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Abstract: There is a proliferation of approaches that exploit RDF data sets for creating URI 
embeddings, i.e., embeddings that are produced by taking as input URI sequences (instead of 
simple words or phrases), since they can be of primary importance for several tasks (e.g., 
machine learning tasks). However, existing techniques exploit either a single or a few data sets 
for creating URI embeddings. For this reason, we introduce a prototype, called LODVec, which 
exploits LODsyndesis for enabling the creation of URI embeddings by using hundreds of data 
sets simultaneously, after enriching them with the results of cross-data set identity reasoning. By 
using LODVec, it is feasible to produce URI sequences by following paths of any length 
(according to a given configuration), and the produced URI sequences are used as input for 
creating embeddings through word2vec model. We provide comparative results for evaluating the 
gain of using several data sets for creating URI embeddings, for the tasks of classification and 
regression, and for finding the most similar entities to a given one. 
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1 Introduction 

There is an increasing trend of exploiting knowledge graphs 
(e.g., Wang et al., 2017; Goyal and Ferrara, 2018) for creating 
embeddings which can be exploitable for a number of tasks. 
Indicatively, they can be used for i) machine learning-based 
tasks (e.g., Ristoski et al., 2019), such as classification and 
regression, ii) similarity-based tasks (e.g., Mohapatra et al., 
2018), for answering queries like “Give me the top-K related 
entities to a given one”, iii) link prediction purposes (e.g., 
Nechaev et al., 2018), iv) fact validation (e.g., Ammar and 
Celebi, 2019), v) language translation (e.g., Moussallem et al., 
2019) and others (e.g., Wang et al., 2017; Goyal and Ferrara, 
2018). There is also a proliferation of novel methods  
(e.g., Ristoski et al., 2019; Saeed et al., 2019), that exploit 
Linked Open Data (LOD) and Resource Description 
Frameworks (RDF) knowledge graphs (or data sets) for 
creating embeddings for Uniform Resource Identifiers (URIs). 
The key difference of URI embeddings comparing to word 
embeddings is that they are produced by taking as input a 
sequence of URIs (instead of simple words or phrases). In 
particular, such methods produce URI sequences for a set of 
given entities, i.e., URI sequences which start from a focused 
entity, and contain a path of URIs which are reachable from 
this entity. These URI sequences are given as input for 
producing URI embeddings through neural networks models, 
such as word2vec (Mikolov et al., 2013) and GloVe 
(Pennington et al., 2014), where each URI is mapped to a 
vector of real numbers. The produced embeddings can be used 
in any of the above tasks. 

However, current approaches exploit usually a single RDF 
data set for creating URI embeddings for one or more entities. 
Moreover, many approaches are difficult to be configured by 
non-experts, since they do not provide an interactive service. 
Our objective is to make it feasible to create URI sequences 
and URI embeddings for any given entity (i.e., a URI),  
by combining data from hundreds of RDF data sets 
simultaneously. 

As a motivating example, suppose that we desire to predict 
the exact user rating of one or more music albums, like 
“Blackout” (see Figure 1), which is an album from the German 
rock band “Scorpions”. For this reason we plan to create 
embeddings from URI sequences, for using them as features in 
such a machine learning task. In this example, we can see that 
there exist three available knowledge graphs (or data sets), two 
of them contain information about the music album 
“Blackout”, and the last one information about the music band 
“Scorpions”. Through this example, we desire to show the 
importance of using multiple data sets, for creating a) 
complementary URI sequences and b) “mixed-path” URI 
sequences, for the desired entities (e.g., music albums). 

Regarding a), by selecting to use only a single data set, say 

1D  in Figure 1, we can find valuable information such as the  

 

people that written the lyrics of each music album. However, 

1D  does not contain information about the genre of each 

album, e.g., in Figure 1 such data occur in data set 2D . 

Therefore, only by using both data sets 1D  and 2D , we will be 

able to create URI sequences including both the lyrics and the 
genres of each album, i.e., by using complementary data. 

Regarding b), suppose that we desire to create larger URI 
sequences, i.e., sequences including a path of n  edges  
(or n  triples). By following such paths, it is feasible to 
discover more information for the neighbours of a given entity, 
and we assume that such information can be of primary 
importance for improving the accuracy of predictions. In 
Figure 1, suppose that we desire to create URI sequences that 
include more information about the band of each music album, 
e.g., URI sequences containing “a music album, its band, and 
the awards won by this band”. In our example, there is not a 
single data set (or graph) that contains such a path. In 
particular, from data sets 1D  and 2D  we can find the band of a 

music album, and from data set 2D  information about the 

guitarist of the band. However, it does not contain any 
additional information about bands. On the contrary, data set 

3D  contains more data about bands, such as data about the 

awards won by a band. Therefore, for creating the desired URI 
sequence, it is mandatory to follow a “mixed-path”, i.e., a path 
that includes data from at least two data sets, e.g., 2D  and 3D . 

However, it is not trivial to collect and integrate all the 
available information for any given entity from several data 
sets, which is essential for creating either complementary or 
“mixed-path” URI sequences. The major integration difficulties 
that are related to our desired task (i.e., creating URI sequences 
from multiple data sets) are the following: (Diff. 1) data sets 
use different URIs and models for representing the same real 
world objects, and (Diff. 2) data are scattered in different places 
(Mountantonakis and Tzitzikas, 2019b). For instance, in Figure 
1, the three data sets use three different URIs for representing 
the same band “Scorpions”, whereas data sets 1D  and 2D  use 

different URIs for referring to the same schema element, e.g., 
see the two URIs for the property “band”. 

For making it feasible to collect all the data for any entity, 
e.g., for creating URI sequences by using all the data sets of 
Figure 1, it is a prerequisite to identify all the equivalent URIs 
of each URI for the entities, e.g., d1:(Band) Scorpions 
owl:sameAs d2:Scorpions owl:sameAs d3:The_ 
Scorpions, and for the schema elements,  
e.g., d1:fromBand owl:equivalentProperty 
d2:band. The major problem is that these relationships (i.e., 
owl:sameAs and owl:equivalentProperty 
relationships) model an equivalence relation, and therefore  
we should compute their transitive closure. However, it 
presupposes knowledge of all data sets and such a computation 
can be quite expensive (Mountantonakis and Tzitzikas, 2018a). 
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Figure 1 Running example containing three knowledge graphs and LODsyndesis 

 
 

Based on the above analysis, the major research questions are 
the following: a) how to overcome the problem of having 
different URIs for the same entities (and schema elements), for 
being able to create URI sequences (of any length) from 
multiple data sets, b) whether a single RDF knowledge graph 
can outperform all the others for any possible task and c) 
whether the accuracy of predictions for several tasks (such as 
machine learning-based tasks) can be increased by creating 
embeddings from multiple data sets (instead of using one or 
few data sets), and by following larger paths. 

Concerning our contribution, we introduce a research 
prototype, i.e., LODVec, which is accessible through 
https://demos.isl.ics.forth.gr/lodvec/. LODVec (i) takes as input 
one or more entities (e.g., their URIs) and (ii) offers several 
configurable options for creating URI sequences for the input 
entities. Afterwards, (iii) it exploits LODsyndesis knowledge 
graph for enabling the production of URI sequences and 
embeddings from hundreds of data sets simultaneously, and 
(iv) produces URI sequences (of any length) based on a given 
configuration and by using the notion of basic graph patterns. 
Moreover, LODVec (v) converts the produced URI sequences 
into vector representations (i.e., embeddings) by using  
word2vec approach (Mikolov et al., 2013) through dl4j API 
(https://deeplearning4j.org/). Finally, it can (vi) exploit the 
produced vectors for several purposes, e.g., for performing 
classification and regression tasks by using WEKA API (Witten 
et al., 2011). 

For testing the proposed approach, we report experimental 
results for machine learning classification and regression tasks 
by using three evaluation data sets containing thousands of 
movies, music albums and basketball players. Furthermore, we 
have created a data set (by using a Google service) for 
evaluating the effectiveness of LODVec for identifying similar 
entities, e.g., finding the most similar basketball players to a 
given player. We introduce experiments and measurements for 
evaluating the impact of using multiple data sets and cross-data 
set identity reasoning in terms of effectiveness, we compare the 
performance of different configurations, and we discuss the 
efficiency of the proposed approach. 

This paper is an extended version of the paper 
(Mountantonakis and Tzitzikas, 2019a). In comparison to that 
work, this paper is more self-contained. Moreover, in this 
paper: a) we enrich the related work section, b) we extend 
LODVec for creating URI sequences of any length by 
following paths containing two or more edges, whereas in 
Mountantonakis and Tzitzikas (2019a) we created URI 
sequences by using only the direct neighborhood of each entity 
(i.e., by following single-edge paths) and c) we perform more 
experiments (by using more evaluation data sets), for evaluating 
the impact of using multiple data sets for several machine 
learning tasks, and the efficiency of the proposed approach. 

The rest of this paper is organised as follows: Section 2 
introduces the background and related work. Section 3 
provides the problem statement and describes the context,  
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while Section 4 introduces the steps and the algorithms for 
creating URI sequences and embeddings. Section 5 includes 
the experimental evaluation about the effectiveness and the 
efficiency of the proposed approach, whereas Section 6 
discusses the results of the evaluation. Finally, Section 7 
concludes the paper and outlines directions for future work. 

2 Background and related work 

2.1 Background 

Linked data: Resource Description Framework (RDF) 
(Antoniou and Van Harmelen, 2008) is a model that can be 
represented as a graph, and uses Uniform Resource 
Identifiers (URIs), or anonymous nodes to denote resources, 
and literals to denote constants. Every statement in RDF can 
be represented as a triple. A triple is a statement of the form 
subject-predicate-object , ,s p o  , and it is any element of 

   = ( )T U B U U B L      where U , B  and L  are 

the sets of URIs, blank nodes and literals, respectively. Any 
finite subset of T  corresponds to an RDF graph (or data 
set). We divide the URIs in three disjoint sets, entities E  
(e.g., Blackout), properties P  (e.g., band) and RDF classes 
C  (e.g., Rock Music Album). In this paper, we focus on 
triples that contain URIs in all the positions (i.e., subject, 
predicate and object). Specifically, these triples contain an 
entity (i.e., URI) as subject, and the URI of an RDF class  
or the URI of an entity as object. Therefore we consider 
triples in = ( )UT U P E C T    . Finally, we denote as 

 1= ,..., nD D D  a set of data sets, and as ( )U iT D  the set of 

triples of a given data set iD D , that contain only URIs 

  U i UT D T . 

Word2vec: It is a shallow two-layer neural network 
model for producing word embeddings (Mikolov et al., 
2013). It takes as input a text, and it produces a vector with 
several (usually hundreds of) dimensions for each unique 
word appearing in the text. The target of word2vec is to 
group the vectors of similar words closely in the vector 
space. In this paper, we will exploit this model for creating 
vectors for entities, by using the skip-gram model, which is 
a method that uses a specific word for predicting a target 
context, since “it produces more accurate results for  
large data sets” (https://deeplearning4j.org/docs/latest/ 
deeplearning4j-nlp-word2vec). Our target is to use this 
model for placing similar entities (e.g., similar music 
albums) to a close position in the vector space. 

2.2 Related work 

RDF Knowledge Graph Embeddings: There have been 
proposed several approaches and applications for producing 
knowledge graphs embeddings, e.g., see two recent surveys in  
 
 
 

Wang et al. (2017) and in Goyal and Ferrara (2018). Regarding 
approaches that exploit RDF knowledge graphs, RDF2Vec  
(Ristoski et al., 2019) is an approach that takes as input an RDF 
knowledge graph, produces URI sequences based on several 
strategies, such as random graph walks, and uses word2vec for 
creating vectors. They have also proposed strategies for 
performing biased graph walks (Cochez et al. 2017b), which 
are based on a number of metrics and statistics, such as the 
frequency of properties, objects, pagerank and others. They 
have tested these strategies for multiple tasks, such as 
classification and regression, by using two RDF data sets; 
Wikidata (Vrandecic and Krötzsch, 2014) and DBpedia (Auer 
et al., 2007), whereas they have used the GloVe model 
(Pennington et al., 2014) for creating RDF embeddings by 
exploiting global patterns. Moreover, Saeed et al. (2019) 
proposed a metric, called specificity, which can be used for 
identifying the most relevant nodes and edges in the 
neighbourhood of an entity. This metric is exploited for 
creating URI sequences by performing biased random walks, 
and the approach was evaluated by using DBpedia. 
Furthermore, Ammar and Celebi (2019) used the RDF2Vec 
model for producing embeddings, and these embeddings were 
used for validating the facts of DrugBank data set. Moreover, 
THOTH approach (Moussallem et al., 2019) extracts bilingual 
alignments from two data sets and enriches them with 
knowledge graph embeddings. Their target was to translate the 
source data set to a target data set, and they evaluated their 
approach by using the German and the English version of 
DBpedia. 

Hajra and Tochtermann (2017) used several bibliographic 
RDF data sets and word2vec for enriching the data of 
scientific publications with information from multiple data 
sources, while Inan and Dikenelli (2017) exploited enriched 
ontology structures for producing RDF embeddings which 
were used for the task of Entity Linking. Moreover, Nechaev 
et al. (2018) combined embeddings from DBpedia and social 
network data sets for performing link prediction, whereas 
Mohapatra et al. (2018) exploited Wikipedia knowledge 
graph for finding the most similar entities to a given one for a 
specific time period. Furthermore, Nikolaev and Kotov 
(2020) created joint embeddings for words and entities for 
improving the task of entity search in knowledge graphs, and 
they tested their approach by using DBpedia, while the target 
of Eddamiri et al. (2018) was to cluster similar entities by 
using embeddings from two RDF data sets. Finally, 
KGvec2go (Portisch et al., 2020) is an online service which 
contains already trained embeddings (by using RDF2Vec 
approach) from four RDF data sets. The user can download 
the vectors, can find the n closest concepts to a given one,  
and others. 

Concerning other graph-based models, such as TransH 
(Wang et al. 2014; Lin et al. 2015), they use algorithms  
for creating entity and relation graph embeddings, i.e., the 
relationships between two entities are represented as  
 
 
 



 Applying cross-data set identity reasoning 5 

translations in the embedding space. Finally, there have been 
proposed several methods that construct embeddings from 
RDF data sets by taking also into account the literals (and not 
only URIs), i.e., see a recent survey from Gesese et al. (2019). 

Feature extraction approaches combining data from 
several data sets: Mountantonakis and Tzitzikas (2017) 
proposed a tool that can send SPARQL queries in several 
endpoints for creating features. However, it does not produce 
embeddings and it cannot collect all the data for a given  
entity (i.e., cross-data set reasoning is required). Moreover, 
RapidMiner Semantic Web Extension (Ristoski et al., 2015) 
creates features by integrating data from a lot of data sets. 
However, it performs the integration task by traversing 
owl:sameAs paths on-the-fly (through SPARQL queries, 
which can be time-consuming), and not by exploiting pre-
constructed indexes. 

Novelty and comparison with other approaches: To the 
best of our knowledge, this is the first work providing an 
interactive approach which can easily create URI sequences 
and embeddings for any set of entities. Moreover, since 
current approaches do not take into account the equivalences 
in schema and instance level, they have been mainly tested  
on a single or a few data sets, whereas LODVec  
produces embeddings by leveraging hundreds of data sets 
simultaneously, after enriching them with the results of cross-
data set identity reasoning. At this point our objective is a) to 
offer a simple way for creating URI sequences for multiple 
data sets and b) to investigate whether the creation of even 
simple URI sequences and embeddings from different data 
sets can improve the effectiveness of several tasks (e.g., 
machine-learning tasks). Concerning the limitations of 
LODVec, for the time being the user decides which paths will 
be followed for creating the URI sequences. Therefore, we do 
not support automatic methods for estimating which paths are 
more important to be followed (e.g., through biased random 
walks such as Cochez et al. (2017a) and Saeed et al. (2019)). 
Moreover, we do not create sequences containing literals 
(e.g., Gesese et al., 2019), and we have not used algorithms 
that have been successfully applied to knowledge graphs 
(e.g., Lin et al., 2015; Wang et al., 2014). 

3 Problem statement and context 

In this section, we introduce the problem statement (in Sub-
section 3.1) and the context (in Sub-section 3.2). 

3.1 Problem statement 

3.1.1 URI sequences 

The input is a set of selected entities selE E , and the first 

target is to create URI sequences, i.e., ( )USeq e , for each 

sele E . Each URI sequence, i.e., ( )Useq Seq e , corresponds  

 
 
 

to a sequence of n  triples ( 1n  ), where each of these triples  
contains only URIs. A sequence containing a single triple 
( = 1n ) is of the form , ,e p o  , where , , Ue p o T   , e.g., 

 :Blackout,:band,:Scorpions  . These URI sequences 
correspond to the direct neighbourhood of an entity e , i.e., a 
single-edge path that starts from e . On the contrary, a 
sequence having n  triples (i.e., a path of n -edges) is of the  

form 1 1, , ,..., , ,n n ne p o s p o , where sele E , and for any 

given i  (1 i n  ), it holds that , ,i i i Us p o T   . Finally, for 

any pair of adjacent triples, i.e., say the i-th and the ( 1)i  -th 

triple ( 1i n  ), it holds that 1=i io s  . Therefore, the object of 

the i-th triple is always the subject of the ( 1)i  -th triple. For 

instance, in our running example, a sequence of length = 3n   
is the following one:  :Blackout,:band,:Scorpions  , 
 :Scorpions,:city,:Hanover  ,  :Hanover,:country,:Germany  . 

Our target is to construct the set = ( )U sel Ue Esel
Seq E Seq e

 , 

where ( )USeq e  corresponds to the URI sequences of each 

sele E . 

3.1.2 Using basic graph patterns for creating the  
URI sequences 

For creating the desired URI sequences, we use the notion of 
Basic Graph Patterns, which are widely used for answering 
SPARQL queries (Harris et al., 2013). In particular, a basic 
graph pattern is a set of triple patterns, where each triple pattern 
tp  is similar to a triple , ,s p o  . However, the subject, 

predicate (i.e., property), or object can be a variable. In our 
case, for any sequence of length n , we already know the URIs 
of the properties (they are given as input), however, any subject 
or object is a variable. In this way, we define the set BGP , 
where bgp BGP  is a set of n  triple patterns  

( 1n  ), i.e., = (1),..., ( )bgp tp tp n . Each ( )tp i  is of the form 

( ) = ? , ,?i i itp i s p o  and it is mandatory a) the subject of the 

first triple pattern, i.e., (1)tp , to be replaced by an entity 

sele E  and b) the object and the subject of two adjacent 

triples to be replaced by the same URI. 
For example, suppose that the user wants to create a URI 

sequence for each music album, which contains the band of 
each album, the city where the band founded, and the  
country where that city is located in. The resulted  
sequence of triple patterns will be the following: 

1? ,s :band 1 2,? , ? ,o s  :city 2 3,? , ? ,o s  :country 3,?o  . Since 

1?o  should be the same as 2?s , and 2?o  the same as 3?s  we 

can write the previous sequence of triple patterns as  
follows: 1? ,s :band 1 1,? , ? ,o o  :city 2 2,? , ? ,o o  :country 3,?o  . 

Therefore, the target is to create all the sequences of triples that 
match each set of triple patterns for each entity sele E , i.e., 

for constructing the set ( )USeq e . 
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3.1.3 From URI sequences to URI embeddings 

The target is to use the produced set of URI sequences, i.e., 

U selSeq E , for mapping each URI to a vector of real 

numbers, through a neural network model, such as 
word2vec. By using the skip-gram model of word2vec, we 
map each entity e  to a vector ( )v e . We expect that if two 

entities e  and 'e  are similar, then their produced vectors, 
( )v e  and ( )v e , will be close in the vector space, too. 

3.1.4 Output exploitation 

The target is to use the produced vectors in several machine-
learning-based tasks, such as classification and regression, for 
finding the top-K similar entities to a given entity e , and 
others. Concerning classification and regression, one should 
also provide as input the corresponding categorical or 
continuous variable Y(e) for each entity e. On the contrary, 
there is no need for additional input, when the desired task is to 
find the top-K similar entities to a given entity. 

3.2 Context: LODsyndesis knowledge graph 

For tackling the integration difficulties (Diff 1) and (Diff 2)  
and for creating the desired URI sequences, we  
use the LODsyndesis knowledge graph. LODsyndesis 
(Mountantonakis and Tzitzikas, 2018a) has pre-collected 2 
billion triples and 412 million URIs from 400 RDF data sets of 
9 different domains. Concerning (Diff 1), LODsyndesis  
has computed the cross-data set identity reasoning of  
44 million equivalence relationships (i.e., the transitive and  
symmetric closure of owl:sameAs, owl:equivalentProperty and 
owl:equivalentClass relationships). LODsyndesis exploits the 
results of cross-data set identity reasoning for assigning a 
unique identifier for each real world entity and schema element 
(i.e., for keeping a single representation). Finally, it collects in 
its index all the available triples (by preserving the provenance) 
for any given entity (e.g., Blackout). 

In the lower side of Figure 1, we can see the index which is 
produced from LODsyndesis by using as input the three 
knowledge graphs of Figure1, whereas in the middle side of the 
same Figure, we can see the corresponding graph 
representation of LODsyndesis. In particular, this graph 
contains a single node for each entity (e.g., for the band 
“Scorpions”), and stores the provenance of each triple, i.e., see 
the text of each property (or edge) inside the parentheses. 
Regarding the index, there is a single index entry for each 
entity, e.g., see indicatively the entries for: Blackout,: 
Scorpions and :Hanover. For each entity e , the index stores 
information about its provenance (e.g., “Scorpions” exist in all 
the three data sets), and all its triples (and their provenance). 

Moreover, all the values for each entity-property pair are  
placed together, e.g., see the pair: Blackout-:lyrics. Finally, the 
index stores the direction of each property (or edge), i.e., a 
character “*” is added after a property in case it corresponds to 
an inverse edge, e.g., see the property: band in the index entry 
of: Scorpions. 

The index of LODsyndesis is stored on disk and it is 
accessed through a random access file mechanism. In 
particular, for each entity e , a pointer is also stored (a long 
number), i.e., the pointer corresponds to the position of the 
file where the index entry of e  starts. As we shall explain in 
Section 4, by using the aforementioned index, it is feasible 
to create URI sequences (including complementary and 
“mixed-path” URI sequences) for the same entity from 
several data sets by following paths of any length. 

4 The steps and algorithms for creating URI 
sequences and embeddings 

Here, in Sub-section 4.1, we provide some required 
notations, in Sub-sections 4.2, 4.3 and 4.4, we describe the 
functionality and all the steps of LODVec, and in Sub-
section 4.5, we provide more details about the web 
application of LODVec. Finally, the steps of LODVec for 
our running example are depicted in Figure 2. 

4.1 Notations 

Table 1 represents notations that are required for the 
algorithm that creates the URI sequences (in Sub-section 
4.3.2), and metadata for aiding the user to select the desired 
data sets and the basic graph patterns. The first one denotes 
the data sets containing a triple t , while the second one 
indicates the provenance of an entity u , i.e., which data sets 
contain at least one triple, that includes u . The third one 

denotes the data sets that contain at least one entity 'u E . 
The fourth formula indicates the number of entities 'E  that 
can be found in a single data set iD , whereas the fifth 

formula shows all the objects (or values) of a given entity-
property pair (e.g., all the values of :Blackout-:lyrics). The 
sixth formula shows the frequency (popularity) of a URI in 
the whole graph, i.e., the number of triples containing a URI 
u , either as a subject or as an object. The seventh formula 
denotes the set of object properties (or edges) for an entity 
e , whereas the eighth formula corresponds to the union of 
all properties of entities 'E . Finally, the last formula 
denotes the number of entities for which there is at least one 
triple that contains a property p . 
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Figure 2 The steps of LODVec approach for our running example 

 

Table 1 Notations required for creating the URI sequences   

ID Notation Formula 

1 Provenance of a triple t    ( ) =  | = , , ,i U iprov t D D t s p o t T D     

2 Provenance of an entity u    ( ) =  | , ,i U idsets u D D u p o T D    

3 Provenance of a set of entities 'E  'E E  = ( )'E u E
dsets dsets u   

4 Coverage of a Data set given a set of entities 'E   'E E     , =  | ( )' '
i icovD D E u E D dsets u   

5 All Objects (URIs) of an entity-property pair  ( , ) =  | , , UObjects u p o u p o T    

6 Number of Triples containing an entity u   ( ) =  | = , , , =   =Ufreq u t T t s p o s u or o u    

7 Properties of an Entity u   ( ) =  | , , UProp u p P u p o T    

8 Properties of a set of Entities 'E  ( 'E E ) = ( )'' u EE
Prop Prop u

  

9 Coverage of Properties given 'E  ( 'E E )    , =  | , ,' '
UcovP p E u E u p o T    
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4.2 Step A. Input and configuration 

Below, we present the sub-steps of Step A which are 
followed for creating the desired configuration. 

Step A1: The first step is to select the desired entities selE . 

They can be given in three different formats a) as a list of URIs 
(e.g., dbp:Blackout), b) as a list of entities in plain text (e.g., 
“Blackout”), or c) just a URI that represents an RDF class or a 
category (e.g., http://dbpedia.org/ontology/BasketballPlayer). 
In the latter case, LODVec retrieves automatically the desired 
URIs, by sending a query to DBpedia SPARQL endpoint. In 
the running example of Figure 2 the input is the URIs of 
several music albums. 

Step A2: The next step is to choose the data sets selD . In 

particular, LODVec shows the list of data sets that contain 
triples for the input entities (i.e., the data sets Esel

dsets ),  

in descending order according to their  ,i selcovD D E . 

Therefore, the first data set in this list contains data for the 
maximum number of entities that belong to selE  (comparing 

to any other data set). The user can select to use either all 
the data sets Esel

dsets , or any subset sel Esel
D dsets . In 

Figure 2, we selected to use all the available data sets 
( 1D , 2D , 3D ) of our example (see Figure 1). 

Step A3: LODVec also provides an interactive way for 
aiding the user to select the desired basic graph patterns, i.e., 

selBGP . Concerning patterns of length = 1n , i.e., ? , ,? 1e p o , 

it shows each property Esel
p Prop  (that belongs also to  

data sets selD ), in descending order with respect to their 

 , selcovP p E . For each Esel
p Prop , the user has three 

possible options. The first one is to use the property p , i.e., for 

creating the basic graph pattern ? , ,? 1e p o . The second option 

is to explore the sub-paths that pass from this property, i.e., for 
creating larger URI sequences, whereas the third option is to 
ignore the property. 

By selecting the second option, LODVec follows larger 
paths for creating patterns of length > 1n . For instance, 
suppose that the user selects to explore the sub-paths of length 

= 2n , for a property, say 1p . In this case, our target is to 

create patterns like ? , 1,? 1e p o , ? 1, 2,? 2o p o . For this 

reason, LODVec selects randomly a small sample of entities, 
say sample selE E , and for each samplee E , it finds all the 

objects ( , 1)u Objects e p . For example, if 1p  corresponds 

to: band, it finds the corresponding band for each entity 

samplee E . Afterwards for each such object u  (e.g., a band), 

LODVec finds its outgoing properties, i.e., the set ( )Prop u , 

and then it shows to the user the properties for these objects. 
The user should again select either to ignore or to use a 
property, say 2p , for creating the patterns. For instance,  

 
 

suppose that a user selects to use a property 2 =:p guitarist . 

In this case, LODVec will create all the URI sequences of the 
pattern ? ,: ,? 1e band o , ? 1,: ,? 2o guitarist o , i.e., URI 

sequences including the guitarist of a band of a music album. 
On the contrary, for a property 2p , one has also the option to 

explore its sub-paths, i.e., for creating URI sequences for 
> 2n , and so forth. 

In Figure 2 (see the corresponding table in the upper 
middle side), we selected to create URI sequences based on 
three basic graph patterns. In particular, one basic graph 
pattern of length = 3n , i.e., “the band of each album, the 
city where the band founded, and the country where that 
city is located in”, one pattern of length = 2n , i.e., “the 
band of each album and the awards won by that band”, and 
finally a pattern of length = 1n , i.e., “the persons that have 
written the lyrics of each album”. 

Step A4: The fourth step is to select the number of URI 
sequences that will be created, i.e., all the possible URIs 
sequences according to the given configuration or the top-
K  ones (see more details in Sub-section 4.3.4). In Figure 2, 
we selected to create all the possible URI sequences  
(by using the selected data sets and basic graph patterns). 

Step A5: In this step, LODVec  shows to the user the 
configuration of Steps A1–A4, and the user can click on a 
button for creating the desired URI sequences (by using the 
algorithms that are presented in Sub-section 4.3). 

4.3 Step B. Creating URI sequences of any length 

This step consists of two sub-steps, a) the conversion of the 
selected Basic Graph Patterns (given as input from the user) to 
a Pattern Graph G  (i.e., see Sub-section 4.3.1) and b) the 
creation of URI sequences, by using the desired configuration 
and the Pattern Graph G  (i.e., see Sub-section 4.3.2). 

4.3.1 Creation of pattern graph G  

Rationale: Two or more basic graph patterns can start with 
the same triple patterns, e.g., in our running example of 
Figure 2, the first two selected basic graph patterns start 
with the triple pattern  ?e, :band, ?x  . For avoiding to 

follow the same path multiple times for creating the URI 
sequences (since it can be time-consuming), we create and 
use a pattern graph G , where G BGP . 

Input: The input is the set of Basic Graph Patterns which 
are selected by the user, i.e., selBGP . 

Algorithm: Algorithm 1 shows how to exploit the 
selected Basic Graph Patterns, i.e., selBGP , for creating the 

corresponding Pattern Graph = { , }G V Ed , where V  are its 

nodes (or vertices) and Ed  denote its edges. The produced 
pattern graph of our example is shown in the right side of 
Figure 3 (and in the middle left side of Figure 2). 
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Figure 3 Execution of Algorithm 1 for the basic graph patterns of our example 

 
 

This graph corresponds to a directed acyclic graph, i.e., it has 
not directed cycles. Graph G  has a single source node, i.e., a 
node without incoming edges. As we shall see, the source node 
will be strictly replaced by an entity sele E . Any remaining 

node has exactly one incoming edge and corresponds to a 
variable (e.g., ?x ). Furthermore, it has m  sink nodes (i.e., 
nodes without outgoing edges), where m  equals the number of 
basic graph patterns that are given as input, and each sink node 
corresponds to the last variable of each basic graph pattern 
(e.g., to the variables ?z , ?w  and ?l  of the basic graph 
patterns of Figure 3). Finally, an edge corresponds to a property 
that connects two variables (or URIs). 

 

For the graph G , we use a variable for storing all its nodes, 
and a variable for storing the unique source node (see line 1 
of Algorithm 1). For each node of G  (see line 2), we use a 
Boolean variable, i.e., isSink , which becomes true for the 
sink nodes. Moreover, we use a map called edges  for each 

node v , i.e., it is a binary relationship: :edges P V , that 

has in its left side a property p P  (e.g., the property 

:band), and in its right side the node v V  (i.e., a URI), 
where that edge ends up. 

Concerning the function createPatternGraph , it 

initialises the graph G , and a new node srcNode , which 
corresponds to the single source node of G  (see lines 5–7). 
Afterwards, Algorithm 1 reads each basic graph pattern 
bgp  and sets as the current node, i.e., cNode , the source 

node (see lines 8–9). Then, it reads all the triple patterns of 
bgp , i.e., the function .bgp tpSize  denotes the number of 

triple patterns of each bgp  (line 10). 

For each triple pattern of bgp , Algorithm 1 stores its 

property in a variable p  (line 11). Afterwards, it checks if 

the property p  exists in the left side of the edges  of the 

current node (i.e., in Algorithm 1 Left  denotes the left side 

of a binary relationship). In case it is false, it creates a new 
node, i.e., tmpNode . For that node, it sets the value of 

isSink  variable to “true”, when it corresponds to the last 
variable of a bgp  (see lines 13–16). Finally, it adds to the 

edges  of the current node, a key-value pair, where the key 

is the property p  and the value is the tmpNode , it assigns 

as the current node the tmpNode  (see lines 17–18), and it 

continues with the next triple pattern. On the contrary, in 
case we have already created an outgoing edge for property 
p , Algorithm 1 sets as the current node, the node where 

this edge ends up (see lines 19–20), before continuing with 
the next triple pattern. The output is the produced graph G  
(see line 21). 
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Example: Figure 3 shows the graph G  of our running 
example after each iteration of lines 8–20 (see Algorithm 1). 
By using the green colour, we represent the edges  
and nodes that are created in each iteration. At first, we  
read the triple patterns of the first bgp , starting with  

 ?e, :band, ?x  . We create the edge :band and a node for 

variable ?x, which becomes the current node. For the  
second triple pattern, we create the edge :city, which 
connects the current node ?x with the new node ?y, whereas 
for the last triple pattern, the edge :country is created, which 
connects the current node ?y and the new sink node ?z. For 
the second basic graph pattern, we read its first triple 
pattern, i.e.,  ?e, :band, ?x  , however, we have already 

created an edge that connects these two variables. 
Therefore, we set ?x as the current node (i.e., we use lines 
19–20). Regarding its second (and last) triple pattern, we 
create the edge :award, that connects ?x with a new sink 
node ?w. Finally, we read the third bgp , where a single 

edge is created between the source node and a newly created 
(sink) node ?l . 

Time and Space Complexity: The time complexity of 

Algorithm 1 is  | | * | |sel avgBGP tpSize , where avgtpSize  is 

the average number of triple patterns for all the basic  
graph patterns. The space complexity is  | | | |V Ed , 

since we keep in memory all the nodes and edges of Pattern 
Graph G . 

4.3.2 Algorithm for creating URI sequences 

Rationale: Algorithm 2 creates all the possible URI sequences 
according to a given configuration, by exploiting the index of  
LODsyndesis. Since that index stores all the triples (and their 
provenance) for a given entity from hundreds of data sets, we 
can easily create both complementary and “mixed-path” URI 
sequences. 

Input: Algorithm 2 uses as input the selected entities Esel, 
the pattern graph G and the selected data sets, i.e., Dsel. 

Algorithm: Algorithm 2 traverses the pattern graph G in a 
depth first search way, for creating the URI sequences for each 
entity sele E  separately, through the recursive function 

createSeqs . This function takes as input a URI u, and the 

corresponding node in the graph G, and produces all the URI 
sequences starting with u, with respect to the pattern graph G. 

Each time we select an entity sele E , we set the source 

node of G as the current node, and we call the function 
createSeqs , for creating the desired URI sequences for e  

(lines 1–3). Concerning the depth-first traversal that is 
followed, we start from the source node of G, and we continue 
forward by exploring the nodes of a specific path, until we 
reach a sink node. In the latter case, we move backwards to the 
same path, for finding other nodes to traverse (i.e., by 
backtracking). Moreover, we assume that the left edges are 
always chosen before the right edges, e.g., for the pattern graph 
of Figure 2, we will visit the nodes in the following order: 
? ,? ,? ,? ,? ,?e l x y z w . 
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Regarding the steps of createSeqs , it iterates over the direct 

properties (or edges) of the current node of graph G  (which 
corresponds to the input URI u ). For each edge  
(or property) p  of the current node it reads the index entry 

of u  (i.e., by using the index of LODsyndesis), for 
retrieving all the objects of the entity-property pair ( , )u p . 

Afterwards, for each ( , )o Objects u p , it checks the 

provenance of the triple , ,u p o  .  Specifically, the lines 

12–18 are executed only if the triple , ,u p o   occurs at least 

in one of the selected data sets selD . In case it holds, it 

assigns the node where the property p ends up as the next 
node (line 12), i.e., the node which corresponds to the object 
o . Afterwards, it checks if the next node corresponds to a 
sink node. In case it is true, it adds to the sequences of u  
the triple , ,u p o   (lines 13–14). 

On the contrary, if the current node is not a sink node, it 
calls the function createSeqs  by giving as input the object 

o , and the nextNode . In this way, it visits in a depth-first 
search way the URI o  (lines 15–16), for creating all the 
sub-paths that start with the URI o . After the end of each 
recursion, it concatenates all the produced sub-paths that 
start with the URI o  with the triple , ,u p o   (lines 17–18). 

Finally, the produced URI sequences are returned as output 
(lines 19). 

The same process is followed for each entity sele E , 

and the produced URI sequences are added to U selSeq E  

(line 4), i.e., the set of URI sequences of all the entities selE . 

The set U selSeq E , i.e., the output of the whole process  

(line 5), will be used as input for creating the embeddings 
for the entities selE . 

Example: In the middle part of Figure 2, we show the 
order (see the numbers near to each arrow) that is followed 
for creating the URI sequences for the entity 
? =e :Blackout, according to the graph G  (see the graph in 
the middle left side of Figure 2). A red arrow indicates  
that a recursion starts (i.e., a new index entry is accessed), 
and a blue arrow indicates the end of a recursion.  
For the entity :Blackout, Algorithm 2 calls the function 

(createSeqs :Blackout, . )G sourceNode , i.e., :Blackout 

replaces the source node of G . Moreover, in this recursion, 
the algorithm will read the index entry of the input entity, 
i.e., :Blackout (see the arrow Start). 

By traversing the pattern graph G  in a depth first search 
way, it visits the node ?l  through the property =p :lyrics. 

Therefore, it retrieves (from the index entry of :Blackout) all 
the objects of the entity-property pair :Blackout-:lyrics, and 
it checks the provenance of each triple. Since we have 
selected to use all the data sets, it creates the first two URI 
sequences (see arrows 1–5 in Figure 2), which correspond to 
all the results of the first basic graph pattern ?e , lyrics, 

?l . Then, it visits the node ? =x :Scorpions through the  

 
 

property =p “:band” (see arrows 6–7). However, since ?x  

is not a sink node in graph G , we call the function 
createSeqs  for the URI =u :Scorpions (see the red dotted 

arrow 8 in Figure 2). In this way, we will create all the sub-
paths that start with the URI u , i.e., we read the index entry 
of the URI :Scorpions. In particular, we iterate over the 
values of the pair :Scorpions-:city for finding the values  
of ?y  variable, i.e., ? =y :Hanover. Since ?y  does not 

correspond to a sink node, we move forward (in a depth-
first search way), i.e., we call the function createSeqs  for 

=u :Hanover. 
Therefore, a new recursion starts (see arrows 9–11), where 

we visit the next node ?z , which is replaced by the URI 
:Germany (see arrows 12–14). Since ?z  is a sink node, the 
recursion ends (see the blue dotted arrow 15), and we  
return the URI sequence of this sub-path, i.e., 
 :Hanover,:country,:Germany  . Afterwards, we return to the 
previous node, i.e., ?x =:Scorpions, where we concatenate  
the aforementioned URI sequence with the triple 
 :Scorpions,:city,:Hanover   (arrow 16). Then, we visit  
the node ?w  through the property =p :award, and  

we add to the URI sequences of :Scorpions the triple 
 :Scorpions,:award,:EchoAward   (arrows 17–19). 

Finally, we return back to the recursive call of the desired 
entity (arrow 20), i.e., :Blackout, where we concatenate the two 
produced URI sequences that start with the URI :Scorpions, 
with the sequence  :Blackout,:band,:Scorpions  . In this way, 

we create the last two URI sequences for :Blackout (arrows 
21–22). These two sequences correspond to “mixed-path” URI 
sequences, since they contain triples derived from at least two 
data sets (see the provenance of triples in Figure 1). 

Time and Space Complexity: The time complexity of 

Algorithm 2 is   | | * | | | |selE V Ed , i.e., for each entity 

sele E , we visit all the nodes and edges of the  

pattern graph G . The space complexity is 

 | | | | | |U selSeq E V Ed  , since we keep in memory all 

the produced URI sequences, and the pattern graph G . 

4.3.3 Avoiding to visit the same sub-paths  
multiple times 

Limitation: A major limitation of Algorithm 2 is that we can 
follow the same “sub-paths” multiple times for creating the 
desired URI sequences for two or more given entities. In 
this way, the number of index entries that we read and the 
number of recursions will be increased. For instance, 
suppose that we want to create URI sequences for two  
(or more) music albums from the same band, e.g., say the 
music albums “Blackout” and “Crazy World” of the band 
“Scorpions”. In this case, for the first or/and the second 
basic graph pattern (see Figure 2), we will read the index 
entries of “Scorpions” and “Hanover” twice (i.e., we will  
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need three recursions for each album), whereas the 
corresponding URI sequences for these two albums will 
differ only on the subject of the first triple. 

Cache mechanism – storing sub-paths in memory:  
For avoiding to visit one or more “sub-paths” multiple times, 
for each node v  of the pattern graph G , we propose  
to store the URIs which have replaced this node (variable) 
previously, and also all the URI sequences that have been 
produced for each URI. In particular, we can use a function for 
each node v  of G , :U Urep U Seq , where for a u U , 

. ( ) = ( )U Uv rep u Seq u . Therefore, it is a map having as  

a key a URI u  and as a value the sub-paths starting with u . 
For example, for the variable (or node) ?x , 
? . (: )Ux rep Scorpions  contains as value the following two 

sequences starting with the URI :Scorpions, i) 
 :Scorpions,:city, :Hanover  ,  :Hanover,:country,:Germany   
and ii)  :Scorpions,:award,:EchoAward  , whereas for the 

node ?y , ? . (: )Uy rep Hanover  contains a single URI sequence, 

i.e.,  :Hanover,:country,:Germany  . 

Algorithm: For enabling the “cache” mechanism,  
we can replace the “if-else” statement of lines 13–18 of 
Algorithm 2, with the lines 1–10 of Algorithm 3. In 
particular, Algorithm 3 keeps in memory the produced URI 
sequences for the sub-paths that start with o  (see line 8), 
and each time it checks if the next node has been already 
replaced by the URI o . In such a case, it retrieves all the 
URI sequences for the already explored “sub-paths” through 
the map Urep  (and not by calling the function createSeqs  

in a recursive way), i.e., see lines 4–5 in Algorithm 3. 

 

For instance, in Figure 4 suppose that we have created the 
URI sequences for the album :Blackout, therefore, we have 
stored in memory all the sub-paths that start with the entity 
:Scorpions (see the table in the lower left side of Figure 4). 
Therefore, for the second album, i.e., “Crazy World” of 
:Scorpions, we can retrieve from the map Urep , all the  

sub-paths starting with the URI :Scorpions. In this way,  
in Figure 4 we need only a single recursion for creating  
 

the URI sequences for the album :Crazy World (instead of 
three recursions that we needed for the :Blackout), since we 
do not need to read the index entries of :Scorpions and 
:Hanover. In Section 5, we provide experiments showing the 
efficiency of this “cache” mechanism. 

4.3.4 Additional functionality of LODVec 

LODVec can produce K  URI sequences, instead of all the 
possible ones according to the given configuration (i.e., 
according to the selected basic graph patterns and data sets). 
In particular, LODVec enables the production of K  random 
URI sequences for each entity e . Moreover, it can produce 
the top- K  URI sequences with respect to the frequency 

( )freq u  of the last URI of each sequence, either in 

ascending or in descending order, e.g., the descending order 
means that LODVec will create the K  URI sequences 
whose last URI is a very “popular” URI. For retrieving the 
frequency ( )freq u  of a URI u , we send a request to the 

REST API of LODsyndesis (Mountantonakis and Tzitzikas, 
2018b). 

4.4 Step C. Creation and exploitation of embeddings 

The final step (see Step C of Figure 2 is to exploit the 
produced set of URI sequences U selSeq E  (see the table in 

the lower left side of Figure 2) for creating one vector for 
each entity e  (see the table in the lower middle side of 
Figure 2). For this reason, we use indicatively the word2vec 
implementation of dl4j library, which produces as output a 
single vector ( )v e  for each sele E . The produced vectors 

can be exploited for several tasks, such as (i) machine-
learning tasks, and (ii) similarity tasks. 

Regarding task (i), the user should also provide as input, in 
a “.tsv” (tab separated values) file, the corresponding 
categorical or continuous variable ( )Y e , for each entity e . The 

vectors which are produced through this process, can be 
exported in “.arff” format for performing either classification or 
regression through WEKA API. Moreover, the produced “.arff” 
file can be uploaded to LODVec, for retrieving immediately 
the classification or regression predictions (by exploiting 
WEKA API). 

Concerning task (ii), the vectors can be downloaded in 
“.txt” format, which is directly accessible from dl4j API. 
The aforementioned API is also used from LODVec for 
producing the top- K  related entities to a given entity. 

4.5 Application and demo 

The online application of LODVec is accessible at 
https://demos.isl.ics.forth.gr/lodvec/, whereas a demo video 
which presents an example for a set of music albums is 
available at https://youtu.be/w8Cnuz4knxE. In particular, 
this video shows how to create the URI sequences and the 
embeddings, and how to use them for a classification task, 
and for finding the top-10 similar music albums to a given 
album. 
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Figure 4 Storing already explored sub-paths in memory 

 
 

5 Experimental evaluation 

Here, we evaluate the impact of using multiple data sets for 
creating URI embeddings in several machine-learning tasks, 
whereas we evaluate the efficiency of the proposed approach. 
First, in Sub-section 5.1, we present the evaluation data sets, 
whereas in Sub-section 5.2, we provide details about the 
hardware and the parameters of word2vec. In Sub-section 5.3, 
we discuss the efficiency of LODVec, whereas in Sub-section 
5.4, we introduce experiments for classification and regression 
tasks. Moreover, in Sub-section 5.5, we show experimental 
results for the task of finding similar entities. Finally, all the 
evaluation data sets and the experimental results can be 
downloaded from http://islcatalog.ics.forth.gr/dataset/lodvec. 

5.1 Evaluation data sets 

Table 2 introduces for each evaluation data set the number 
of entities (URIs) that it contains, the configurations that we 
have selected for creating the URI embeddings, and the 
tasks where we use each evaluation data set. Specifically, 
we perform experiments that concern the efficiency (EFF) 
of LODVec, whereas we also evaluate our approach for that 
tasks of Classification (CF) and regression (REG) and for 
finding similar entities (SIM). Below, we provide more 
details for each evaluation data set. 

5.1.1 Movies data set 

We use the Metacritic Movies evaluation data set, derived 
from (Ristoski et al., 2016). It contains the DBpedia URIs of 
2000 movies, and an average rating of all time reviews for 
each movie. Concerning the ratings, 1000 of them have high 
rating ( > 60 ), and the remaining 1000 ones have low rating 
( < 40 ). We use three configurations (i.e., Conf. I to Conf. 
III in Table 2). In particular, we create URI embeddings by 
following all the possible single-edge paths (i.e., Conf. I). 
Moreover, we combine Conf. I by creating also larger URI 
sequences that include “for each actor of a movie, its 
rdf:type, categories and awards” (i.e., Conf. II), and finally, 
we enrich Conf. II with URI sequences that are created by 
following three-edges paths, i.e., they also include “for each 
actor of a movie, its hometown, and the country where that 
town is located in” (see Conf. III). 

All these configurations are used for evaluating the 
efficiency of LODVec (in Sub-section 5.3), whereas  
the embeddings of Conf. I and Conf. II are also used in  
Sub-section 5.4.1, for a binary classification (i.e., to predict 
if a movie has a high or a low rating) and for a regression 
task (i.e., to predict the exact rating of each movie). Finally, 
the produced embeddings of Conf. I are also used  
for finding the most similar movies for a given movie  
Sub-section 5.5. 

Table 2 Configuration (basic graph patterns) that we selected for each evaluation data set  

Evaluation data set URIs Config. ID Basic graph patterns of this configuration Used for tasks 

Movies 2000 Conf. I All Single Edge Paths EFF, CF, REG, SIM

Movies 2000 Conf. II Conf. I and 1 1 2, ,? , ? , ,?e actor o o award o  and 

1 1 3, ,? , ? , ,?e actor o o type o  and 1 1 4, ,? , ? , ,?e actor o o subject o  

EFF, CF, REG 

Movies 2000 Conf. III Conf. II and 1 1 5, ,? , ? , ,?e actor o o hometown o , 5 6? , ,?o country o  EFF 

Music Albums 1600 Conf. IV All Single Edge Paths EFF, CF, REG 

Music Albums 1600 Conf. V Conf. IV and 1 1 2, ,? , ? , ,?e artist o o p o  EFF, CF, REG 

Music Albums 1600 Conf. VI Conf. V and 1, ,?e artist o , 1 3? , ,? ,o recordLabel o  3 4? , ,?o country o  EFF 

Top NBA Players 450 Conf. VII All Single Edge Paths EFF, CF, REG 

Basketball Players 12,250 Conf. VIII All Single Edge Paths EFF, SIM 
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5.1.2 Music albums data set 

We use the Metacritic Music Albums data set (Ristoski et al., 
2016), which contains the DBpedia URIs of 1600 music 
albums, and for each album its average user rating. Regarding 
the ratings, 800 of them have high rating ( > 79 ), and the other 
800 ones have low rating ( < 63 ). For these albums, we create 
URI embeddings for three configurations (Conf. IV to Conf. VI 
in Table 2). Regarding Conf. IV, we create all the possible 
single-edge URI sequences. Concerning Conf. V, we use the 
URI sequences of Conf. IV, whereas we also create URI 
sequences by following two edges paths, i.e., “the artist of each 
album and all the triples for each artist”. Finally, in Conf. VI, 
we use all the URI sequences of the previous configuration, 
and we also create sequences including paths of three  
edges, i.e., “the artist of each music album, the record label  
of each artist and the country where that record label is  
located in”. 

First, we evaluate the efficiency by using these three 
configurations (in Sub-section 5.3). Moreover, in §  5.4.2, 

we evaluate the produced embeddings of Conf. IV and Conf. 
V in a binary classification task, i.e., for predicting if a 
music album has high or low rating, and in a regression 
task, i.e., for predicting the exact rating of each album. 

5.1.3 Basketball data sets 

We use the list of 500 Greatest NBA Players of All Time (until 
2011) according to SLAM magazine (https://www.basketball-
reference.com/awards/slam_500_greatest.html). We have 
divided the aforementioned players into the following two 
groups: the players in positions 1–225, and the players in 
positions 276–500. Therefore, we use 450 players (out of 500), 
i.e., see Conf. VII in Table 2. For each player, we have 
collected its DBpedia URI and its corresponding position in the 
list of the top NBA players. For these players, we create URI 
sequences and embeddings by using only their direct 
neighbourhood, i.e., we follow all the single-edge paths. The 
resulted embeddings are used for classification and regression 
(in Sub-section 5.4.3). The target of the binary classification is 
to predict if a player in that list belongs in a position in the 
range [1,225] or in the range [276,500]. On the other hand, the 
target of the regression task is to predict the exact position of 
each NBA player in the list of the top-500 players of all time. 

Moreover, we have also downloaded the DBpedia URIs 
of 12,250 basketball players (all the URIs of the class 
http://dbpedia.org/ontology/BasketballPlayer), i.e., (see 
Conf. VIII in Table 2). Again, we create all the URI 
sequences of single edge paths for each player, and the 
produced embeddings are used for evaluating the 
effectiveness of finding the most similar basketball players 
to a given player (in Sub-section 5.5). 

5.2 Setup 

Here, we introduce the hardware setup and the parameters 
that we used for creating the embeddings through word2vec. 

5.2.1 Hardware setup 

All the experiments were performed on a single machine 
with an i5 core, 8 GB RAM, and 1 TB disc space. Moreover, 
the indexes and services of LODsyndesis, which are used in 
our approach, are hosted in a single machine of okeanos 
cloud computing service (https://okeanos.grnet.gr/) with  
8 cores, 8GB RAM and 60 GB disc space. 

5.2.2 Word2vec parameters 

For building our word2vec model, we use the skip-gram model 
of dl4j library, we exclude URIs existing < 5  times in the 
produced sequences ( = 5minWordFrequency ), and we use 

10 iterations. We selected the window size parameter to be 2 
( = 2windowSize ) for the configurations including URI 
sequences with only single-edge paths (Conf. I, IV, VII and 
VIII), and 4  ( = 4windowSize ) for the remaining 
configurations, i.e., they also contain URI sequences produced 
by following larger paths. For each entity e , we produce  
a single vector ( )v e  with 100 dimensions ( = 100layerSize ). 

We expect that similar entities (e.g., albums with similar rating) 
will be placed in a close position in the vector space. 

5.3 Efficiency of creating URI sequences and 
embeddings 

For the efficiency experiments, we create URI sequences by 
using all the RDF data sets of LODsyndesis, for all the 
configurations of Table 2. The objective is to evaluate the gain 
of using the “cache” mechanism (see Sub-section 4.3.3), i.e., to 
evaluate the decrease a) in the execution time and b) in the 
number of index entries that we need to read (number of 
recursions). Moreover, we provide measurements about the 
efficiency of the whole process. 

Movies: Figure 5 shows the number of URI sequences 
that were produced for each configuration, i.e., by following 
larger paths the number of sequences increases (see also the 
third column of Table 3), whereas as we can see in Figure 6, 
the execution time increases, too. However, by using the 
“cache” mechanism (see Figure 6), we achieved 2.02  

speedup for Conf. II, i.e., URI sequences including also two-
edges paths, and 3.7  speedup for  Conf. III, i.e., by 
following also three-edges paths. Indicatively, for creating 
URI sequences for both the movie and its actors (i.e., Conf. 
II), we needed 17.4 minutes. Concerning the number of 
recursions (see Figure 7), by using the “cache” mechanism, 
we needed on average 5.1 recursions per movie (instead of 
9.18) for Conf. II, and 6 recursions per movie (instead of 15) 
for Conf. III. Regarding the total execution time of these 
configurations, we can see in Table 3 (see the rows for 
movies) that the creation time of Pattern Graph G  (see the 
fourth column of Table 3) is very fast in all cases, whereas 
the execution time of creating the embeddings (see the sixth 
column of Table 3) increases as the number of URI 
sequences grows. 
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Table 3 Execution time for different configurations   

Evaluation data set Configuration 
| ( ) |USeq e  

average 
Pattern graph 
creation time 

URI sequences 
creation time 

Embeddings 
creation time 

Total  
time 

Movies Conf. I (1-edge paths) 170.1 0.001 min 3.5 min 1.7 min 5.2 min 

Movies Conf. II (2-edges paths) 397.9 0.002 min 17.4 min 4.0 min 21.4 min 

Movies Conf. III (3-edges paths) 501.8 0.002 min 24.5 min 6.8 min 31.3 min 

Music albums Conf. IV (1-edge paths) 35.9 0.001 min 0.9 min 0.3 min 1.2 min 

Music albums Conf. V (2-edges paths) 365.0 0.002 min 2.2 min 3.3 min 5.5 min 

Music albums Conf. VI (3-edges paths) 377.8 0.003 min 3.1 min 3.6 min 6.7 min 

Top NBA players Conf. VII (1-edge paths) 163.2 0.001 min 0.4 min 0.3 min 0.7 min 

Basket players Conf. VIII (1-edge paths) 54.8 0.001 min 6.1 min 4.1 min 10.2 min 

 
Figure 5 Average number of URI sequences per movie for each 

configuration 

 

Figure 6 Total execution time for movies data set for each 
configuration 

 

Figure 7 Average number of Algorithm 2 recursions per movie 
for each configuration 

 

Music albums: Figures 8, 9 and 10 show the number of URI 
sequences, the execution time and the number of recursions for 
each configuration (i.e., Conf. IV to Conf. VI). Similarly to 
movies data set, the execution time (see Figure 9) and the 
number of recursions (see Figure 10) decreased by using the 
“cache” mechanism, i.e., for Conf. V we needed on average 
1.75 recursions per album (instead of 2) and we achieved 
1.46  speedup, whereas for Conf. VI, we performed 2.68 

recursions (instead of 3.74) and we achieved 3.48  speedup. 
Indicatively, we needed 2.16 minutes for creating URI 
sequences for each music album and its artist. Finally, we can 
observe in Table 3 (see the rows for music albums), that the 
time for creating the embeddings is increased as the number of 
URI sequences grows. 

Figure 8 Average number of URI sequences per album for each 
configuration 

 

Figure 9 Total execution time for music albums data set for each 
configuration 
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Figure 10 Average number of Algorithm 2 recursions per music 
album for each configuration 

 

Basketball data sets: In the last two rows of Table 3, we can 
see the execution time for the two data sets for basketball. 
For the first case, where the input is 450 entities (see the 
row for top NBA players in Table 3), we managed to 
complete the whole process very fast, i.e., in less than 1 
minute. On the contrary, in the second case (see the last row 
of Table 3)), we needed over 10 minutes, since the input is 
much larger, i.e., 12,250 entities. 

More efficiency experiments: In Sub-section 5.4, we 
provide more efficiency experiments for each evaluation 
data set, by using different subsets of RDF data sets, e.g., by 
using a single or pairs of RDF data sets, instead of all the 
available RDF data sets of  LODsyndesis. 

5.4 Task A. Classification and regression 

In this subsection, we introduce the results for the tasks of 
(binary) classification and regression. 

Machine learning models and metrics: For performing 
classification and regression, the vectors produced by 
LODVec are given as input in WEKA API, by using a  
10-fold cross validation (Witten et al., 2011). 

Regarding Classification (CF), we use the default 
implementation of Random Forest (RF) and Support Vector 
Machine (SMO) of WEKA. For each model, we measure 
the accuracy percentage (percentage of correct predictions), 
i.e., the goal is to maximise that percentage. Concerning 
Regression (Reg), we use the default implementation of 
Linear Regression (LR) and  Random Forest (RF) of 
WEKA, and we measure the root mean squared error 
(RMSE), i.e., the target is to minimise the RMSE value. 
Finally, we measure the accuracy and the RMSE for  
the trivial Vote method, that selects randomly a class  
(in classification) and a rating (in regression) for each entity. 

Results for the evaluation data sets: Tables 4, 5 and 6 show 
several statistics and experiments for movies, music albums 
and top NBA players, respectively. In each table, the first 
column indicates the ID of each row, whereas the second and 
the third one show the subset of RDF data sets and the 
configuration, which were used for creating the embeddings, 
respectively. We should note that for each configuration, we 
use eight different subsets (i.e., combinations) of RDF data sets 
for creating the embeddings. For each of these subsets, we 
present in the fourth column the average produced URI 
sequences per entity, and in the fifth column the total execution 
time of creating both the URI sequences and the embeddings. 
The columns sixth and seventh show the accuracy of the 
classification task (CF) and the last two columns show the 
RMSE value for the regression task (REG), by using different 
models. Below, we present the results for each evaluation  
data set. 

Table 4 Classification and regression experiments on movies data set  

Row ID RDF Data sets Used Config. Name 
| ( ) |USeq e  

Average 
Total  
Time 

RF  
(CF) 

SVM  
(CF) 

RF  
(REG) 

LR  
(REG) 

1 DBpedia (DB) Conf. I (1-edge paths) 23.8 2.7 min 71.00% 71.14% 20.66 20.02 

2 Freebase (FR) Conf. I (1-edge paths) 112.0 3.6 min 81.78% 82.02% 16.47 16.37 

3 Wikidata (WK) Conf. I (1-edge paths) 22.5 2.5 min 71.80% 70.28% 20.19 20.81 

4 DB,FR Conf. I (1-edge paths) 38.3 3.7 min 82.41% 82.51% 16.45 16.11 

5 DB,WK Conf. I (1-edge paths) 132.0 2.8 min 74.90% 74.92% 16.76 19.18 

6 FR,WK Conf. I (1-edge paths) 129.0 3.8 min 82.48% 83.32% 16.53 16.25 

7 DB,FR,WK Conf. I (1-edge paths) 144.7 4.2 min 82.54% 84.10% 16.45 16.01 

8 All 14 data sets Conf. I (1-edge paths) 170.1 5.2 min 82.61% 84.70% 16.40 15.57 
9 All 14 data sets Conf. I (top-30 desc) 30.0 121.1 min 75.10% 75.86% 19.23 19.07 

10 All 14 data sets Conf. I (top-30 asc) 30.0 121.1 min 72.70% 72.50% 19.73 19.58 

11 All 14 data sets Conf. I (top-30 rand) 30.0 5.0 min 71.93% 73.10% 20.44 19.86 

12 DBpedia (DB) Conf. II (2-edges paths) 106.9 17.6 min 68.27% 70.92% 21.00 20.46 

13 Freebase (FR) Conf. II (2-edges paths) 152.9 17.9 min 77.00% 78.74% 18.70 17.20 

14 Wikidata (WK) Conf. II (2-edges paths) 54.2 16.2 min 71.90% 71.74% 20.46 19.99 

15 DB,FR Conf. II (2-edges paths) 256.3 19.2 min 74.10% 76.51% 19.59 17.95 

16 DB,WK Conf. II (2-edges paths) 125.3 17.6 min 68.92% 72.71% 20.71 19.97 

17 FR,WK Conf. II (2-edges paths) 172.0 17.8 min 76.08% 77.82% 19.08 17.59 

18 DB,FR,WK Conf. II (2-edges paths) 272.5 19.8 min 74.87% 77.16% 19.48 17.81 

19 All 14 data sets Conf. II (2-edges paths) 397.9 21.4 min 72.94% 75.63% 19.81 18.36 
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5.4.1 Results for movies 

In rows with ID 1–11 of Table 4, we show the results by 
following only single-edge paths, i.e., by using Conf. I, 
whereas the rows with ID 12–19 present the results by 
following also larger paths, i.e., by using Conf. II. We can see 
that the average number of URI sequences and the execution 
time increases as we add more data sets (see the fourth and 
fifth column of Table 2). For example, for Conf. I, by using 
DBpedia (see row with ID 1) we needed 2.7 minutes and we 
created on average 23.8 URI sequences per movie, whereas 
by using all the available RDF data sets of LODsyndesis (see 
row with ID 8), the execution time was 5.5 minutes and the 
number of average URI sequences was 170.1. 

Classification and regression results: First, for the 
trivial Vote method, we obtained 50%  accuracy (CF), and 
the RMSE value was 23.1 (REG). Concerning Conf. I, the 
RDF data set with the highest accuracy and the lowest 
RMSE is FreeBase (Bollacker et al., 2008) (see row with  
ID 2), i.e., we obtained 82% accuracy through SVM model, 
whereas its RMSE value was 16.37 (through LR model). 
The corresponding percentage for DBpedia and Wikidata 
were much smaller. However, by taking each pair of these 3 
data sets (see rows with ID 4–6), the accuracy increased, 
and the RMSE value decreased in all cases (versus using 
only one data set from each pair). Certainly, by using only 
FreeBase, we achieved better results comparing to use both 
DBpedia and Wikidata, which seems rational, since from 
Freebase we created a larger number of sequences. 
However, by combining Freebase with either  DBpedia or 
Wikidata, or by using all 3 data sets (these combinations are 
feasible due to cross-data set identity reasoning), the results 
improved. By using all the 14 RDF data sets (out of 400 
data sets) containing data about these movies, we achieved 
the highest accuracy (84.7%) and the lowest RMSE (15.57). 

Regarding the creation of the top- K  URI sequences, we 
show some indicative experiments for Conf. I in rows with 
ID 9–11 of Table 4. By creating only the top-30 URI 
sequences according to objects frequency for each movie in 
descending order (i.e., triples with the 30 most popular 
objects per movie), we achieved higher accuracy lower 
RMSE, comparing to a random or an ascending order. 
However, the creation time of desc and asc is slower versus 
the other cases, since we send several requests to  
 

LODsyndesis REST API (Mountantonakis and Tzitzikas, 
2018b) for retrieving the frequency of each URI which 
occurs as the last object in each URI sequence. 

Concerning the creation of larger URI sequences  
(for including more information for the actors of each 
movie), we obtained worse results comparing to the case of 
following only single-edge paths (i.e., see rows with  
ID 12–19 of Table 4). Only for the case of Wikidata we 
obtained higher accuracy and lower RMSE, by following 
also two-edges paths (see rows with ID 3 and 14). 

Finally, for the classification task SVM outperformed RF 
in most cases, while for the regression task, LR was 
generally more effective than RF.  

5.4.2 Results for music albums 

In rows with ID 1–8 of Table 5, we can see experiments by 
creating embeddings only by following single-edge paths 
(see  Conf. IV in Table 2), whereas in rows with ID 9–16 we 
present experiments by following larger paths (see  Conf. V 
in Table 2). Concerning Conf. IV, by using only DBpedia 
(see row with ID 1), we created on average 16.3 URI 
sequences per album, whereas by using all the data sets, we 
created 35.9. Concerning the creation time of URI 
sequences, it is very low for Conf. IV, and it increases as we 
explore larger paths (i.e., for Conf. V). 

Classification and regression results: First, for the 
trivial Vote method, we obtained 50%  accuracy, whereas 
the RMSE value was 13.95. Concerning Conf. IV (i.e., only 
single-edge paths), the RDF data set having the best 
performance for both classification and regression is 
DBpedia (see row with ID 1 in Table 5), whereas  Freebase 
is not so accurate for this task (see row with ID 2). 
Therefore, even by selecting to use exactly one RDF data 
set for movies and music albums (i.e., the same data set in 
both cases), we will not be able to obtain the best results for 
both tasks. Similarly to movies, as we add more data sets, 
the results are better for both regression and classification, 
except for the pairs containing the data set Wikidata  
(see rows with ID 5–6). By including all the 6 available data 
sets for music albums (see row with ID 8 in Table 5), we 
obtained the highest accuracy (i.e., 71.31% ) and the lowest 
RMSE value (i.e., 12.41), by using the SVM and the LR 
model, respectively. 

Table 5 Classification and regression experiments on music albums data set   

Row ID RDF Datasets Used Config. Name 
| ( ) |USeq e  

Average 
Total  
Time 

RF  
(CF) 

SVM  
(CF) 

RF  
(REG) 

LR  
(REG) 

1 DBpedia (DB) Conf. IV (1-edge paths) 16.3 0.9 min 68.15% 68.21% 12.69 12.75 

2 Freebase (FR) Conf. IV (1-edge paths) 9.2 0.7 min 57.95% 56.57% 13.66 13.74 

3 Wikidata (WK) Conf. IV (1-edge paths) 6.7 0.6 min 59.74% 61.37% 13.85 13.89 

4 DB,FR Conf. IV (1-edge paths) 25.5 0.9 min 69.30% 68.64% 12.53 12.60 

5 DB,WK Conf. IV (1-edge paths) 20.5 0.9 min 67.61% 67.61% 12.76 12.85 

6 FR,WK Conf. IV (1-edge paths) 16.0 0.7 min 56.28% 57.65% 13.70 14.00 

7 DB,FR,WK Conf. IV (1-edge paths) 29.8 1.0 min 69.40% 69.02% 12.66 12.55 

8 All 6 data sets Conf. IV (1-edge paths) 35.9 1.1 min 70.81% 71.31% 12.55 12.41 



18 M. Mountantonakis and Y. Tzitzikas  

Table 5 Classification and regression experiments on music albums data set (continued) 

Row ID RDF Datasets Used Config. Name 
| ( ) |USeq e  

Average 
Total  
Time 

RF  
(CF) 

SVM  
(CF) 

RF  
(REG) 

LR  
(REG) 

9 DBpedia (DB) Conf. V (2-edges paths) 91.4 2.5 min 68.50% 68.84% 12.77 12.62 

10 Freebase (FR) Conf. V (2-edges paths) 120.4 2.8 min 65.12% 62.78% 13.15 13.36 

11 Wikidata (WK) Conf. V (2-edges paths) 46.2 2.4 min 62.23% 61.45% 13.51 13.88 

12 DB,FR Conf. V (2-edges paths) 211.8 3.0 min 69.08% 69.2% 12.74 12.56 

13 DB,WK Conf. V (2-edges paths) 135.9 2.7 min 67.36% 69.58% 12.86 12.88 

14 FR,WK Conf. V (2-edges paths) 166.7 2.8 min 64.41% 64.70% 13.14 13.14 

15 DB,FR,WK Conf. V (2-edges paths) 256.4 3.3 min 70.09% 70.10% 12.76 12.42 

16 All 20 data sets Conf. V (2-edges paths) 365.0 5.5 min 70.93% 72.32% 12.54 12.21 

 
Concerning the embeddings of Conf. V (see rows with  
ID 9–16 in Table 5), in all cases we obtained better results 
comparing to Conf. IV. Therefore, for this evaluation data set, 
it was effective to create more URI sequences by following 
also larger paths, i.e., URI sequences containing also 
information about the artist of each album. Indicatively, by 
using Freebase we can clearly see a high increase in the 
accuracy (+7.17%), and a decrease in the RMSE value  
(–0.51), by creating larger URI sequences (see rows with  
ID 2 and 10 of Table 5). Similarly to Conf. IV, we obtained 
the best results by using all the available data sets containing 
information for both music albums and artists (see row with 
ID 16), i.e., 72.32% accuracy (CF) and 12.21 RMSE value 
(Reg). Finally, it is worth noting that 20 RDF data sets (out of 
400) contain information about the artists, whereas only 6 of 
them about music albums. Therefore, we created a multiple 
“mixed-path” URI sequences by using Conf. V. 

5.4.3 Results for top NBA players 

Table 6 shows the results for the top NBA players by using 
Conf. VII. As we can see, in all cases we needed less than 
0.7 minutes for creating URI sequences and embeddings for 
450 NBA players. 

Classification and regression results: First, by using the 
trivial Vote method of WEKA, we obtained 50%  accuracy, 
whereas the RMSE value was 153.1. Concerning classification, 
the RDF data set with the highest accuracy (72.91%) is 
Freebase (see row with ID 2). By adding more data sets, the  
 

accuracy increases in most cases, whereas the highest accuracy, 
i.e., 77.03%, obtained by producing embeddings from all the 
available RDF data sets, and by using the Random Forest 
model (see row with ID 8). Regarding regression, the RDF data 
set with the best performance is DBpedia, i.e., the RMSE value 
was 121.7, whereas we obtained again the best result by using 
all the RDF data sets and the Random Forest model (i.e., the 
RMSE was 114.4). 

5.5 Task B. Finding similar entities 

In this subsection, we introduce experiments for evaluating 
the effectiveness of the proposed approach, for retrieving 
similar entities. In particular, we selected 25 movies (from 
the set of 2000 movies), and 25 basketball players (from the 
set of 12,250 basketball players). Then, we typed in Google 
Search Engine the corresponding keywords for each movie 
(e.g., “Inception”) and each basketball player (e.g., “Magic 
Johnson”), and we retrieved manually a list of related 
movies and basketball players, respectively. Afterwards,  
we created two evaluation data sets, which can be 
downloaded from http://islcatalog.ics.forth.gr/dataset/ 
lodvec. For retrieving the list of related entities for each 
entity, we used the “People also Searched for” service of 
Google, i.e., it returns entities that have been searched for 
by people, who also searched for the focused entity (e.g., the 
movie “Inception”). For each entity, the corresponding 
(Google) list contains on average 24 related entities. 

Table 6 Classification and regression experiments on data set for top 500 NBA basketball players of all time   

Row ID RDF Datasets Used Config. Name 
| ( ) |USeq e  

Average 
Total  
Time 

RF  
(CF) 

SVM  
(CF) 

RF  
(REG) 

LR  
(REG) 

1 DBpedia (DB) Conf. VII (1-edge paths) 37.9 0.4 min 70.55% 72.51% 121.7 123.0 

2 Freebase (FR) Conf. VII (1-edge paths) 71.2 0.4 min 72.91% 71.13% 123.1 128.2 

3 Wikidata (WK) Conf. VII (1-edge paths) 18.6 0.3 min 67.01% 66.86% 130.1 141.1 

4 DB,FR Conf. VII (1-edge paths) 109.1 0.5 min 75.74% 74.02% 115.8 124.5 

5 DB,WK Conf. VII (1-edge paths) 55.6 0.4 min 71.53% 71.50% 120.0 132.2 

6 FR,WK Conf. VII (1-edge paths) 89.8 0.4 min 74.21% 74.25% 121.3 129.6 

7 DB,FR,WK Conf. VII (1-edge paths) 126.9 0.6 min 76.90% 76.62% 114.5 120.1 

8 All 15 data sets Conf. VII (1-edge paths) 163.2 0.7 min 77.03% 76.65% 114.4 122.1 
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For this experiment we used the embeddings for 2000 
movies and 12,250 basketball players (according to Conf. I 
and Conf. VIII, respectively), by using a) only DBpedia, b) 
both DBpedia and Freebase, c) DBpedia, Freebase and 
Wikidata and d) all the available RDF data sets. For finding 
the K most similar entities for each entity (i.e., movies  
and basketball players), LODVec uses the function 
“wordsNearest” from dl4j API. 

5.5.1 What we measure 

Let '
selE E  be the entities that we use. Moreover, let 

( )GoogleRelEnt e  be the set of related entities for an  

entity 'e E , derived through Google, whereas let 
( , )LODvecRelEnt e K  be the set of the top- K  related entities 

for each entity e , derived through  LODVec . 
We measure the percentage of entities which are retrieved 

as similar, from both “Google Search Engine” and LODVec, 
i.e., we measure ( , ) = ( )cmnEntities e K GoogleRelEnt e  

( , )LODvecRelEnt e K , where 1 | ( ) |K GoogleRelEnt e  , 

and the range of this formula is [0, ]K . Afterwards,  

we measure the average percentage of common  
entities, for all the entities of this experiment, i.e., 

( , )
( , ) =

| | *

'' e E
'

cmnEntities e K
cmnEntitiesPer E K

E K
 

 (i.e., a 

value with range [0, 1]). We perform experiments for three 
different values of K , i.e., = 1K  and = 3K  and = 5K . 

5.5.2 Results for movies 

In the second to fourth columns of Table 7, we can see the 
results for all the different values of K  for Movies data set. 
The best results obtained by using all the available RDF data 
sets. For example, for = 1K  (i.e., the top identified related 
movie of each movie), we achieved the highest accuracy, i.e., 
92%, by using all the data sets. It means that in 23 (out of 25) 
cases, the most related movie identified from LODVec for each 
of these 23 movies, was also included in the corresponding list 
retrieved through Google Search. On the contrary, for = 5K  
we obtained a 66.4% accuracy, i.e., on average 3.32 (out of 5) 
related movies of each movie that identified through LODVec, 
were also included in the Google Search list. As the K  
increases, the accuracy decreases for all the configurations. 
However, for any given K , when we add more data sets the 
percentage increases. Table 8 provides an indicative example 
for one of these 25 movies, i.e., the movie “WALL-E” and for 

= 5K , by using only DBpedia, 2 (out of 5) movies were in the 
list of related movies from Google (the bold ones in Table 8), 
whereas by using either Freebase and DBpedia, or these two 
data sets along with Wikidata, 4 (out of 5 movies) were at that 
list. Finally, by exploiting all the available RDF data sets, all 
the 5 movies were part of the list. 

Table 7 Results of ( , )cmnEntitiesPer E K  for evaluating the task of finding similar entities by using 25 movies and 25 basketball 
players 

Data sets (used for creating URI 
sequences and embeddings) 

= 1K   
(Movies) 

= 3K  
(Movies)

= 5K  
(Movies) 

= 1K   
(Basketball Players)

= 3K   
(Basketball Players) 

= 5K   
(Basketball Players) 

DBpedia 68.0% 56.0% 45.6% 56.0% 48.0% 47.2% 

DBpedia, Freebase 80.0% 64.0% 53.6% 60.0% 57.3% 51.2% 

DBpedia, Freebase, Wikidata 80.0% 69.3% 61.6% 88.0% 70.6% 68.0% 

All RDF data sets 92.0% 80.0% 66.4% 92.0% 78.6% 70.4% 

Table 8 Indicative example – top-5 related movies to “Wall-E” movie by using different data sets. The bold indicates that an entity 
identified as related from both LODVec and Google Search   

RDF Datasets Position 1 Position 2 Position 3 Position 4 Position 5 

DB Pink Panther 2 Ratatouille Shrek 2 Rain Mant Space Chimps 

DB,FR Finding Nemo Toy Story 2 The Incredibles Toy Story The Princess and the Frog 

DB,FR,WK Finding Nemo Toy Story 2 The Incredibles Toy Story The Princess and the Frog 

All Datasets Finding Nemo Ratatouille The Incredibles Toy Story 3 Toy Story 

Table 9 Indicative example – top-5 related basketball players to “Magic Johnson” by using different data sets. The bold indicates that 
an entity identified as related from both LODVec and Google Search   

RDF Datasets Position 1 Position 2 Position 3 Position 4 Position 5 

DB Abdul-Jabaar James Worthy John Stockton Shaquille O’Neal Larry Bird 

DB,FR Julius Erving Shaquille O’Neal Willies Reed Pat Ewing Dwyane Wade 

DB,FR,WK Shaquille O’Neal Reggie Miller Dennis Rodman Michael Jordan Abdul-Jabaar 

All Datasets Michael Jordan Dwyane Wade Julius Erving LeBron James Shaquille O’Neal 
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5.5.3 Results for basketball players 

We have created URI sequences and embeddings for 12,250 
players, therefore, we try to find which are the top- K  
similar basketball players (out of 12,250 players) for a given 
player. For creating the URI sequences and embeddings we 
needed 8 minutes by using DBpedia (on average 19.1 URI 
sequences per player), 8.2 minutes by using DBpedia and 
Freebase (on average 28.5 URI sequences), 8.9 minutes by 
using these two data sets and Wikidata (on average 43.5 
URI sequences), and finally 10 minutes by using all the data 
sets (on average 54.8 URI sequences). Regarding the 
results, they are shown in the fifth to seventh columns of 
Table 7. Similarly to the case of movies, we obtained the 
best results by using all the available RDF data sets. 
Moreover, in all the cases the percentage increased when we 
added more data sets, especially by adding Wikidata to 
DBpedia and Freebase. Finally, Table 9 provides an 
example for the player “Magic Johnson” and for = 5K . 
Particularly, by using either one or two data sets, 3  
(out of 5) players were included in the list of the related 
players of “Magic Johnson”, derived from Google, i.e., the 
bold ones in Table 9. On the contrary, by using three RDF 
data sets, 4 (out of 5 players) occur in this list, whereas by 
using all the available RDF data sets, all the five basketball 
players were part of the list derived from Google. 

In http://islcatalog.ics.forth.gr/dataset/lodvec, one can 
download all the derived related entities (identified  
from both Google and LODVec ) for each of these a)  
25 basketball players and b) 25 movies. 

6 Discussion about the experimental results 

Here, we provide four major conclusions regarding the 
experiments, concerning a) the efficiency of LODVec, b) the 
performance of single RDF data sets in different tasks, c) the 
gain of using more data sets for creating complementary URI 
sequences and d) the importance of following larger paths for 
creating URI sequences. 

Concerning a), we have seen that LODVec can produce 
URI sequences and embeddings quite fast even by using 
multiple data sets of LODsyndesis for thousands of entities, 
e.g., it needs approximately 1 minute for 1600 music albums. 
Although the execution time increases as we follow larger 
paths, by using the “cache” mechanism the execution time can 
greatly decreased. Regarding b), we have showed that there is 
not a single RDF data set (or knowledge graph) that can 
outperform the others for any possible task, e.g., DBpedia was 
more accurate for classifying the music albums, whereas 
Freebase was more efficient for classifying the movies and the 
NBA players. Concerning c), we have observed that for each 
evaluation data set we obtained better results by using multiple 
RDF data sets, instead of a single one, for the tasks of 
classification and regression, and for finding the most similar 
entities. Moreover, for each task we obtained the best results by  
 
 
 

using all the available RDF data sets of LODsyndesis. Finally, 
as regards d), it was effective to follow larger paths (including 
“mixed-paths”) for creating also URI sequences for the artists 
of each music album, whereas it was not effective for creating 
larger sequences for the actors of the Movies data set. It means 
that it is not always valuable to follow larger paths for creating 
URI sequences. A corresponding limitation of this paper  
(and a key research direction) is that we do not estimate 
whether a path is worth to be followed, i.e., the user selects 
manually the paths that will be followed for creating the 
desired URI sequences. 

7 Conclusions 

There is a lack of approaches that create URI embeddings 
from multiple RDF data sets. For this reason, we introduced 
a prototype called LODVec that exploits the semantically 
enriched indexes of LODsyndesis knowledge graph, and 
offers configurable options for creating URI sequences of 
any length for 412 million entities from 400 RDF data sets. 
Moreover, it offers a “cache” mechanism for avoiding to 
explore the same paths multiple times for creating URI 
sequences, and it uses word2vec model for converting the 
URI sequences to embeddings. The produced embeddings 
can be exploited in several tasks. In our case, we created 
URI embeddings for three evaluation data sets (containing 
movies, music albums and basketball players), by using 
multiple RDF data sets (after enriching them with the results 
of cross-data set identity reasoning). We evaluated the gain 
of using several RDF data sets for creating embeddings for 
the tasks of classification, regression and for finding the 
most similar entities to a desired entity. 

Concerning efficiency, LODVec can produce URI 
sequences and embeddings for over 1 thousand entities 
approximately in 1 minute, by using multiple RDF data  
sets. Moreover, we identified even 3.7  speedup by using the 
previously mentioned “cache” mechanism. Regarding 
effectiveness, in all tasks we obtained the best results by 
creating embeddings from all the available RDF data sets. 
Indicatively, by creating URI sequences and embeddings from 
14 RDF data sets instead of using only DBpedia, we identified 
even 13% increase in the accuracy of predicting if a movie has 
a high or a low user rating (binary classification). As a future 
work, we plan (a) to estimate whether a path is worth to be 
followed, for aiding the user to create the most valuable URI 
sequences, i.e., URI sequences that can improve the 
effectiveness of a given task, (b) to create sequences containing 
also literals (e.g., Gesese et al., 2019) and not only URIs, (c) to 
create vectors through other models, like GloVe (Pennington  
et al. 2014)  and BERT (Devlin et al., 2019) , and (d) to apply 
graph-based techniques, such as Cochez et al. (2017b)  and 
(Wang et al., 2014). Finally, it would be interesting to use 
novel graph database platforms, such as Neo4j (Webber, 2012), 
for tackling index limitations (such as those presented in  
Sub-section 4.3.3). 
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