
Int. J. Metadata, Semantics and Ontologies, Vol. 15, No. 1, 2021 1

Copyright © 2021 Inderscience Enterprises Ltd.

Applying cross-data set identity reasoning for
producing URI embeddings over hundreds of
RDF data sets

Michalis Mountantonakis* and
Yannis Tzitzikas
Institute of Computer Science,
FORTH-ICS, Greece
and
Computer Science Department,
University of Crete, Greece
Email: mountant@ics.forth.gr
Email: tzitzik@ics.forth.gr
*Corresponding author

Abstract: There is a proliferation of approaches that exploit RDF data sets for creating URI
embeddings, i.e., embeddings that are produced by taking as input URI sequences (instead of
simple words or phrases), since they can be of primary importance for several tasks (e.g.,
machine learning tasks). However, existing techniques exploit either a single or a few data sets
for creating URI embeddings. For this reason, we introduce a prototype, called LODVec, which
exploits LODsyndesis for enabling the creation of URI embeddings by using hundreds of data
sets simultaneously, after enriching them with the results of cross-data set identity reasoning. By
using LODVec, it is feasible to produce URI sequences by following paths of any length
(according to a given configuration), and the produced URI sequences are used as input for
creating embeddings through word2vec model. We provide comparative results for evaluating the
gain of using several data sets for creating URI embeddings, for the tasks of classification and
regression, and for finding the most similar entities to a given one.

Keywords: embeddings; cross-data set identity reasoning; RDF; machine learning; data
integration; linked data; finding similar entities; classification; regression.

Reference to this paper should be made as follows: Mountantonakis, M. and Tzitzikas, Y. (2021)
‘Applying cross-data set identity reasoning for producing URI embeddings over hundreds of RDF
data sets’, Int. J. Metadata Semantics and Ontologies, Vol. 15, No. 1, pp.1–22.

Biographical notes: Michalis Mountantonakis is a Postdoctoral Researcher of the Information
Systems Laboratory at FORTH-ICS (Greece). He holds his PhD degree from the Computer
Science Department at University of Crete, Greece in 2020, whereas he obtained his BSc and
MSc degrees in 2014 and 2016, respectively, from the same department. His research interests
fall in the areas of large-scale semantic data integration, linked data and semantic data
management. The results of his research have been published in more than 20 research papers,
whereas for his dissertation, he won the prestigious SWSA Distinguished Dissertation Award
2020, which is given to the PhD dissertation from the previous year with the highest originality,
significance, and impact in the area of semantic web. Moreover, he has received several other
awards, including the Maria Michael Manasaki Legacy’s fellowship, which is awarded to the best
graduate student of Computer Science Department of the University of Crete, once a year.

Yannis Tzitzikas is an Associate Professor of Information Systems in the Computer Science
Department at University of Crete (Greece) and Affiliated Researcher of the Information Systems
Laboratory at FORTH-ICS (Greece). His expertise lies in Information Systems, specifically in
Knowledge Management and Information Retrieval. His research focuses on semantic data
integration, exploratory search and digital preservation. He has co-authored 3 books and more
than 150 papers in refereed journals and conferences (including ACM Computing Surveys, ACM
Transactions on the Web, VLDB Journal, IEEE Transactions on Knowledge and Data
Engineering, JIIS, JDAPD, ECIR, ISWC, EWSC), he has received three best paper awards
(at CIA’03, ISWC’07 and MTSR’20) as well as other awards. Since 2005, he Coordinates the
Semantic Access and Retrieval group, and from 2019 also the Centre for Cultural Informatics of
the Information Systems Laboratory of FORTH-ICS.

This paper is a revised and expanded version of a paper entitled ‘Knowledge graph embeddings
over hundreds of linked datasets’ presented at the ‘13th International Conference on Metadata
and Semantics Research (MTSR)’, Rome, Italy, 28–31 October 2019.

2 M. Mountantonakis and Y. Tzitzikas

1 Introduction

There is an increasing trend of exploiting knowledge graphs
(e.g., Wang et al., 2017; Goyal and Ferrara, 2018) for creating
embeddings which can be exploitable for a number of tasks.
Indicatively, they can be used for i) machine learning-based
tasks (e.g., Ristoski et al., 2019), such as classification and
regression, ii) similarity-based tasks (e.g., Mohapatra et al.,
2018), for answering queries like “Give me the top-K related
entities to a given one”, iii) link prediction purposes (e.g.,
Nechaev et al., 2018), iv) fact validation (e.g., Ammar and
Celebi, 2019), v) language translation (e.g., Moussallem et al.,
2019) and others (e.g., Wang et al., 2017; Goyal and Ferrara,
2018). There is also a proliferation of novel methods
(e.g., Ristoski et al., 2019; Saeed et al., 2019), that exploit
Linked Open Data (LOD) and Resource Description
Frameworks (RDF) knowledge graphs (or data sets) for
creating embeddings for Uniform Resource Identifiers (URIs).
The key difference of URI embeddings comparing to word
embeddings is that they are produced by taking as input a
sequence of URIs (instead of simple words or phrases). In
particular, such methods produce URI sequences for a set of
given entities, i.e., URI sequences which start from a focused
entity, and contain a path of URIs which are reachable from
this entity. These URI sequences are given as input for
producing URI embeddings through neural networks models,
such as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), where each URI is mapped to a
vector of real numbers. The produced embeddings can be used
in any of the above tasks.

However, current approaches exploit usually a single RDF
data set for creating URI embeddings for one or more entities.
Moreover, many approaches are difficult to be configured by
non-experts, since they do not provide an interactive service.
Our objective is to make it feasible to create URI sequences
and URI embeddings for any given entity (i.e., a URI),
by combining data from hundreds of RDF data sets
simultaneously.

As a motivating example, suppose that we desire to predict
the exact user rating of one or more music albums, like
“Blackout” (see Figure 1), which is an album from the German
rock band “Scorpions”. For this reason we plan to create
embeddings from URI sequences, for using them as features in
such a machine learning task. In this example, we can see that
there exist three available knowledge graphs (or data sets), two
of them contain information about the music album
“Blackout”, and the last one information about the music band
“Scorpions”. Through this example, we desire to show the
importance of using multiple data sets, for creating a)
complementary URI sequences and b) “mixed-path” URI
sequences, for the desired entities (e.g., music albums).

Regarding a), by selecting to use only a single data set, say

1D in Figure 1, we can find valuable information such as the

people that written the lyrics of each music album. However,

1D does not contain information about the genre of each

album, e.g., in Figure 1 such data occur in data set 2D .

Therefore, only by using both data sets 1D and 2D , we will be

able to create URI sequences including both the lyrics and the
genres of each album, i.e., by using complementary data.

Regarding b), suppose that we desire to create larger URI
sequences, i.e., sequences including a path of n edges
(or n triples). By following such paths, it is feasible to
discover more information for the neighbours of a given entity,
and we assume that such information can be of primary
importance for improving the accuracy of predictions. In
Figure 1, suppose that we desire to create URI sequences that
include more information about the band of each music album,
e.g., URI sequences containing “a music album, its band, and
the awards won by this band”. In our example, there is not a
single data set (or graph) that contains such a path. In
particular, from data sets 1D and 2D we can find the band of a

music album, and from data set 2D information about the

guitarist of the band. However, it does not contain any
additional information about bands. On the contrary, data set

3D contains more data about bands, such as data about the

awards won by a band. Therefore, for creating the desired URI
sequence, it is mandatory to follow a “mixed-path”, i.e., a path
that includes data from at least two data sets, e.g., 2D and 3D .

However, it is not trivial to collect and integrate all the
available information for any given entity from several data
sets, which is essential for creating either complementary or
“mixed-path” URI sequences. The major integration difficulties
that are related to our desired task (i.e., creating URI sequences
from multiple data sets) are the following: (Diff. 1) data sets
use different URIs and models for representing the same real
world objects, and (Diff. 2) data are scattered in different places
(Mountantonakis and Tzitzikas, 2019b). For instance, in Figure
1, the three data sets use three different URIs for representing
the same band “Scorpions”, whereas data sets 1D and 2D use

different URIs for referring to the same schema element, e.g.,
see the two URIs for the property “band”.

For making it feasible to collect all the data for any entity,
e.g., for creating URI sequences by using all the data sets of
Figure 1, it is a prerequisite to identify all the equivalent URIs
of each URI for the entities, e.g., d1:(Band) Scorpions
owl:sameAs d2:Scorpions owl:sameAs d3:The_
Scorpions, and for the schema elements,
e.g., d1:fromBand owl:equivalentProperty
d2:band. The major problem is that these relationships (i.e.,
owl:sameAs and owl:equivalentProperty
relationships) model an equivalence relation, and therefore
we should compute their transitive closure. However, it
presupposes knowledge of all data sets and such a computation
can be quite expensive (Mountantonakis and Tzitzikas, 2018a).

 Applying cross-data set identity reasoning 3

Figure 1 Running example containing three knowledge graphs and LODsyndesis

Based on the above analysis, the major research questions are
the following: a) how to overcome the problem of having
different URIs for the same entities (and schema elements), for
being able to create URI sequences (of any length) from
multiple data sets, b) whether a single RDF knowledge graph
can outperform all the others for any possible task and c)
whether the accuracy of predictions for several tasks (such as
machine learning-based tasks) can be increased by creating
embeddings from multiple data sets (instead of using one or
few data sets), and by following larger paths.

Concerning our contribution, we introduce a research
prototype, i.e., LODVec, which is accessible through
https://demos.isl.ics.forth.gr/lodvec/. LODVec (i) takes as input
one or more entities (e.g., their URIs) and (ii) offers several
configurable options for creating URI sequences for the input
entities. Afterwards, (iii) it exploits LODsyndesis knowledge
graph for enabling the production of URI sequences and
embeddings from hundreds of data sets simultaneously, and
(iv) produces URI sequences (of any length) based on a given
configuration and by using the notion of basic graph patterns.
Moreover, LODVec (v) converts the produced URI sequences
into vector representations (i.e., embeddings) by using
word2vec approach (Mikolov et al., 2013) through dl4j API
(https://deeplearning4j.org/). Finally, it can (vi) exploit the
produced vectors for several purposes, e.g., for performing
classification and regression tasks by using WEKA API (Witten
et al., 2011).

For testing the proposed approach, we report experimental
results for machine learning classification and regression tasks
by using three evaluation data sets containing thousands of
movies, music albums and basketball players. Furthermore, we
have created a data set (by using a Google service) for
evaluating the effectiveness of LODVec for identifying similar
entities, e.g., finding the most similar basketball players to a
given player. We introduce experiments and measurements for
evaluating the impact of using multiple data sets and cross-data
set identity reasoning in terms of effectiveness, we compare the
performance of different configurations, and we discuss the
efficiency of the proposed approach.

This paper is an extended version of the paper
(Mountantonakis and Tzitzikas, 2019a). In comparison to that
work, this paper is more self-contained. Moreover, in this
paper: a) we enrich the related work section, b) we extend
LODVec for creating URI sequences of any length by
following paths containing two or more edges, whereas in
Mountantonakis and Tzitzikas (2019a) we created URI
sequences by using only the direct neighborhood of each entity
(i.e., by following single-edge paths) and c) we perform more
experiments (by using more evaluation data sets), for evaluating
the impact of using multiple data sets for several machine
learning tasks, and the efficiency of the proposed approach.

The rest of this paper is organised as follows: Section 2
introduces the background and related work. Section 3
provides the problem statement and describes the context,

4 M. Mountantonakis and Y. Tzitzikas

while Section 4 introduces the steps and the algorithms for
creating URI sequences and embeddings. Section 5 includes
the experimental evaluation about the effectiveness and the
efficiency of the proposed approach, whereas Section 6
discusses the results of the evaluation. Finally, Section 7
concludes the paper and outlines directions for future work.

2 Background and related work

2.1 Background

Linked data: Resource Description Framework (RDF)
(Antoniou and Van Harmelen, 2008) is a model that can be
represented as a graph, and uses Uniform Resource
Identifiers (URIs), or anonymous nodes to denote resources,
and literals to denote constants. Every statement in RDF can
be represented as a triple. A triple is a statement of the form
subject-predicate-object , ,s p o  , and it is any element of

   = ()T U B U U B L     where U , B and L are

the sets of URIs, blank nodes and literals, respectively. Any
finite subset of T corresponds to an RDF graph (or data
set). We divide the URIs in three disjoint sets, entities E
(e.g., Blackout), properties P (e.g., band) and RDF classes
C (e.g., Rock Music Album). In this paper, we focus on
triples that contain URIs in all the positions (i.e., subject,
predicate and object). Specifically, these triples contain an
entity (i.e., URI) as subject, and the URI of an RDF class
or the URI of an entity as object. Therefore we consider
triples in = ()UT U P E C T    . Finally, we denote as

 1= ,..., nD D D a set of data sets, and as ()U iT D the set of

triples of a given data set iD D , that contain only URIs

  U i UT D T .

Word2vec: It is a shallow two-layer neural network
model for producing word embeddings (Mikolov et al.,
2013). It takes as input a text, and it produces a vector with
several (usually hundreds of) dimensions for each unique
word appearing in the text. The target of word2vec is to
group the vectors of similar words closely in the vector
space. In this paper, we will exploit this model for creating
vectors for entities, by using the skip-gram model, which is
a method that uses a specific word for predicting a target
context, since “it produces more accurate results for
large data sets” (https://deeplearning4j.org/docs/latest/
deeplearning4j-nlp-word2vec). Our target is to use this
model for placing similar entities (e.g., similar music
albums) to a close position in the vector space.

2.2 Related work

RDF Knowledge Graph Embeddings: There have been
proposed several approaches and applications for producing
knowledge graphs embeddings, e.g., see two recent surveys in

Wang et al. (2017) and in Goyal and Ferrara (2018). Regarding
approaches that exploit RDF knowledge graphs, RDF2Vec
(Ristoski et al., 2019) is an approach that takes as input an RDF
knowledge graph, produces URI sequences based on several
strategies, such as random graph walks, and uses word2vec for
creating vectors. They have also proposed strategies for
performing biased graph walks (Cochez et al. 2017b), which
are based on a number of metrics and statistics, such as the
frequency of properties, objects, pagerank and others. They
have tested these strategies for multiple tasks, such as
classification and regression, by using two RDF data sets;
Wikidata (Vrandecic and Krötzsch, 2014) and DBpedia (Auer
et al., 2007), whereas they have used the GloVe model
(Pennington et al., 2014) for creating RDF embeddings by
exploiting global patterns. Moreover, Saeed et al. (2019)
proposed a metric, called specificity, which can be used for
identifying the most relevant nodes and edges in the
neighbourhood of an entity. This metric is exploited for
creating URI sequences by performing biased random walks,
and the approach was evaluated by using DBpedia.
Furthermore, Ammar and Celebi (2019) used the RDF2Vec
model for producing embeddings, and these embeddings were
used for validating the facts of DrugBank data set. Moreover,
THOTH approach (Moussallem et al., 2019) extracts bilingual
alignments from two data sets and enriches them with
knowledge graph embeddings. Their target was to translate the
source data set to a target data set, and they evaluated their
approach by using the German and the English version of
DBpedia.

Hajra and Tochtermann (2017) used several bibliographic
RDF data sets and word2vec for enriching the data of
scientific publications with information from multiple data
sources, while Inan and Dikenelli (2017) exploited enriched
ontology structures for producing RDF embeddings which
were used for the task of Entity Linking. Moreover, Nechaev
et al. (2018) combined embeddings from DBpedia and social
network data sets for performing link prediction, whereas
Mohapatra et al. (2018) exploited Wikipedia knowledge
graph for finding the most similar entities to a given one for a
specific time period. Furthermore, Nikolaev and Kotov
(2020) created joint embeddings for words and entities for
improving the task of entity search in knowledge graphs, and
they tested their approach by using DBpedia, while the target
of Eddamiri et al. (2018) was to cluster similar entities by
using embeddings from two RDF data sets. Finally,
KGvec2go (Portisch et al., 2020) is an online service which
contains already trained embeddings (by using RDF2Vec
approach) from four RDF data sets. The user can download
the vectors, can find the n closest concepts to a given one,
and others.

Concerning other graph-based models, such as TransH
(Wang et al. 2014; Lin et al. 2015), they use algorithms
for creating entity and relation graph embeddings, i.e., the
relationships between two entities are represented as

 Applying cross-data set identity reasoning 5

translations in the embedding space. Finally, there have been
proposed several methods that construct embeddings from
RDF data sets by taking also into account the literals (and not
only URIs), i.e., see a recent survey from Gesese et al. (2019).

Feature extraction approaches combining data from
several data sets: Mountantonakis and Tzitzikas (2017)
proposed a tool that can send SPARQL queries in several
endpoints for creating features. However, it does not produce
embeddings and it cannot collect all the data for a given
entity (i.e., cross-data set reasoning is required). Moreover,
RapidMiner Semantic Web Extension (Ristoski et al., 2015)
creates features by integrating data from a lot of data sets.
However, it performs the integration task by traversing
owl:sameAs paths on-the-fly (through SPARQL queries,
which can be time-consuming), and not by exploiting pre-
constructed indexes.

Novelty and comparison with other approaches: To the
best of our knowledge, this is the first work providing an
interactive approach which can easily create URI sequences
and embeddings for any set of entities. Moreover, since
current approaches do not take into account the equivalences
in schema and instance level, they have been mainly tested
on a single or a few data sets, whereas LODVec
produces embeddings by leveraging hundreds of data sets
simultaneously, after enriching them with the results of cross-
data set identity reasoning. At this point our objective is a) to
offer a simple way for creating URI sequences for multiple
data sets and b) to investigate whether the creation of even
simple URI sequences and embeddings from different data
sets can improve the effectiveness of several tasks (e.g.,
machine-learning tasks). Concerning the limitations of
LODVec, for the time being the user decides which paths will
be followed for creating the URI sequences. Therefore, we do
not support automatic methods for estimating which paths are
more important to be followed (e.g., through biased random
walks such as Cochez et al. (2017a) and Saeed et al. (2019)).
Moreover, we do not create sequences containing literals
(e.g., Gesese et al., 2019), and we have not used algorithms
that have been successfully applied to knowledge graphs
(e.g., Lin et al., 2015; Wang et al., 2014).

3 Problem statement and context

In this section, we introduce the problem statement (in Sub-
section 3.1) and the context (in Sub-section 3.2).

3.1 Problem statement

3.1.1 URI sequences

The input is a set of selected entities selE E , and the first

target is to create URI sequences, i.e., ()USeq e , for each

sele E . Each URI sequence, i.e., ()Useq Seq e , corresponds

to a sequence of n triples (1n ), where each of these triples
contains only URIs. A sequence containing a single triple
(= 1n) is of the form , ,e p o  , where , , Ue p o T   , e.g.,

 :Blackout,:band,:Scorpions  . These URI sequences
correspond to the direct neighbourhood of an entity e , i.e., a
single-edge path that starts from e . On the contrary, a
sequence having n triples (i.e., a path of n -edges) is of the

form 1 1, , ,..., , ,n n ne p o s p o , where sele E , and for any

given i (1 i n ), it holds that , ,i i i Us p o T   . Finally, for

any pair of adjacent triples, i.e., say the i-th and the (1)i  -th

triple (1i n ), it holds that 1=i io s  . Therefore, the object of

the i-th triple is always the subject of the (1)i  -th triple. For

instance, in our running example, a sequence of length = 3n
is the following one:  :Blackout,:band,:Scorpions  ,
 :Scorpions,:city,:Hanover  ,  :Hanover,:country,:Germany  .

Our target is to construct the set = ()U sel Ue Esel
Seq E Seq e

 ,

where ()USeq e corresponds to the URI sequences of each

sele E .

3.1.2 Using basic graph patterns for creating the
URI sequences

For creating the desired URI sequences, we use the notion of
Basic Graph Patterns, which are widely used for answering
SPARQL queries (Harris et al., 2013). In particular, a basic
graph pattern is a set of triple patterns, where each triple pattern
tp is similar to a triple , ,s p o  . However, the subject,

predicate (i.e., property), or object can be a variable. In our
case, for any sequence of length n , we already know the URIs
of the properties (they are given as input), however, any subject
or object is a variable. In this way, we define the set BGP ,
where bgp BGP is a set of n triple patterns

(1n ), i.e., = (1),..., ()bgp tp tp n . Each ()tp i is of the form

() = ? , ,?i i itp i s p o and it is mandatory a) the subject of the

first triple pattern, i.e., (1)tp , to be replaced by an entity

sele E and b) the object and the subject of two adjacent

triples to be replaced by the same URI.
For example, suppose that the user wants to create a URI

sequence for each music album, which contains the band of
each album, the city where the band founded, and the
country where that city is located in. The resulted
sequence of triple patterns will be the following:

1? ,s :band 1 2,? , ? ,o s  :city 2 3,? , ? ,o s  :country 3,?o  . Since

1?o should be the same as 2?s , and 2?o the same as 3?s we

can write the previous sequence of triple patterns as
follows: 1? ,s :band 1 1,? , ? ,o o  :city 2 2,? , ? ,o o  :country 3,?o  .

Therefore, the target is to create all the sequences of triples that
match each set of triple patterns for each entity sele E , i.e.,

for constructing the set ()USeq e .

6 M. Mountantonakis and Y. Tzitzikas

3.1.3 From URI sequences to URI embeddings

The target is to use the produced set of URI sequences, i.e.,

U selSeq E , for mapping each URI to a vector of real

numbers, through a neural network model, such as
word2vec. By using the skip-gram model of word2vec, we
map each entity e to a vector ()v e . We expect that if two

entities e and 'e are similar, then their produced vectors,
()v e and ()v e , will be close in the vector space, too.

3.1.4 Output exploitation

The target is to use the produced vectors in several machine-
learning-based tasks, such as classification and regression, for
finding the top-K similar entities to a given entity e , and
others. Concerning classification and regression, one should
also provide as input the corresponding categorical or
continuous variable Y(e) for each entity e. On the contrary,
there is no need for additional input, when the desired task is to
find the top-K similar entities to a given entity.

3.2 Context: LODsyndesis knowledge graph

For tackling the integration difficulties (Diff 1) and (Diff 2)
and for creating the desired URI sequences, we
use the LODsyndesis knowledge graph. LODsyndesis
(Mountantonakis and Tzitzikas, 2018a) has pre-collected 2
billion triples and 412 million URIs from 400 RDF data sets of
9 different domains. Concerning (Diff 1), LODsyndesis
has computed the cross-data set identity reasoning of
44 million equivalence relationships (i.e., the transitive and
symmetric closure of owl:sameAs, owl:equivalentProperty and
owl:equivalentClass relationships). LODsyndesis exploits the
results of cross-data set identity reasoning for assigning a
unique identifier for each real world entity and schema element
(i.e., for keeping a single representation). Finally, it collects in
its index all the available triples (by preserving the provenance)
for any given entity (e.g., Blackout).

In the lower side of Figure 1, we can see the index which is
produced from LODsyndesis by using as input the three
knowledge graphs of Figure1, whereas in the middle side of the
same Figure, we can see the corresponding graph
representation of LODsyndesis. In particular, this graph
contains a single node for each entity (e.g., for the band
“Scorpions”), and stores the provenance of each triple, i.e., see
the text of each property (or edge) inside the parentheses.
Regarding the index, there is a single index entry for each
entity, e.g., see indicatively the entries for: Blackout,:
Scorpions and :Hanover. For each entity e , the index stores
information about its provenance (e.g., “Scorpions” exist in all
the three data sets), and all its triples (and their provenance).

Moreover, all the values for each entity-property pair are
placed together, e.g., see the pair: Blackout-:lyrics. Finally, the
index stores the direction of each property (or edge), i.e., a
character “*” is added after a property in case it corresponds to
an inverse edge, e.g., see the property: band in the index entry
of: Scorpions.

The index of LODsyndesis is stored on disk and it is
accessed through a random access file mechanism. In
particular, for each entity e , a pointer is also stored (a long
number), i.e., the pointer corresponds to the position of the
file where the index entry of e starts. As we shall explain in
Section 4, by using the aforementioned index, it is feasible
to create URI sequences (including complementary and
“mixed-path” URI sequences) for the same entity from
several data sets by following paths of any length.

4 The steps and algorithms for creating URI
sequences and embeddings

Here, in Sub-section 4.1, we provide some required
notations, in Sub-sections 4.2, 4.3 and 4.4, we describe the
functionality and all the steps of LODVec, and in Sub-
section 4.5, we provide more details about the web
application of LODVec. Finally, the steps of LODVec for
our running example are depicted in Figure 2.

4.1 Notations

Table 1 represents notations that are required for the
algorithm that creates the URI sequences (in Sub-section
4.3.2), and metadata for aiding the user to select the desired
data sets and the basic graph patterns. The first one denotes
the data sets containing a triple t , while the second one
indicates the provenance of an entity u , i.e., which data sets
contain at least one triple, that includes u . The third one

denotes the data sets that contain at least one entity 'u E .
The fourth formula indicates the number of entities 'E that
can be found in a single data set iD , whereas the fifth

formula shows all the objects (or values) of a given entity-
property pair (e.g., all the values of :Blackout-:lyrics). The
sixth formula shows the frequency (popularity) of a URI in
the whole graph, i.e., the number of triples containing a URI
u , either as a subject or as an object. The seventh formula
denotes the set of object properties (or edges) for an entity
e , whereas the eighth formula corresponds to the union of
all properties of entities 'E . Finally, the last formula
denotes the number of entities for which there is at least one
triple that contains a property p .

 Applying cross-data set identity reasoning 7

Figure 2 The steps of LODVec approach for our running example

Table 1 Notations required for creating the URI sequences

ID Notation Formula

1 Provenance of a triple t   () = | = , , ,i U iprov t D D t s p o t T D   

2 Provenance of an entity u   () = | , ,i U idsets u D D u p o T D  

3 Provenance of a set of entities 'E  'E E = ()'E u E
dsets dsets u 

4 Coverage of a Data set given a set of entities 'E  'E E    , = | ()' '
i icovD D E u E D dsets u 

5 All Objects (URIs) of an entity-property pair  (,) = | , , UObjects u p o u p o T  

6 Number of Triples containing an entity u  () = | = , , , = =Ufreq u t T t s p o s u or o u  

7 Properties of an Entity u  () = | , , UProp u p P u p o T  

8 Properties of a set of Entities 'E ('E E) = ()'' u EE
Prop Prop u



9 Coverage of Properties given 'E ('E E)    , = | , ,' '
UcovP p E u E u p o T  

8 M. Mountantonakis and Y. Tzitzikas

4.2 Step A. Input and configuration

Below, we present the sub-steps of Step A which are
followed for creating the desired configuration.

Step A1: The first step is to select the desired entities selE .

They can be given in three different formats a) as a list of URIs
(e.g., dbp:Blackout), b) as a list of entities in plain text (e.g.,
“Blackout”), or c) just a URI that represents an RDF class or a
category (e.g., http://dbpedia.org/ontology/BasketballPlayer).
In the latter case, LODVec retrieves automatically the desired
URIs, by sending a query to DBpedia SPARQL endpoint. In
the running example of Figure 2 the input is the URIs of
several music albums.

Step A2: The next step is to choose the data sets selD . In

particular, LODVec shows the list of data sets that contain
triples for the input entities (i.e., the data sets Esel

dsets),

in descending order according to their  ,i selcovD D E .

Therefore, the first data set in this list contains data for the
maximum number of entities that belong to selE (comparing

to any other data set). The user can select to use either all
the data sets Esel

dsets , or any subset sel Esel
D dsets . In

Figure 2, we selected to use all the available data sets
(1D , 2D , 3D) of our example (see Figure 1).

Step A3: LODVec also provides an interactive way for
aiding the user to select the desired basic graph patterns, i.e.,

selBGP . Concerning patterns of length = 1n , i.e., ? , ,? 1e p o ,

it shows each property Esel
p Prop (that belongs also to

data sets selD), in descending order with respect to their

 , selcovP p E . For each Esel
p Prop , the user has three

possible options. The first one is to use the property p , i.e., for

creating the basic graph pattern ? , ,? 1e p o . The second option

is to explore the sub-paths that pass from this property, i.e., for
creating larger URI sequences, whereas the third option is to
ignore the property.

By selecting the second option, LODVec follows larger
paths for creating patterns of length > 1n . For instance,
suppose that the user selects to explore the sub-paths of length

= 2n , for a property, say 1p . In this case, our target is to

create patterns like ? , 1,? 1e p o , ? 1, 2,? 2o p o . For this

reason, LODVec selects randomly a small sample of entities,
say sample selE E , and for each samplee E , it finds all the

objects (, 1)u Objects e p . For example, if 1p corresponds

to: band, it finds the corresponding band for each entity

samplee E . Afterwards for each such object u (e.g., a band),

LODVec finds its outgoing properties, i.e., the set ()Prop u ,

and then it shows to the user the properties for these objects.
The user should again select either to ignore or to use a
property, say 2p , for creating the patterns. For instance,

suppose that a user selects to use a property 2 =:p guitarist .

In this case, LODVec will create all the URI sequences of the
pattern ? ,: ,? 1e band o , ? 1,: ,? 2o guitarist o , i.e., URI

sequences including the guitarist of a band of a music album.
On the contrary, for a property 2p , one has also the option to

explore its sub-paths, i.e., for creating URI sequences for
> 2n , and so forth.

In Figure 2 (see the corresponding table in the upper
middle side), we selected to create URI sequences based on
three basic graph patterns. In particular, one basic graph
pattern of length = 3n , i.e., “the band of each album, the
city where the band founded, and the country where that
city is located in”, one pattern of length = 2n , i.e., “the
band of each album and the awards won by that band”, and
finally a pattern of length = 1n , i.e., “the persons that have
written the lyrics of each album”.

Step A4: The fourth step is to select the number of URI
sequences that will be created, i.e., all the possible URIs
sequences according to the given configuration or the top-
K ones (see more details in Sub-section 4.3.4). In Figure 2,
we selected to create all the possible URI sequences
(by using the selected data sets and basic graph patterns).

Step A5: In this step, LODVec shows to the user the
configuration of Steps A1–A4, and the user can click on a
button for creating the desired URI sequences (by using the
algorithms that are presented in Sub-section 4.3).

4.3 Step B. Creating URI sequences of any length

This step consists of two sub-steps, a) the conversion of the
selected Basic Graph Patterns (given as input from the user) to
a Pattern Graph G (i.e., see Sub-section 4.3.1) and b) the
creation of URI sequences, by using the desired configuration
and the Pattern Graph G (i.e., see Sub-section 4.3.2).

4.3.1 Creation of pattern graph G

Rationale: Two or more basic graph patterns can start with
the same triple patterns, e.g., in our running example of
Figure 2, the first two selected basic graph patterns start
with the triple pattern  ?e, :band, ?x  . For avoiding to

follow the same path multiple times for creating the URI
sequences (since it can be time-consuming), we create and
use a pattern graph G , where G BGP .

Input: The input is the set of Basic Graph Patterns which
are selected by the user, i.e., selBGP .

Algorithm: Algorithm 1 shows how to exploit the
selected Basic Graph Patterns, i.e., selBGP , for creating the

corresponding Pattern Graph = { , }G V Ed , where V are its

nodes (or vertices) and Ed denote its edges. The produced
pattern graph of our example is shown in the right side of
Figure 3 (and in the middle left side of Figure 2).

 Applying cross-data set identity reasoning 9

Figure 3 Execution of Algorithm 1 for the basic graph patterns of our example

This graph corresponds to a directed acyclic graph, i.e., it has
not directed cycles. Graph G has a single source node, i.e., a
node without incoming edges. As we shall see, the source node
will be strictly replaced by an entity sele E . Any remaining

node has exactly one incoming edge and corresponds to a
variable (e.g., ?x). Furthermore, it has m sink nodes (i.e.,
nodes without outgoing edges), where m equals the number of
basic graph patterns that are given as input, and each sink node
corresponds to the last variable of each basic graph pattern
(e.g., to the variables ?z , ?w and ?l of the basic graph
patterns of Figure 3). Finally, an edge corresponds to a property
that connects two variables (or URIs).

For the graph G , we use a variable for storing all its nodes,
and a variable for storing the unique source node (see line 1
of Algorithm 1). For each node of G (see line 2), we use a
Boolean variable, i.e., isSink , which becomes true for the
sink nodes. Moreover, we use a map called edges for each

node v , i.e., it is a binary relationship: :edges P V , that

has in its left side a property p P (e.g., the property

:band), and in its right side the node v V (i.e., a URI),
where that edge ends up.

Concerning the function createPatternGraph , it

initialises the graph G , and a new node srcNode , which
corresponds to the single source node of G (see lines 5–7).
Afterwards, Algorithm 1 reads each basic graph pattern
bgp and sets as the current node, i.e., cNode , the source

node (see lines 8–9). Then, it reads all the triple patterns of
bgp , i.e., the function .bgp tpSize denotes the number of

triple patterns of each bgp (line 10).

For each triple pattern of bgp , Algorithm 1 stores its

property in a variable p (line 11). Afterwards, it checks if

the property p exists in the left side of the edges of the

current node (i.e., in Algorithm 1 Left denotes the left side

of a binary relationship). In case it is false, it creates a new
node, i.e., tmpNode . For that node, it sets the value of

isSink variable to “true”, when it corresponds to the last
variable of a bgp (see lines 13–16). Finally, it adds to the

edges of the current node, a key-value pair, where the key

is the property p and the value is the tmpNode , it assigns

as the current node the tmpNode (see lines 17–18), and it

continues with the next triple pattern. On the contrary, in
case we have already created an outgoing edge for property
p , Algorithm 1 sets as the current node, the node where

this edge ends up (see lines 19–20), before continuing with
the next triple pattern. The output is the produced graph G
(see line 21).

10 M. Mountantonakis and Y. Tzitzikas

Example: Figure 3 shows the graph G of our running
example after each iteration of lines 8–20 (see Algorithm 1).
By using the green colour, we represent the edges
and nodes that are created in each iteration. At first, we
read the triple patterns of the first bgp , starting with

 ?e, :band, ?x  . We create the edge :band and a node for

variable ?x, which becomes the current node. For the
second triple pattern, we create the edge :city, which
connects the current node ?x with the new node ?y, whereas
for the last triple pattern, the edge :country is created, which
connects the current node ?y and the new sink node ?z. For
the second basic graph pattern, we read its first triple
pattern, i.e.,  ?e, :band, ?x  , however, we have already

created an edge that connects these two variables.
Therefore, we set ?x as the current node (i.e., we use lines
19–20). Regarding its second (and last) triple pattern, we
create the edge :award, that connects ?x with a new sink
node ?w. Finally, we read the third bgp , where a single

edge is created between the source node and a newly created
(sink) node ?l .

Time and Space Complexity: The time complexity of

Algorithm 1 is  | | * | |sel avgBGP tpSize , where avgtpSize is

the average number of triple patterns for all the basic
graph patterns. The space complexity is  | | | |V Ed ,

since we keep in memory all the nodes and edges of Pattern
Graph G .

4.3.2 Algorithm for creating URI sequences

Rationale: Algorithm 2 creates all the possible URI sequences
according to a given configuration, by exploiting the index of
LODsyndesis. Since that index stores all the triples (and their
provenance) for a given entity from hundreds of data sets, we
can easily create both complementary and “mixed-path” URI
sequences.

Input: Algorithm 2 uses as input the selected entities Esel,
the pattern graph G and the selected data sets, i.e., Dsel.

Algorithm: Algorithm 2 traverses the pattern graph G in a
depth first search way, for creating the URI sequences for each
entity sele E separately, through the recursive function

createSeqs . This function takes as input a URI u, and the

corresponding node in the graph G, and produces all the URI
sequences starting with u, with respect to the pattern graph G.

Each time we select an entity sele E , we set the source

node of G as the current node, and we call the function
createSeqs , for creating the desired URI sequences for e

(lines 1–3). Concerning the depth-first traversal that is
followed, we start from the source node of G, and we continue
forward by exploring the nodes of a specific path, until we
reach a sink node. In the latter case, we move backwards to the
same path, for finding other nodes to traverse (i.e., by
backtracking). Moreover, we assume that the left edges are
always chosen before the right edges, e.g., for the pattern graph
of Figure 2, we will visit the nodes in the following order:
? ,? ,? ,? ,? ,?e l x y z w .

 Applying cross-data set identity reasoning 11

Regarding the steps of createSeqs , it iterates over the direct

properties (or edges) of the current node of graph G (which
corresponds to the input URI u). For each edge
(or property) p of the current node it reads the index entry

of u (i.e., by using the index of LODsyndesis), for
retrieving all the objects of the entity-property pair (,)u p .

Afterwards, for each (,)o Objects u p , it checks the

provenance of the triple , ,u p o  . Specifically, the lines

12–18 are executed only if the triple , ,u p o  occurs at least

in one of the selected data sets selD . In case it holds, it

assigns the node where the property p ends up as the next
node (line 12), i.e., the node which corresponds to the object
o . Afterwards, it checks if the next node corresponds to a
sink node. In case it is true, it adds to the sequences of u
the triple , ,u p o  (lines 13–14).

On the contrary, if the current node is not a sink node, it
calls the function createSeqs by giving as input the object

o , and the nextNode . In this way, it visits in a depth-first
search way the URI o (lines 15–16), for creating all the
sub-paths that start with the URI o . After the end of each
recursion, it concatenates all the produced sub-paths that
start with the URI o with the triple , ,u p o  (lines 17–18).

Finally, the produced URI sequences are returned as output
(lines 19).

The same process is followed for each entity sele E ,

and the produced URI sequences are added to U selSeq E

(line 4), i.e., the set of URI sequences of all the entities selE .

The set U selSeq E , i.e., the output of the whole process

(line 5), will be used as input for creating the embeddings
for the entities selE .

Example: In the middle part of Figure 2, we show the
order (see the numbers near to each arrow) that is followed
for creating the URI sequences for the entity
? =e :Blackout, according to the graph G (see the graph in
the middle left side of Figure 2). A red arrow indicates
that a recursion starts (i.e., a new index entry is accessed),
and a blue arrow indicates the end of a recursion.
For the entity :Blackout, Algorithm 2 calls the function

(createSeqs :Blackout, .)G sourceNode , i.e., :Blackout

replaces the source node of G . Moreover, in this recursion,
the algorithm will read the index entry of the input entity,
i.e., :Blackout (see the arrow Start).

By traversing the pattern graph G in a depth first search
way, it visits the node ?l through the property =p :lyrics.

Therefore, it retrieves (from the index entry of :Blackout) all
the objects of the entity-property pair :Blackout-:lyrics, and
it checks the provenance of each triple. Since we have
selected to use all the data sets, it creates the first two URI
sequences (see arrows 1–5 in Figure 2), which correspond to
all the results of the first basic graph pattern ?e , lyrics,

?l . Then, it visits the node ? =x :Scorpions through the

property =p “:band” (see arrows 6–7). However, since ?x

is not a sink node in graph G , we call the function
createSeqs for the URI =u :Scorpions (see the red dotted

arrow 8 in Figure 2). In this way, we will create all the sub-
paths that start with the URI u , i.e., we read the index entry
of the URI :Scorpions. In particular, we iterate over the
values of the pair :Scorpions-:city for finding the values
of ?y variable, i.e., ? =y :Hanover. Since ?y does not

correspond to a sink node, we move forward (in a depth-
first search way), i.e., we call the function createSeqs for

=u :Hanover.
Therefore, a new recursion starts (see arrows 9–11), where

we visit the next node ?z , which is replaced by the URI
:Germany (see arrows 12–14). Since ?z is a sink node, the
recursion ends (see the blue dotted arrow 15), and we
return the URI sequence of this sub-path, i.e.,
 :Hanover,:country,:Germany  . Afterwards, we return to the
previous node, i.e., ?x =:Scorpions, where we concatenate
the aforementioned URI sequence with the triple
 :Scorpions,:city,:Hanover  (arrow 16). Then, we visit
the node ?w through the property =p :award, and

we add to the URI sequences of :Scorpions the triple
 :Scorpions,:award,:EchoAward  (arrows 17–19).

Finally, we return back to the recursive call of the desired
entity (arrow 20), i.e., :Blackout, where we concatenate the two
produced URI sequences that start with the URI :Scorpions,
with the sequence  :Blackout,:band,:Scorpions  . In this way,

we create the last two URI sequences for :Blackout (arrows
21–22). These two sequences correspond to “mixed-path” URI
sequences, since they contain triples derived from at least two
data sets (see the provenance of triples in Figure 1).

Time and Space Complexity: The time complexity of

Algorithm 2 is   | | * | | | |selE V Ed , i.e., for each entity

sele E , we visit all the nodes and edges of the

pattern graph G . The space complexity is

 | | | | | |U selSeq E V Ed  , since we keep in memory all

the produced URI sequences, and the pattern graph G .

4.3.3 Avoiding to visit the same sub-paths
multiple times

Limitation: A major limitation of Algorithm 2 is that we can
follow the same “sub-paths” multiple times for creating the
desired URI sequences for two or more given entities. In
this way, the number of index entries that we read and the
number of recursions will be increased. For instance,
suppose that we want to create URI sequences for two
(or more) music albums from the same band, e.g., say the
music albums “Blackout” and “Crazy World” of the band
“Scorpions”. In this case, for the first or/and the second
basic graph pattern (see Figure 2), we will read the index
entries of “Scorpions” and “Hanover” twice (i.e., we will

12 M. Mountantonakis and Y. Tzitzikas

need three recursions for each album), whereas the
corresponding URI sequences for these two albums will
differ only on the subject of the first triple.

Cache mechanism – storing sub-paths in memory:
For avoiding to visit one or more “sub-paths” multiple times,
for each node v of the pattern graph G , we propose
to store the URIs which have replaced this node (variable)
previously, and also all the URI sequences that have been
produced for each URI. In particular, we can use a function for
each node v of G , :U Urep U Seq , where for a u U ,

. () = ()U Uv rep u Seq u . Therefore, it is a map having as

a key a URI u and as a value the sub-paths starting with u .
For example, for the variable (or node) ?x ,
? . (:)Ux rep Scorpions contains as value the following two

sequences starting with the URI :Scorpions, i)
 :Scorpions,:city, :Hanover  ,  :Hanover,:country,:Germany 
and ii)  :Scorpions,:award,:EchoAward  , whereas for the

node ?y , ? . (:)Uy rep Hanover contains a single URI sequence,

i.e.,  :Hanover,:country,:Germany  .

Algorithm: For enabling the “cache” mechanism,
we can replace the “if-else” statement of lines 13–18 of
Algorithm 2, with the lines 1–10 of Algorithm 3. In
particular, Algorithm 3 keeps in memory the produced URI
sequences for the sub-paths that start with o (see line 8),
and each time it checks if the next node has been already
replaced by the URI o . In such a case, it retrieves all the
URI sequences for the already explored “sub-paths” through
the map Urep (and not by calling the function createSeqs

in a recursive way), i.e., see lines 4–5 in Algorithm 3.

For instance, in Figure 4 suppose that we have created the
URI sequences for the album :Blackout, therefore, we have
stored in memory all the sub-paths that start with the entity
:Scorpions (see the table in the lower left side of Figure 4).
Therefore, for the second album, i.e., “Crazy World” of
:Scorpions, we can retrieve from the map Urep , all the

sub-paths starting with the URI :Scorpions. In this way,
in Figure 4 we need only a single recursion for creating

the URI sequences for the album :Crazy World (instead of
three recursions that we needed for the :Blackout), since we
do not need to read the index entries of :Scorpions and
:Hanover. In Section 5, we provide experiments showing the
efficiency of this “cache” mechanism.

4.3.4 Additional functionality of LODVec

LODVec can produce K URI sequences, instead of all the
possible ones according to the given configuration (i.e.,
according to the selected basic graph patterns and data sets).
In particular, LODVec enables the production of K random
URI sequences for each entity e . Moreover, it can produce
the top- K URI sequences with respect to the frequency

()freq u of the last URI of each sequence, either in

ascending or in descending order, e.g., the descending order
means that LODVec will create the K URI sequences
whose last URI is a very “popular” URI. For retrieving the
frequency ()freq u of a URI u , we send a request to the

REST API of LODsyndesis (Mountantonakis and Tzitzikas,
2018b).

4.4 Step C. Creation and exploitation of embeddings

The final step (see Step C of Figure 2 is to exploit the
produced set of URI sequences U selSeq E (see the table in

the lower left side of Figure 2) for creating one vector for
each entity e (see the table in the lower middle side of
Figure 2). For this reason, we use indicatively the word2vec
implementation of dl4j library, which produces as output a
single vector ()v e for each sele E . The produced vectors

can be exploited for several tasks, such as (i) machine-
learning tasks, and (ii) similarity tasks.

Regarding task (i), the user should also provide as input, in
a “.tsv” (tab separated values) file, the corresponding
categorical or continuous variable ()Y e , for each entity e . The

vectors which are produced through this process, can be
exported in “.arff” format for performing either classification or
regression through WEKA API. Moreover, the produced “.arff”
file can be uploaded to LODVec, for retrieving immediately
the classification or regression predictions (by exploiting
WEKA API).

Concerning task (ii), the vectors can be downloaded in
“.txt” format, which is directly accessible from dl4j API.
The aforementioned API is also used from LODVec for
producing the top- K related entities to a given entity.

4.5 Application and demo

The online application of LODVec is accessible at
https://demos.isl.ics.forth.gr/lodvec/, whereas a demo video
which presents an example for a set of music albums is
available at https://youtu.be/w8Cnuz4knxE. In particular,
this video shows how to create the URI sequences and the
embeddings, and how to use them for a classification task,
and for finding the top-10 similar music albums to a given
album.

 Applying cross-data set identity reasoning 13

Figure 4 Storing already explored sub-paths in memory

5 Experimental evaluation

Here, we evaluate the impact of using multiple data sets for
creating URI embeddings in several machine-learning tasks,
whereas we evaluate the efficiency of the proposed approach.
First, in Sub-section 5.1, we present the evaluation data sets,
whereas in Sub-section 5.2, we provide details about the
hardware and the parameters of word2vec. In Sub-section 5.3,
we discuss the efficiency of LODVec, whereas in Sub-section
5.4, we introduce experiments for classification and regression
tasks. Moreover, in Sub-section 5.5, we show experimental
results for the task of finding similar entities. Finally, all the
evaluation data sets and the experimental results can be
downloaded from http://islcatalog.ics.forth.gr/dataset/lodvec.

5.1 Evaluation data sets

Table 2 introduces for each evaluation data set the number
of entities (URIs) that it contains, the configurations that we
have selected for creating the URI embeddings, and the
tasks where we use each evaluation data set. Specifically,
we perform experiments that concern the efficiency (EFF)
of LODVec, whereas we also evaluate our approach for that
tasks of Classification (CF) and regression (REG) and for
finding similar entities (SIM). Below, we provide more
details for each evaluation data set.

5.1.1 Movies data set

We use the Metacritic Movies evaluation data set, derived
from (Ristoski et al., 2016). It contains the DBpedia URIs of
2000 movies, and an average rating of all time reviews for
each movie. Concerning the ratings, 1000 of them have high
rating (> 60), and the remaining 1000 ones have low rating
(< 40). We use three configurations (i.e., Conf. I to Conf.
III in Table 2). In particular, we create URI embeddings by
following all the possible single-edge paths (i.e., Conf. I).
Moreover, we combine Conf. I by creating also larger URI
sequences that include “for each actor of a movie, its
rdf:type, categories and awards” (i.e., Conf. II), and finally,
we enrich Conf. II with URI sequences that are created by
following three-edges paths, i.e., they also include “for each
actor of a movie, its hometown, and the country where that
town is located in” (see Conf. III).

All these configurations are used for evaluating the
efficiency of LODVec (in Sub-section 5.3), whereas
the embeddings of Conf. I and Conf. II are also used in
Sub-section 5.4.1, for a binary classification (i.e., to predict
if a movie has a high or a low rating) and for a regression
task (i.e., to predict the exact rating of each movie). Finally,
the produced embeddings of Conf. I are also used
for finding the most similar movies for a given movie
Sub-section 5.5.

Table 2 Configuration (basic graph patterns) that we selected for each evaluation data set

Evaluation data set URIs Config. ID Basic graph patterns of this configuration Used for tasks

Movies 2000 Conf. I All Single Edge Paths EFF, CF, REG, SIM

Movies 2000 Conf. II Conf. I and 1 1 2, ,? , ? , ,?e actor o o award o and

1 1 3, ,? , ? , ,?e actor o o type o and 1 1 4, ,? , ? , ,?e actor o o subject o

EFF, CF, REG

Movies 2000 Conf. III Conf. II and 1 1 5, ,? , ? , ,?e actor o o hometown o , 5 6? , ,?o country o EFF

Music Albums 1600 Conf. IV All Single Edge Paths EFF, CF, REG

Music Albums 1600 Conf. V Conf. IV and 1 1 2, ,? , ? , ,?e artist o o p o EFF, CF, REG

Music Albums 1600 Conf. VI Conf. V and 1, ,?e artist o , 1 3? , ,? ,o recordLabel o 3 4? , ,?o country o EFF

Top NBA Players 450 Conf. VII All Single Edge Paths EFF, CF, REG

Basketball Players 12,250 Conf. VIII All Single Edge Paths EFF, SIM

14 M. Mountantonakis and Y. Tzitzikas

5.1.2 Music albums data set

We use the Metacritic Music Albums data set (Ristoski et al.,
2016), which contains the DBpedia URIs of 1600 music
albums, and for each album its average user rating. Regarding
the ratings, 800 of them have high rating (> 79), and the other
800 ones have low rating (< 63). For these albums, we create
URI embeddings for three configurations (Conf. IV to Conf. VI
in Table 2). Regarding Conf. IV, we create all the possible
single-edge URI sequences. Concerning Conf. V, we use the
URI sequences of Conf. IV, whereas we also create URI
sequences by following two edges paths, i.e., “the artist of each
album and all the triples for each artist”. Finally, in Conf. VI,
we use all the URI sequences of the previous configuration,
and we also create sequences including paths of three
edges, i.e., “the artist of each music album, the record label
of each artist and the country where that record label is
located in”.

First, we evaluate the efficiency by using these three
configurations (in Sub-section 5.3). Moreover, in § 5.4.2,

we evaluate the produced embeddings of Conf. IV and Conf.
V in a binary classification task, i.e., for predicting if a
music album has high or low rating, and in a regression
task, i.e., for predicting the exact rating of each album.

5.1.3 Basketball data sets

We use the list of 500 Greatest NBA Players of All Time (until
2011) according to SLAM magazine (https://www.basketball-
reference.com/awards/slam_500_greatest.html). We have
divided the aforementioned players into the following two
groups: the players in positions 1–225, and the players in
positions 276–500. Therefore, we use 450 players (out of 500),
i.e., see Conf. VII in Table 2. For each player, we have
collected its DBpedia URI and its corresponding position in the
list of the top NBA players. For these players, we create URI
sequences and embeddings by using only their direct
neighbourhood, i.e., we follow all the single-edge paths. The
resulted embeddings are used for classification and regression
(in Sub-section 5.4.3). The target of the binary classification is
to predict if a player in that list belongs in a position in the
range [1,225] or in the range [276,500]. On the other hand, the
target of the regression task is to predict the exact position of
each NBA player in the list of the top-500 players of all time.

Moreover, we have also downloaded the DBpedia URIs
of 12,250 basketball players (all the URIs of the class
http://dbpedia.org/ontology/BasketballPlayer), i.e., (see
Conf. VIII in Table 2). Again, we create all the URI
sequences of single edge paths for each player, and the
produced embeddings are used for evaluating the
effectiveness of finding the most similar basketball players
to a given player (in Sub-section 5.5).

5.2 Setup

Here, we introduce the hardware setup and the parameters
that we used for creating the embeddings through word2vec.

5.2.1 Hardware setup

All the experiments were performed on a single machine
with an i5 core, 8 GB RAM, and 1 TB disc space. Moreover,
the indexes and services of LODsyndesis, which are used in
our approach, are hosted in a single machine of okeanos
cloud computing service (https://okeanos.grnet.gr/) with
8 cores, 8GB RAM and 60 GB disc space.

5.2.2 Word2vec parameters

For building our word2vec model, we use the skip-gram model
of dl4j library, we exclude URIs existing < 5 times in the
produced sequences (= 5minWordFrequency), and we use

10 iterations. We selected the window size parameter to be 2
(= 2windowSize) for the configurations including URI
sequences with only single-edge paths (Conf. I, IV, VII and
VIII), and 4 (= 4windowSize) for the remaining
configurations, i.e., they also contain URI sequences produced
by following larger paths. For each entity e , we produce
a single vector ()v e with 100 dimensions (= 100layerSize).

We expect that similar entities (e.g., albums with similar rating)
will be placed in a close position in the vector space.

5.3 Efficiency of creating URI sequences and
embeddings

For the efficiency experiments, we create URI sequences by
using all the RDF data sets of LODsyndesis, for all the
configurations of Table 2. The objective is to evaluate the gain
of using the “cache” mechanism (see Sub-section 4.3.3), i.e., to
evaluate the decrease a) in the execution time and b) in the
number of index entries that we need to read (number of
recursions). Moreover, we provide measurements about the
efficiency of the whole process.

Movies: Figure 5 shows the number of URI sequences
that were produced for each configuration, i.e., by following
larger paths the number of sequences increases (see also the
third column of Table 3), whereas as we can see in Figure 6,
the execution time increases, too. However, by using the
“cache” mechanism (see Figure 6), we achieved 2.02

speedup for Conf. II, i.e., URI sequences including also two-
edges paths, and 3.7 speedup for Conf. III, i.e., by
following also three-edges paths. Indicatively, for creating
URI sequences for both the movie and its actors (i.e., Conf.
II), we needed 17.4 minutes. Concerning the number of
recursions (see Figure 7), by using the “cache” mechanism,
we needed on average 5.1 recursions per movie (instead of
9.18) for Conf. II, and 6 recursions per movie (instead of 15)
for Conf. III. Regarding the total execution time of these
configurations, we can see in Table 3 (see the rows for
movies) that the creation time of Pattern Graph G (see the
fourth column of Table 3) is very fast in all cases, whereas
the execution time of creating the embeddings (see the sixth
column of Table 3) increases as the number of URI
sequences grows.

 Applying cross-data set identity reasoning 15

Table 3 Execution time for different configurations

Evaluation data set Configuration
| () |USeq e

average
Pattern graph
creation time

URI sequences
creation time

Embeddings
creation time

Total
time

Movies Conf. I (1-edge paths) 170.1 0.001 min 3.5 min 1.7 min 5.2 min

Movies Conf. II (2-edges paths) 397.9 0.002 min 17.4 min 4.0 min 21.4 min

Movies Conf. III (3-edges paths) 501.8 0.002 min 24.5 min 6.8 min 31.3 min

Music albums Conf. IV (1-edge paths) 35.9 0.001 min 0.9 min 0.3 min 1.2 min

Music albums Conf. V (2-edges paths) 365.0 0.002 min 2.2 min 3.3 min 5.5 min

Music albums Conf. VI (3-edges paths) 377.8 0.003 min 3.1 min 3.6 min 6.7 min

Top NBA players Conf. VII (1-edge paths) 163.2 0.001 min 0.4 min 0.3 min 0.7 min

Basket players Conf. VIII (1-edge paths) 54.8 0.001 min 6.1 min 4.1 min 10.2 min

Figure 5 Average number of URI sequences per movie for each

configuration

Figure 6 Total execution time for movies data set for each
configuration

Figure 7 Average number of Algorithm 2 recursions per movie
for each configuration

Music albums: Figures 8, 9 and 10 show the number of URI
sequences, the execution time and the number of recursions for
each configuration (i.e., Conf. IV to Conf. VI). Similarly to
movies data set, the execution time (see Figure 9) and the
number of recursions (see Figure 10) decreased by using the
“cache” mechanism, i.e., for Conf. V we needed on average
1.75 recursions per album (instead of 2) and we achieved
1.46 speedup, whereas for Conf. VI, we performed 2.68

recursions (instead of 3.74) and we achieved 3.48 speedup.
Indicatively, we needed 2.16 minutes for creating URI
sequences for each music album and its artist. Finally, we can
observe in Table 3 (see the rows for music albums), that the
time for creating the embeddings is increased as the number of
URI sequences grows.

Figure 8 Average number of URI sequences per album for each
configuration

Figure 9 Total execution time for music albums data set for each
configuration

16 M. Mountantonakis and Y. Tzitzikas

Figure 10 Average number of Algorithm 2 recursions per music
album for each configuration

Basketball data sets: In the last two rows of Table 3, we can
see the execution time for the two data sets for basketball.
For the first case, where the input is 450 entities (see the
row for top NBA players in Table 3), we managed to
complete the whole process very fast, i.e., in less than 1
minute. On the contrary, in the second case (see the last row
of Table 3)), we needed over 10 minutes, since the input is
much larger, i.e., 12,250 entities.

More efficiency experiments: In Sub-section 5.4, we
provide more efficiency experiments for each evaluation
data set, by using different subsets of RDF data sets, e.g., by
using a single or pairs of RDF data sets, instead of all the
available RDF data sets of LODsyndesis.

5.4 Task A. Classification and regression

In this subsection, we introduce the results for the tasks of
(binary) classification and regression.

Machine learning models and metrics: For performing
classification and regression, the vectors produced by
LODVec are given as input in WEKA API, by using a
10-fold cross validation (Witten et al., 2011).

Regarding Classification (CF), we use the default
implementation of Random Forest (RF) and Support Vector
Machine (SMO) of WEKA. For each model, we measure
the accuracy percentage (percentage of correct predictions),
i.e., the goal is to maximise that percentage. Concerning
Regression (Reg), we use the default implementation of
Linear Regression (LR) and Random Forest (RF) of
WEKA, and we measure the root mean squared error
(RMSE), i.e., the target is to minimise the RMSE value.
Finally, we measure the accuracy and the RMSE for
the trivial Vote method, that selects randomly a class
(in classification) and a rating (in regression) for each entity.

Results for the evaluation data sets: Tables 4, 5 and 6 show
several statistics and experiments for movies, music albums
and top NBA players, respectively. In each table, the first
column indicates the ID of each row, whereas the second and
the third one show the subset of RDF data sets and the
configuration, which were used for creating the embeddings,
respectively. We should note that for each configuration, we
use eight different subsets (i.e., combinations) of RDF data sets
for creating the embeddings. For each of these subsets, we
present in the fourth column the average produced URI
sequences per entity, and in the fifth column the total execution
time of creating both the URI sequences and the embeddings.
The columns sixth and seventh show the accuracy of the
classification task (CF) and the last two columns show the
RMSE value for the regression task (REG), by using different
models. Below, we present the results for each evaluation
data set.

Table 4 Classification and regression experiments on movies data set

Row ID RDF Data sets Used Config. Name
| () |USeq e

Average
Total
Time

RF
(CF)

SVM
(CF)

RF
(REG)

LR
(REG)

1 DBpedia (DB) Conf. I (1-edge paths) 23.8 2.7 min 71.00% 71.14% 20.66 20.02

2 Freebase (FR) Conf. I (1-edge paths) 112.0 3.6 min 81.78% 82.02% 16.47 16.37

3 Wikidata (WK) Conf. I (1-edge paths) 22.5 2.5 min 71.80% 70.28% 20.19 20.81

4 DB,FR Conf. I (1-edge paths) 38.3 3.7 min 82.41% 82.51% 16.45 16.11

5 DB,WK Conf. I (1-edge paths) 132.0 2.8 min 74.90% 74.92% 16.76 19.18

6 FR,WK Conf. I (1-edge paths) 129.0 3.8 min 82.48% 83.32% 16.53 16.25

7 DB,FR,WK Conf. I (1-edge paths) 144.7 4.2 min 82.54% 84.10% 16.45 16.01

8 All 14 data sets Conf. I (1-edge paths) 170.1 5.2 min 82.61% 84.70% 16.40 15.57
9 All 14 data sets Conf. I (top-30 desc) 30.0 121.1 min 75.10% 75.86% 19.23 19.07

10 All 14 data sets Conf. I (top-30 asc) 30.0 121.1 min 72.70% 72.50% 19.73 19.58

11 All 14 data sets Conf. I (top-30 rand) 30.0 5.0 min 71.93% 73.10% 20.44 19.86

12 DBpedia (DB) Conf. II (2-edges paths) 106.9 17.6 min 68.27% 70.92% 21.00 20.46

13 Freebase (FR) Conf. II (2-edges paths) 152.9 17.9 min 77.00% 78.74% 18.70 17.20

14 Wikidata (WK) Conf. II (2-edges paths) 54.2 16.2 min 71.90% 71.74% 20.46 19.99

15 DB,FR Conf. II (2-edges paths) 256.3 19.2 min 74.10% 76.51% 19.59 17.95

16 DB,WK Conf. II (2-edges paths) 125.3 17.6 min 68.92% 72.71% 20.71 19.97

17 FR,WK Conf. II (2-edges paths) 172.0 17.8 min 76.08% 77.82% 19.08 17.59

18 DB,FR,WK Conf. II (2-edges paths) 272.5 19.8 min 74.87% 77.16% 19.48 17.81

19 All 14 data sets Conf. II (2-edges paths) 397.9 21.4 min 72.94% 75.63% 19.81 18.36

 Applying cross-data set identity reasoning 17

5.4.1 Results for movies

In rows with ID 1–11 of Table 4, we show the results by
following only single-edge paths, i.e., by using Conf. I,
whereas the rows with ID 12–19 present the results by
following also larger paths, i.e., by using Conf. II. We can see
that the average number of URI sequences and the execution
time increases as we add more data sets (see the fourth and
fifth column of Table 2). For example, for Conf. I, by using
DBpedia (see row with ID 1) we needed 2.7 minutes and we
created on average 23.8 URI sequences per movie, whereas
by using all the available RDF data sets of LODsyndesis (see
row with ID 8), the execution time was 5.5 minutes and the
number of average URI sequences was 170.1.

Classification and regression results: First, for the
trivial Vote method, we obtained 50% accuracy (CF), and
the RMSE value was 23.1 (REG). Concerning Conf. I, the
RDF data set with the highest accuracy and the lowest
RMSE is FreeBase (Bollacker et al., 2008) (see row with
ID 2), i.e., we obtained 82% accuracy through SVM model,
whereas its RMSE value was 16.37 (through LR model).
The corresponding percentage for DBpedia and Wikidata
were much smaller. However, by taking each pair of these 3
data sets (see rows with ID 4–6), the accuracy increased,
and the RMSE value decreased in all cases (versus using
only one data set from each pair). Certainly, by using only
FreeBase, we achieved better results comparing to use both
DBpedia and Wikidata, which seems rational, since from
Freebase we created a larger number of sequences.
However, by combining Freebase with either DBpedia or
Wikidata, or by using all 3 data sets (these combinations are
feasible due to cross-data set identity reasoning), the results
improved. By using all the 14 RDF data sets (out of 400
data sets) containing data about these movies, we achieved
the highest accuracy (84.7%) and the lowest RMSE (15.57).

Regarding the creation of the top- K URI sequences, we
show some indicative experiments for Conf. I in rows with
ID 9–11 of Table 4. By creating only the top-30 URI
sequences according to objects frequency for each movie in
descending order (i.e., triples with the 30 most popular
objects per movie), we achieved higher accuracy lower
RMSE, comparing to a random or an ascending order.
However, the creation time of desc and asc is slower versus
the other cases, since we send several requests to

LODsyndesis REST API (Mountantonakis and Tzitzikas,
2018b) for retrieving the frequency of each URI which
occurs as the last object in each URI sequence.

Concerning the creation of larger URI sequences
(for including more information for the actors of each
movie), we obtained worse results comparing to the case of
following only single-edge paths (i.e., see rows with
ID 12–19 of Table 4). Only for the case of Wikidata we
obtained higher accuracy and lower RMSE, by following
also two-edges paths (see rows with ID 3 and 14).

Finally, for the classification task SVM outperformed RF
in most cases, while for the regression task, LR was
generally more effective than RF.

5.4.2 Results for music albums

In rows with ID 1–8 of Table 5, we can see experiments by
creating embeddings only by following single-edge paths
(see Conf. IV in Table 2), whereas in rows with ID 9–16 we
present experiments by following larger paths (see Conf. V
in Table 2). Concerning Conf. IV, by using only DBpedia
(see row with ID 1), we created on average 16.3 URI
sequences per album, whereas by using all the data sets, we
created 35.9. Concerning the creation time of URI
sequences, it is very low for Conf. IV, and it increases as we
explore larger paths (i.e., for Conf. V).

Classification and regression results: First, for the
trivial Vote method, we obtained 50% accuracy, whereas
the RMSE value was 13.95. Concerning Conf. IV (i.e., only
single-edge paths), the RDF data set having the best
performance for both classification and regression is
DBpedia (see row with ID 1 in Table 5), whereas Freebase
is not so accurate for this task (see row with ID 2).
Therefore, even by selecting to use exactly one RDF data
set for movies and music albums (i.e., the same data set in
both cases), we will not be able to obtain the best results for
both tasks. Similarly to movies, as we add more data sets,
the results are better for both regression and classification,
except for the pairs containing the data set Wikidata
(see rows with ID 5–6). By including all the 6 available data
sets for music albums (see row with ID 8 in Table 5), we
obtained the highest accuracy (i.e., 71.31%) and the lowest
RMSE value (i.e., 12.41), by using the SVM and the LR
model, respectively.

Table 5 Classification and regression experiments on music albums data set

Row ID RDF Datasets Used Config. Name
| () |USeq e

Average
Total
Time

RF
(CF)

SVM
(CF)

RF
(REG)

LR
(REG)

1 DBpedia (DB) Conf. IV (1-edge paths) 16.3 0.9 min 68.15% 68.21% 12.69 12.75

2 Freebase (FR) Conf. IV (1-edge paths) 9.2 0.7 min 57.95% 56.57% 13.66 13.74

3 Wikidata (WK) Conf. IV (1-edge paths) 6.7 0.6 min 59.74% 61.37% 13.85 13.89

4 DB,FR Conf. IV (1-edge paths) 25.5 0.9 min 69.30% 68.64% 12.53 12.60

5 DB,WK Conf. IV (1-edge paths) 20.5 0.9 min 67.61% 67.61% 12.76 12.85

6 FR,WK Conf. IV (1-edge paths) 16.0 0.7 min 56.28% 57.65% 13.70 14.00

7 DB,FR,WK Conf. IV (1-edge paths) 29.8 1.0 min 69.40% 69.02% 12.66 12.55

8 All 6 data sets Conf. IV (1-edge paths) 35.9 1.1 min 70.81% 71.31% 12.55 12.41

18 M. Mountantonakis and Y. Tzitzikas

Table 5 Classification and regression experiments on music albums data set (continued)

Row ID RDF Datasets Used Config. Name
| () |USeq e

Average
Total
Time

RF
(CF)

SVM
(CF)

RF
(REG)

LR
(REG)

9 DBpedia (DB) Conf. V (2-edges paths) 91.4 2.5 min 68.50% 68.84% 12.77 12.62

10 Freebase (FR) Conf. V (2-edges paths) 120.4 2.8 min 65.12% 62.78% 13.15 13.36

11 Wikidata (WK) Conf. V (2-edges paths) 46.2 2.4 min 62.23% 61.45% 13.51 13.88

12 DB,FR Conf. V (2-edges paths) 211.8 3.0 min 69.08% 69.2% 12.74 12.56

13 DB,WK Conf. V (2-edges paths) 135.9 2.7 min 67.36% 69.58% 12.86 12.88

14 FR,WK Conf. V (2-edges paths) 166.7 2.8 min 64.41% 64.70% 13.14 13.14

15 DB,FR,WK Conf. V (2-edges paths) 256.4 3.3 min 70.09% 70.10% 12.76 12.42

16 All 20 data sets Conf. V (2-edges paths) 365.0 5.5 min 70.93% 72.32% 12.54 12.21

Concerning the embeddings of Conf. V (see rows with
ID 9–16 in Table 5), in all cases we obtained better results
comparing to Conf. IV. Therefore, for this evaluation data set,
it was effective to create more URI sequences by following
also larger paths, i.e., URI sequences containing also
information about the artist of each album. Indicatively, by
using Freebase we can clearly see a high increase in the
accuracy (+7.17%), and a decrease in the RMSE value
(–0.51), by creating larger URI sequences (see rows with
ID 2 and 10 of Table 5). Similarly to Conf. IV, we obtained
the best results by using all the available data sets containing
information for both music albums and artists (see row with
ID 16), i.e., 72.32% accuracy (CF) and 12.21 RMSE value
(Reg). Finally, it is worth noting that 20 RDF data sets (out of
400) contain information about the artists, whereas only 6 of
them about music albums. Therefore, we created a multiple
“mixed-path” URI sequences by using Conf. V.

5.4.3 Results for top NBA players

Table 6 shows the results for the top NBA players by using
Conf. VII. As we can see, in all cases we needed less than
0.7 minutes for creating URI sequences and embeddings for
450 NBA players.

Classification and regression results: First, by using the
trivial Vote method of WEKA, we obtained 50% accuracy,
whereas the RMSE value was 153.1. Concerning classification,
the RDF data set with the highest accuracy (72.91%) is
Freebase (see row with ID 2). By adding more data sets, the

accuracy increases in most cases, whereas the highest accuracy,
i.e., 77.03%, obtained by producing embeddings from all the
available RDF data sets, and by using the Random Forest
model (see row with ID 8). Regarding regression, the RDF data
set with the best performance is DBpedia, i.e., the RMSE value
was 121.7, whereas we obtained again the best result by using
all the RDF data sets and the Random Forest model (i.e., the
RMSE was 114.4).

5.5 Task B. Finding similar entities

In this subsection, we introduce experiments for evaluating
the effectiveness of the proposed approach, for retrieving
similar entities. In particular, we selected 25 movies (from
the set of 2000 movies), and 25 basketball players (from the
set of 12,250 basketball players). Then, we typed in Google
Search Engine the corresponding keywords for each movie
(e.g., “Inception”) and each basketball player (e.g., “Magic
Johnson”), and we retrieved manually a list of related
movies and basketball players, respectively. Afterwards,
we created two evaluation data sets, which can be
downloaded from http://islcatalog.ics.forth.gr/dataset/
lodvec. For retrieving the list of related entities for each
entity, we used the “People also Searched for” service of
Google, i.e., it returns entities that have been searched for
by people, who also searched for the focused entity (e.g., the
movie “Inception”). For each entity, the corresponding
(Google) list contains on average 24 related entities.

Table 6 Classification and regression experiments on data set for top 500 NBA basketball players of all time

Row ID RDF Datasets Used Config. Name
| () |USeq e

Average
Total
Time

RF
(CF)

SVM
(CF)

RF
(REG)

LR
(REG)

1 DBpedia (DB) Conf. VII (1-edge paths) 37.9 0.4 min 70.55% 72.51% 121.7 123.0

2 Freebase (FR) Conf. VII (1-edge paths) 71.2 0.4 min 72.91% 71.13% 123.1 128.2

3 Wikidata (WK) Conf. VII (1-edge paths) 18.6 0.3 min 67.01% 66.86% 130.1 141.1

4 DB,FR Conf. VII (1-edge paths) 109.1 0.5 min 75.74% 74.02% 115.8 124.5

5 DB,WK Conf. VII (1-edge paths) 55.6 0.4 min 71.53% 71.50% 120.0 132.2

6 FR,WK Conf. VII (1-edge paths) 89.8 0.4 min 74.21% 74.25% 121.3 129.6

7 DB,FR,WK Conf. VII (1-edge paths) 126.9 0.6 min 76.90% 76.62% 114.5 120.1

8 All 15 data sets Conf. VII (1-edge paths) 163.2 0.7 min 77.03% 76.65% 114.4 122.1

 Applying cross-data set identity reasoning 19

For this experiment we used the embeddings for 2000
movies and 12,250 basketball players (according to Conf. I
and Conf. VIII, respectively), by using a) only DBpedia, b)
both DBpedia and Freebase, c) DBpedia, Freebase and
Wikidata and d) all the available RDF data sets. For finding
the K most similar entities for each entity (i.e., movies
and basketball players), LODVec uses the function
“wordsNearest” from dl4j API.

5.5.1 What we measure

Let '
selE E be the entities that we use. Moreover, let

()GoogleRelEnt e be the set of related entities for an

entity 'e E , derived through Google, whereas let
(,)LODvecRelEnt e K be the set of the top- K related entities

for each entity e , derived through LODVec .
We measure the percentage of entities which are retrieved

as similar, from both “Google Search Engine” and LODVec,
i.e., we measure (,) = ()cmnEntities e K GoogleRelEnt e

(,)LODvecRelEnt e K , where 1 | () |K GoogleRelEnt e  ,

and the range of this formula is [0,]K . Afterwards,

we measure the average percentage of common
entities, for all the entities of this experiment, i.e.,

(,)
(,) =

| | *

'' e E
'

cmnEntities e K
cmnEntitiesPer E K

E K
 

 (i.e., a

value with range [0, 1]). We perform experiments for three
different values of K , i.e., = 1K and = 3K and = 5K .

5.5.2 Results for movies

In the second to fourth columns of Table 7, we can see the
results for all the different values of K for Movies data set.
The best results obtained by using all the available RDF data
sets. For example, for = 1K (i.e., the top identified related
movie of each movie), we achieved the highest accuracy, i.e.,
92%, by using all the data sets. It means that in 23 (out of 25)
cases, the most related movie identified from LODVec for each
of these 23 movies, was also included in the corresponding list
retrieved through Google Search. On the contrary, for = 5K
we obtained a 66.4% accuracy, i.e., on average 3.32 (out of 5)
related movies of each movie that identified through LODVec,
were also included in the Google Search list. As the K
increases, the accuracy decreases for all the configurations.
However, for any given K , when we add more data sets the
percentage increases. Table 8 provides an indicative example
for one of these 25 movies, i.e., the movie “WALL-E” and for

= 5K , by using only DBpedia, 2 (out of 5) movies were in the
list of related movies from Google (the bold ones in Table 8),
whereas by using either Freebase and DBpedia, or these two
data sets along with Wikidata, 4 (out of 5 movies) were at that
list. Finally, by exploiting all the available RDF data sets, all
the 5 movies were part of the list.

Table 7 Results of (,)cmnEntitiesPer E K for evaluating the task of finding similar entities by using 25 movies and 25 basketball
players

Data sets (used for creating URI
sequences and embeddings)

= 1K
(Movies)

= 3K
(Movies)

= 5K
(Movies)

= 1K
(Basketball Players)

= 3K
(Basketball Players)

= 5K
(Basketball Players)

DBpedia 68.0% 56.0% 45.6% 56.0% 48.0% 47.2%

DBpedia, Freebase 80.0% 64.0% 53.6% 60.0% 57.3% 51.2%

DBpedia, Freebase, Wikidata 80.0% 69.3% 61.6% 88.0% 70.6% 68.0%

All RDF data sets 92.0% 80.0% 66.4% 92.0% 78.6% 70.4%

Table 8 Indicative example – top-5 related movies to “Wall-E” movie by using different data sets. The bold indicates that an entity
identified as related from both LODVec and Google Search

RDF Datasets Position 1 Position 2 Position 3 Position 4 Position 5

DB Pink Panther 2 Ratatouille Shrek 2 Rain Mant Space Chimps

DB,FR Finding Nemo Toy Story 2 The Incredibles Toy Story The Princess and the Frog

DB,FR,WK Finding Nemo Toy Story 2 The Incredibles Toy Story The Princess and the Frog

All Datasets Finding Nemo Ratatouille The Incredibles Toy Story 3 Toy Story

Table 9 Indicative example – top-5 related basketball players to “Magic Johnson” by using different data sets. The bold indicates that
an entity identified as related from both LODVec and Google Search

RDF Datasets Position 1 Position 2 Position 3 Position 4 Position 5

DB Abdul-Jabaar James Worthy John Stockton Shaquille O’Neal Larry Bird

DB,FR Julius Erving Shaquille O’Neal Willies Reed Pat Ewing Dwyane Wade

DB,FR,WK Shaquille O’Neal Reggie Miller Dennis Rodman Michael Jordan Abdul-Jabaar

All Datasets Michael Jordan Dwyane Wade Julius Erving LeBron James Shaquille O’Neal

20 M. Mountantonakis and Y. Tzitzikas

5.5.3 Results for basketball players

We have created URI sequences and embeddings for 12,250
players, therefore, we try to find which are the top- K
similar basketball players (out of 12,250 players) for a given
player. For creating the URI sequences and embeddings we
needed 8 minutes by using DBpedia (on average 19.1 URI
sequences per player), 8.2 minutes by using DBpedia and
Freebase (on average 28.5 URI sequences), 8.9 minutes by
using these two data sets and Wikidata (on average 43.5
URI sequences), and finally 10 minutes by using all the data
sets (on average 54.8 URI sequences). Regarding the
results, they are shown in the fifth to seventh columns of
Table 7. Similarly to the case of movies, we obtained the
best results by using all the available RDF data sets.
Moreover, in all the cases the percentage increased when we
added more data sets, especially by adding Wikidata to
DBpedia and Freebase. Finally, Table 9 provides an
example for the player “Magic Johnson” and for = 5K .
Particularly, by using either one or two data sets, 3
(out of 5) players were included in the list of the related
players of “Magic Johnson”, derived from Google, i.e., the
bold ones in Table 9. On the contrary, by using three RDF
data sets, 4 (out of 5 players) occur in this list, whereas by
using all the available RDF data sets, all the five basketball
players were part of the list derived from Google.

In http://islcatalog.ics.forth.gr/dataset/lodvec, one can
download all the derived related entities (identified
from both Google and LODVec) for each of these a)
25 basketball players and b) 25 movies.

6 Discussion about the experimental results

Here, we provide four major conclusions regarding the
experiments, concerning a) the efficiency of LODVec, b) the
performance of single RDF data sets in different tasks, c) the
gain of using more data sets for creating complementary URI
sequences and d) the importance of following larger paths for
creating URI sequences.

Concerning a), we have seen that LODVec can produce
URI sequences and embeddings quite fast even by using
multiple data sets of LODsyndesis for thousands of entities,
e.g., it needs approximately 1 minute for 1600 music albums.
Although the execution time increases as we follow larger
paths, by using the “cache” mechanism the execution time can
greatly decreased. Regarding b), we have showed that there is
not a single RDF data set (or knowledge graph) that can
outperform the others for any possible task, e.g., DBpedia was
more accurate for classifying the music albums, whereas
Freebase was more efficient for classifying the movies and the
NBA players. Concerning c), we have observed that for each
evaluation data set we obtained better results by using multiple
RDF data sets, instead of a single one, for the tasks of
classification and regression, and for finding the most similar
entities. Moreover, for each task we obtained the best results by

using all the available RDF data sets of LODsyndesis. Finally,
as regards d), it was effective to follow larger paths (including
“mixed-paths”) for creating also URI sequences for the artists
of each music album, whereas it was not effective for creating
larger sequences for the actors of the Movies data set. It means
that it is not always valuable to follow larger paths for creating
URI sequences. A corresponding limitation of this paper
(and a key research direction) is that we do not estimate
whether a path is worth to be followed, i.e., the user selects
manually the paths that will be followed for creating the
desired URI sequences.

7 Conclusions

There is a lack of approaches that create URI embeddings
from multiple RDF data sets. For this reason, we introduced
a prototype called LODVec that exploits the semantically
enriched indexes of LODsyndesis knowledge graph, and
offers configurable options for creating URI sequences of
any length for 412 million entities from 400 RDF data sets.
Moreover, it offers a “cache” mechanism for avoiding to
explore the same paths multiple times for creating URI
sequences, and it uses word2vec model for converting the
URI sequences to embeddings. The produced embeddings
can be exploited in several tasks. In our case, we created
URI embeddings for three evaluation data sets (containing
movies, music albums and basketball players), by using
multiple RDF data sets (after enriching them with the results
of cross-data set identity reasoning). We evaluated the gain
of using several RDF data sets for creating embeddings for
the tasks of classification, regression and for finding the
most similar entities to a desired entity.

Concerning efficiency, LODVec can produce URI
sequences and embeddings for over 1 thousand entities
approximately in 1 minute, by using multiple RDF data
sets. Moreover, we identified even 3.7 speedup by using the
previously mentioned “cache” mechanism. Regarding
effectiveness, in all tasks we obtained the best results by
creating embeddings from all the available RDF data sets.
Indicatively, by creating URI sequences and embeddings from
14 RDF data sets instead of using only DBpedia, we identified
even 13% increase in the accuracy of predicting if a movie has
a high or a low user rating (binary classification). As a future
work, we plan (a) to estimate whether a path is worth to be
followed, for aiding the user to create the most valuable URI
sequences, i.e., URI sequences that can improve the
effectiveness of a given task, (b) to create sequences containing
also literals (e.g., Gesese et al., 2019) and not only URIs, (c) to
create vectors through other models, like GloVe (Pennington
et al. 2014) and BERT (Devlin et al., 2019) , and (d) to apply
graph-based techniques, such as Cochez et al. (2017b) and
(Wang et al., 2014). Finally, it would be interesting to use
novel graph database platforms, such as Neo4j (Webber, 2012),
for tackling index limitations (such as those presented in
Sub-section 4.3.3).

 Applying cross-data set identity reasoning 21

References

Ammar, A. and Celebi, R. (2019) ‘Fact validation with knowledge
graph embeddings’, in Suárez-Figueroa, M.C. and Cheng, G.
et al. (Eds): Proceedings of the CEUR Workshop Proceedings
Satellite Tracks (ISWC’19), pp.125–128. Available online at:
http://ceur-ws.org/Vol-2456/paper33.pdf

Antoniou, G. and Van Harmelen, F. (2008) A Semantic Web
Primer, 2nd ed., Cooperative Information Systems, MIT
Press.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and
Ives, Z.G. (2007) ‘DBpedia: a nucleus for a web of open
data’, in Aberer, K. and Choi, K. et al. (Eds): Proceedings of
the 6th International Semantic Web Conference, Springer,
pp.722–735. Doi: 10.1007/978-3-540-76298-0_52.

Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T. and Taylor, J.
(2008) ‘Freebase: a collaboratively created graph database for
structuring human knowledge’, in Wang, J.T. (Ed.):
Proceedings of the ACM SIGMOD International Conference
on Management of Data, ACM, pp.1247–1250. Doi:
10.1145/1376616.1376746.

Cochez, M., Ristoski, P., Ponzetto, S.P. and Paulheim, H. (2017a)
‘Biased graph walks for RDF graph embeddings’,
in Akerkar, R. and Cuzzocrea, A. et al. (Eds): Proceedings of
the 7th International Conference on Web Intelligence
Mining and Semantics’, ACM, pp.21:1–21:12. Doi:
10.1145/3102254.3102279.

Cochez, M., Ristoski, P., Ponzetto, S.P. and Paulheim, H. (2017b)
‘Global RDF vector space embeddings’, in d’Amato, C. and
Fernández, M. et al. (Eds): Proceedings of the 16th
International Semantic Web Conference (ISWC)’, Springer,
pp.190–207. Doi: 10.1007/978-3-319-68288-4_12.

Devlin, J., Chang, M., Lee, K. Toutanova, K. (2019) ‘BERT: pre-
training of deep bidirectional transformers for language
understanding’, in Burstein, J. and Doran, C. and Solorio, T.
(Eds): Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT)’, Association
for Computational Linguistics, pp.4171–4186. Doi:
10.18653/v1/n19-1423.

Eddamiri, S., Zemmouri, E.M., Benghabrit, A. (2018) ‘Graph
embeddings for linked data clustering’, in Indrawan-Santiago,
M. and Pardede, E. et al. (Eds): Proceedings of the 20th
International Conference on Information Integration and
Web-based Applications and Services, ACM, pp.122–128.
Doi: 10.1145/3282373.3282401.

Gesese, G.A., Biswas, R., Sack, H. (2019) ‘A comprehensive
survey of knowledge graph embeddings with literals:
techniques and applications’, in Alam, M., Buscaldi, D. et al.
(Eds): Proceedings of the Workshop on Deep Learning for
Knowledge Graphs (DL4KG’19), pp.31–40. Available online
at: http://ceur-ws.org/Vol-2377/paper_4.pdf

Goyal, P. and Ferrara, E. (2018) ‘Graph embedding
techniques, applications, and performance: a survey’,
Knowledge-Based Systems, Vol. 151, pp.78–94. Doi:
10.1016/j.knosys.2018.03.022.

Hajra, A. and Tochtermann, K. (2017) ‘Linking science:
approaches for linking scientific publications across different
LOD repositories’, International Journal of Metadata,
Semantics and Ontologies, Vol. 12, Nos. 2/3, pp.124–141.
Doi: 10.1504/IJMSO.2017.10011833.

Harris, S., Seaborne, A. and Prud’hommeaux, E. (2013) ‘SPARQL
1.1 query language’, W3C Recommendation, Vol. 21, No. 10,
p.778.

Inan, E. and Dikenelli, O. (2017) ‘Effect of enriched ontology
structures on RDF embedding-based entity linking’, in
Garoufallou, E. and Virkus, S. et al. (Eds): Proceedings of the
11th International Conference on Metadata and Semantic
Research Communications in Computer and Information
Science, Springer, pp.15–24. Doi: 10.1007/978-3-319-
70863-8_2.

Lin, Y., Liu, Z., Sun, M., Liu, Y. and Zhu, X. (2015) ‘Learning
entity and relation embeddings for knowledge graph
completion’, in Bonet, B. and Koenig, S. (Eds): Proceedings
of the 29th AAAI Conference on Artificial Intelligence, AAAI
Press, pp.2181–2187.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) ‘Efficient
estimation of word representations in vector space’,
arXiv:1301.3781v3 [cs.CL], pp.1–12. Available online at:
http://arxiv.org/abs/1301.3781

Mohapatra, N., Iosifidis, V., Ekbal, A., Dietze, S. and Fafalios, P.
(2018) ‘Time-aware and corpus-specific entity relatedness’, in
Cochez, M. and Declerck, T. et al. (Eds): Proceedings of the
First Workshop on Deep Learning for Knowledge Graphs and
Semantic Technologies (DL4KGS), pp.33–39. Available
online at: http://ceur-ws.org/Vol-2106/paper4.pdf

Mountantonakis, M. and Tzitzikas, Y. (2017) ‘How linked data can
aid machine learning-based tasks’, in Kamps, J., Tsakonas, G.
et al. (Eds): Proceedings of the 21st International Conference
on Theory and Practice of Digital Libraries (TPDL),
Springer, pp.155–168. Doi: 10.1007/978-3-319-67008-9_13.

Mountantonakis, M. and Tzitzikas, Y. (2018a) ‘High performance
methods for linked open data connectivity analytics’,
Information, Vol. 9, No. 6. Doi: 10.3390/info9060134

Mountantonakis, M. and Tzitzikas, Y. (2018b) ‘LODsyndesis:
global scale knowledge services’, Heritage, Vol. 1, No. 2,
pp.335–348.

Mountantonakis, M. and Tzitzikas, Y. (2019a) ‘Knowledge graph
embeddings over hundreds of linked datasets’, in Garoufallou,
E., Fallucchi, F. and Luca, E.W.D. (Eds): Proceedings of the
13th International Conference (MTSR) Communications in
Computer and Information Science Metadata and Semantic
Research, Springer, Cham, pp.150–162. Doi: 10.1007/978-3-
030-36599-8_13

Mountantonakis, M. and Tzitzikas, Y. (2019b) ‘Large-scale
semantic integration of linked data: a survey’, ACM
Computing Surveys (CSUR), Vol. 52, No. 5, pp.1–40. Doi:
10.1145/3345551.

Moussallem, D., Soru, T. and Ngomo, A.N. (2019) ‘THOTH:
neural translation and enrichment of knowledge graphs’, in
Ghidini, C. and Hartig, O. et al. (Eds): Proceedings of the
18th International Semantic Web Conference, Springer,
pp.505–522. Doi: 10.1007/978-3-030-30793-6_29.

Nechaev, Y., Corcoglioniti, F. and Giuliano, C. (2018) ‘Type
prediction combining linked open data and social media’, in
Cuzzocrea, A. and Allan, J. et al. (Eds): Proceedings of the
27th ACM International Conference on Information and
Knowledge Management (CIKM), ACM, pp.1033–1042. Doi:
10.1145/3269206.3271781.

Nikolaev, F. and Kotov, A. (2020) ‘Joint word and entity
embeddings for entity retrieval from a knowledge graph’, in
Jose, J.M. and Yilmaz, E. et al. (Eds): Proceedings of the
42nd European Conference on IR Research (ECIR’20),
Springer, pp.141–155. Doi: 10.1007/978-3-030-45439-5_10.

Pennington, J., Socher, R. and Manning, C.D. (2014) ‘Glove: global
vectors for word representation’, in Moschitti, A., Pang, B. and
Daelemans, W. (Eds): Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP),
ACL, pp.1532–1543. Doi: 10.3115/v1/d14-1162.

22 M. Mountantonakis and Y. Tzitzikas

Portisch, J., Hladik, M. and Paulheim, H. (2020) ‘Kgvec2go –
knowledge graph embeddings as a service’, in Calzolari, N. and
Béchet, F. et al. (Eds): Proceedings of The 12th Language
Resources and Evaluation Conference (LREC), pp.5641–5647.
Available online at: https://www.aclweb.org/anthology/
2020.lrec-1.692/

Ristoski, P., Bizer, C. and Paulheim, H. (2015) ‘Mining the web of
linked data with RapidMiner’, Journal of Web Semantics,
Vol. 35, pp.142–151. Doi: 10.1016/j.websem.2015.06.004.

Ristoski, P., de Vries, G.K.D. and Paulheim, H. (2016) ‘A collection of
benchmark datasets for systematic evaluations of machine
learning on the semantic web’, in Groth, P. and Simperl, E. et al.
(Eds): Proceedings of the 15th International Semantic Web
Conference, pp. 186–194. Doi: 10.1007/978-3-319-46547-0_20.

Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D. and Paulheim, H.
(2019) ‘RDF2Vec: RDF graph embeddings and their
applications’, Semantic Web, Vol. 10, No. 4, pp.721–752. Doi:
10.3233/SW-180317.

Saeed, M.R., Chelmis, C. and Prasanna, V.K. (2019) ‘Extracting
entity-specific substructures for RDF graph embeddings’,
Semantic Web, Vol. 10, No. 6, pp.1087–1108. Doi: 10.3233/
SW-190359.

Vrandecic, D. and Krötzsch, M. (2014) ‘Wikidata: a free
collaborative knowledgebase’, Communications of the ACM,
Vol. 57, No. 10, pp.78–85. Doi: 10.1145/2629489.

Wang, Q., Mao, Z., Wang, B. and Guo, L. (2017)
‘Knowledge graph embedding: a survey of approaches and
applications’, IEEE Transactions on Knowledge and
Data Engineering, Vol. 29, No. 12, pp.2724–2743.
Doi: 10.1109/TKDE.2017.2754499.

Wang, Z., Zhang, J., Feng, J. and Chen, Z. (2014) ‘Knowledge
graph embedding by translating on hyperplanes’, in Brodley,
C.E., Stone, P. (Eds): Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, AAAI Press,
pp.1112–1119.

Webber, J. (2012) ‘A programmatic introduction to neo4j’, in
Leavens, G.T. (Ed.): Conference on Systems, Programming,
and Applications: Software for Humanity, ACM, pp.217–218.
Doi: 10.1145/2384716.2384777.

Witten, I.H., Frank, E. and Hall, M.A. (2011) Data Mining:
Practical Machine Learning Tools and Techniques,
3rd ed., Morgan Kaufmann, Elsevier. Available online at:
https://www.worldcat.org/oclc/262433473

