#Append the estimated variables to the corresponding csv file for further treatments
write.table (mu mle, file = “mu mle.csv”, append = TRUE, col.names = FALSE, sep
= “,”)
write.table (sigma mle, file = “sigma mle.csv”, append = TRUE, col.names =
FALSE, sep = “,”)

}

A2 Simulation results

The simulation object is to assess the MLE estimator (distribution, bias, etc.). The
algorithm detailed below will make 100,000 iterations of estimating the normal
paramaters of 10, 100 and 1,000 (–1, 1) truncated standard normal variables. As there
is no computational formula to calculate the MLE estimators directly, we are in fact
assessing the practicality of the use of the MLE method and not its theoritical qualities.

The baseline is the case of N 1
−1(0, 1), the we change each time the truncation

range in order to study its impact on the MLE performance. Finally we used the log
TUNINDEX return data to assess the performance of the estimator in a real world case.

Notation 1: We will note here µ̂u
d(µ, σ) and σ̂u

d (µ, σ) the MLE estimators for a sample
of N u

d (µ, σ).

A.2.1 Simulation output

The case of N 1
−1 (0, 1)

Table 6 Quantiles of µ̂1
−1(0, 1)

Min 25% 50% 75% Max
10 –57.880 –0.352 –0.001 0.346 48.380
100 –25.605 –0.134 –0.001 0.132 17.533
1,000 –0.830 –0.040 0.000 0.040 2.096

Table 7 Moments and JB test results of µ̂1
−1(0, 1)

Bias SD Skewness Kurtosis JB p-value
10 –0.005 3.950 –0.190 20.535 883,790 0.000
100 –0.011 1.078 –0.800 52.823 9,175,300 0.000
1,000 0.000 0.063 0.335 19.449 757,970 0.000
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Figure 6 µ̂1
−1(0, 1) simulated distribution (see online version for colours)

Table 8 Quantiles of σ̂1
−1(0, 1)

Min 25% 50% 75% Max

10 0.018 0.294 0.663 8.719 81.822
100 0.203 0.652 0.960 1.753 67.687
1,000 0.494 0.866 0.995 1.170 23.325

Table 9 Moments and JB test results of σ̂1
−1(0, 1)

Mean SD Skewness Kurtosis JB p-value

10 4.074 5.807 1.533 5.503 65,474 0.000
100 2.907 5.760 3.394 14.318 728,120 0.000
1,000 1.053 0.303 9.038 453.029 <1,000,000 0.000

Figure 7 σ̂1
−1(0, 1) simulated distribution (see online version for colours)
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The case of N 2
−2 (0, 1)

Table 10 Quantiles of µ̂2
−2(0, 1)

Sample Min 25% 50% 75% Max

10 –95.959 –0.255 0 0.254 27.262
100 –0.672 –0.077 0 0.078 0.894
1,000 –0.159 –0.0.024 0 0.024 0.15

Table 11 Moments and JB test results of µ̂2
−2(0, 1)

Sample Bias SD Skewness Kurtosis JB p-value

10 –0.002 1.111 –2.093 166.571 >100,000 0.000
100 0 0.117 –0.008 3.264 291 0.000
1,000 0 0.036 –0.007 3.006 1 0.605

Figure 8 µ̂2
−2(0, 1) simulated distribution (see online version for colours)

Table 12 Quantiles of σ̂2
−2(0, 1)

Sample Min 25% 50% 75% Max

10 0.043 0.532 0.822 1.391 113.035
100 0.372 0.851 0.982 1.147 18.573
1000 0.762 0.953 0.999 1.047 1.373

Table 13 Moments and JB test results of σ̂2
−2(0, 1)

Sample Mean SD Skewness Kurtosis JB p-value

10 1.830 3.685 4.820 34.125 >100,000 0.000
100 1.024 0.277 10.762 543.802 >100,000 0.000
1,000 1.002 0.071 0.0314 3.188 1791 0.000
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Figure 9 σ̂2
−2(0, 1) simulated distribution (see online version for colours)

The case of N 1
−3 (0, 1)

Figure 10 µ̂1
−3(0, 1) simulated distribution (see online version for colours)

Table 14 Quantiles of µ̂1
−3(0, 1)

Sample Min 25% 50% 75% Max

10 –4.863 –0.306 –0.041 0.364 90.163
100 –0.565 –0.115 –0.007 0.127 9.905
1,000 –0.213 –0.038 0 0.04 0.399

Table 15 Moments and JB test results of µ̂1
−3(0, 1)

Sample Bias SD Skewness Kurtosis JB p-value

10 –0.787 3.211 5.229 41.582 883,790 0.000
100 –0.026 0.216 2.627 52.823 9,175,300 0.000
1,000 0.002 0.058 0.306 19.449 757,970 0.000
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Figure 11 σ̂1
−3(0, 1) simulated distribution (see online version for colours)

Table 16 Quantiles of σ̂1
−3(0, 1)

Sample Min 25% 50% 75% Max

10 0.027 0.465 0.765 1.412 99.659
100 0.337 0.822 0.976 1.174 20.995
1,000 0.711 0.944 0.998 1.056 1.506

Table 17 Moments and JB test results of σ̂1
−3(0, 1)

Sample Mean SD Skewness Kurtosis JB p-value

10 2.108 4.505 4.317 26.142 >100,000 0
100 1.034 0.322 3.247 160.286 >100,000 0
1,000 0.998 0.084 0.384 3.296 2,828.7 0

The case of N 4
2 (0, 1)

Figure 12 µ̂4
2(0, 1) simulated distribution (see online version for colours)
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Table 18 Quantiles of µ̂4
2(0, 1)

Sample Min 25% 50% 75% Max

10 –61.414 –4.590 1.766 2.188 2.790
100 –44.155 –4.865 0.364 1.364 2.29
1,000 –29.59 –0.857 0.042 0.589 1.746

Table 19 Moments and JB test results of µ̂4
2(0, 1)

Sample Bias SD Skewness Kurtosis JB p-value

10 –1.722 6.205 –1.605 4.942 58,734 0
100 –2.696 5.915 –1.351 3.683 32,411 0
1,000 –0.545 2.131 –3.885 24.741 >100,000 0

Figure 13 σ̂4
2(0, 1) simulated distribution (see online version for colours)

Table 20 Quantiles of σ̂4
2(0, 1)

Sample Min 25% 50% 75% Max

10 0.003 0.117 0.312 2.302 66.904
100 0.089 0.473 0.862 2.841 31.986
1,000 0.317 0.774 0.985 1.327 14.984

Table 21 Moments and JB test results of σ̂4
2(0, 1)

Sample Mean SD Skewness Kurtosis JB p-value

10 1.79 3.121 3.209 20.858 >100,000 0
100 2.023 2.308 1.613 5.951 79,669 0
1,000 1.206 0.809 3.862 24.847 >100,000 0
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The case of a real stock N 0.059
−0.063 (0, 0.003) (TUNINDEX)

Figure 14 µ̂0.059
−0.063(0, 0.003) simulated distribution (see online version for colours)

Table 22 Quantiles of µ̂0.059
−0.063(0, 0.003)

Sample Min 25% 50% 75% Max

10 –7.864 –2.133 0 2.774 8.933
100 –4.916 –0.002 0 0.007 4.851
1,000 –22.04 –0.002 0 0.002 9.996

Table 23 Moments and JB test results of µ̂0.059
−0.063(0, 0.003)

Sample Bias SD Skewness Kurtosis JB p-value

10 0.229 3.662 0.151 2.501 1,417 0
100 0.039 0.564 2.037 39.011 >100,000 0
1,000 –0.021 0.637 –27.252 797.227 >100,000 0

Table 24 Quantiles of σ̂0.059
−0.063(0, 0.003)

Sample Min 25% 50% 75% Max

10 0 0.002 0.533 0.697 87.888
100 0 0.002 0.003 0.004 472.144
1,000 0 0.003 0.003 0.003 19,891.762

Table 25 Moments and JB test results of σ̂0.059
−0.063(0, 0.003)

Sample Mean SD Skewness Kurtosis JB p-value

10 0.476 0.627 43.298 4721.817 >100,000 0
100 0.144 3.888 67.262 5717.042 >100,000 0
1,000 1.894 25.047 25.036 1032.692 >100,000 0
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Figure 15 σ̂0.059
−0.063(0, 0.003) simulated distribution (see online version for colours)

A3 Interpretation of results

The simulated distribution of µ̂ for different sample sizes shows a bell-shaped which
indicates a possible normality of the estimator. We will check for normality using JB test
of the 100,000 simulations. As an MLE estimator, µ̂ is guarenteed to be assymptotically
normal, the object of performing the normality tests is to understand the speed of
convergence of the estimator.

The quantiles of µ̂ shows two remarks about MLE estimator, first the symmetry and
this fact is most likely to be related to the fact that the truncation is symmetric aorund
the mean (as we will check later), the second which is more important (and most likeley
more general) is the presence of significant outliers especially for small samples (10
and 100). in a similar sumulation for non-truncated normal distribution, the outliers are
less significant (for the case of 10 samples, the range for mu was [–1.42, 1.42]). The
problem of large outliers can be caused by three possible reasons, either the quality of
the semi-random generator used by the library (in this case, using the MLE estimation
algorithm will be likely to produce good estimation for µ for real truncated normal
data). The second possible reason is that the estimation algorithm, in case of existence
of multiple solutions, may choose non-reasonable admissible solution (in this case, one
needs to play with the algorithm parameters until finding a ‘reasonable’ estimation).

According to Table 7, the bias of of the MLE estimator is reasonable even for a
sample of small size and the standard deviation of the estimator is decreasing. The
skewness for all the sample sizes is similar to a normal distribution (near 0), however,
the kurtosis observed is significantly higher then normal distribution, this made the
simulated distribution of µ̂, fail to pass the JB test. As it is easy to detect if µ̂ is
an outlier, it will be easy to eliminate them. For example, if we remove all µ̂ ̸∈
[−2σµ̂, 2σµ̂], we will find that the kurtosis droped down significantly to attain 2.479 or
the 1,000 sample size, with loosing less than 5% of observations. Even with removing
the exuberant observations, the remaining sample fail the JB test, however the JB
statistic dropped very significantly.

For the estimation of standard deviation, the first thing we remark is the importance
of the bias for small and even for medium samples. However the median of σ̂ stood
close to the right value of σ for all sample sizes. Thus, it is almost equiprobable to over
or under estimate for all sample sizes.
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The shape of σ̂ distribution shows a slow convergence to symmetry and normality.
However, the evolution of skewness shows the inverse. The skewness inflation for
the 1,000 sample can explained by the influence of exuberant values on the right, the
presence of 23.325, for example (the maximum value for the 1,000 sample size) added,
on its own 1

100,000

(
23.325−1.035

0.303

)3
= 3.98 to the skewness, while the value of 0.494

only reduced the skewness by − 1
100,000

(
0.494−1.035

0.303

)3 w 0.000. It is better though to
compare the symmetry by more robust statistics such as quartiles for example, for our
case, quartiles distribution confirms the graphical intuition as the median is approaching
the centre of the first and third quartiles as we increase the sample size.

By doubling the truncation range, and conserving its symmetry around the mean as
in the case of N 2

−2(0, 1), the bias of µ̂ was reduced, but more importantly, the range of
the estimator got significantly limited for 100 and 1,000 sample sizes (from [–25.605,
17.533] to [–0.672, 0.894] and from [–0.83, 2.096] respectively) (the range for the
small sample size of ten got wider for the same reasons explained above, however the
distance between the second and third quartile got reduced). The standard deviation of
µ̂ also got significantly reduced. Furthermore, the shape of the distribution got closer
to normal with the estimator of the sample of size 1,000 succeeding in passing the
JB normality test. bu doubling the truncation range, the quality of µ estimator got
significantly ameliorated specially for medium sized samples.

For σ̂, the same remarks about µ̂ apply: the bias and standard deviation got
significantly reduced, the range got tighter and the distribution shape converged more
rapidly to the normal shape.

When we conserved the range length of 4 and distorted the symmetry as in the case
of N 1

−3(0, 1), the observed bias increased compared to the previous cases especially for
the small sample case, the standard deviation however got slightly reduced compared
to the baseline case. The distribution shape shows a slight assymetry especially for the
small and medium size samples. This is confirmed by the difference between the mean
and median of the estimator. If compared with the case of N 2

−2(0, 1), we can see the
performance of µ̂ has dropped.

The impact of a slight assymetry was lower on σ̂ (compared to µ̄), in fact, the
quartiles of σ̂ for the medium and large samples are close to the quartiles found for the
symmetric case (N 2

−2(0, 1)), idem for the bias and standard deviation of the estimator.
In case the real µ is out of the truncation range (we can consider it a case of

severe assymetry), as in the case of N 4
2 (0, 1), we remark that the performance of

the MLE estimators dropped down significantly in terms of bias, standard deviavtion,
interquartile distance and distribution shape (very slow convergence to normality).
However, similarly to the previous case, µ̂ is were more sensitive to assymetry than σ̂.

In the last case [we use the sample mean and standard deviation for TUNINDEX
log-return for five years (2010–2014)] to assess the performance of the MLE estimator
for a case with parameters in the same scale of magnitude as the cases studied in the
empirical part.




