
Int. J. Embedded Systems, Vol. 14, No. 3, 2021 289

Multi-level spatial attention network for image data
segmentation

Jun Guo
School of Software,
Quanzhou University of Information Engineering,
Quanzhou, Fujian, China
Email: guojun20121203@163.com

Zhixiong Jiang*
School of Business,
Shanghai Dianji University,
Shanghai, China
Email: jiangzx@sdju.edu.cn
*Corresponding author

Dingchao Jiang
School of Electronic and Information Engineering,
Xi’an Jiaotong University,
Xi’an, Shaanxi, China
Email: jiangdingchao.18@gmail.com

Abstract: Deep learning models for semantic image segmentation are limited in their
hierarchical architectures to extract features, which results in losing contextual and spatial
information. In this paper, a new attention-based network, MSANet, which applies an
encoder-decoder structure, is proposed for image data segmentation to aggregate contextual
features from different levels and reconstruct spatial characteristics efficiently. To model
long-range spatial dependencies among features, the multi-level spatial attention module
(MSAM) is presented to process multi-level features in the encoder network and capture
global contextual information. In this way, our model learns multi-level spatial dependencies
between features by the MSAM and hierarchical representations of the input image by the
stacked convolutional layers, which means the model is more capable of producing accurate
segmentation results. The proposed network is evaluated on the PASCAL VOC 2012 and
Cityscapes datasets. Results show that our model achieves excellent performance compared with
U-net, FCNs, and DeepLabv3.
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1 Introduction

Semantic image segmentation attempts to solve the issue
of labelling every pixel with a semantic category in
the image. The image segmentation can be applied to
potential applications, like autonomous driving, robotic
sensing, intelligent medical analysis, and image editing.
With the advancement of deep learning, technologies of
the internet of things (IoT) (Liang et al., 2011, 2016;
Li et al., 2018a, 2020b), big data (Liang et al., 2020b;
Li et al., 2020a) and artificial intelligence (AI) (LeCun
et al., 2015; Goodfellow et al., 2016; Liang et al., 2019,
2020a) rapidly spread to almost all areas of our life, which
greatly improves human health, safety, and productivity.
Especially, convolutional neural networks (CNNs) have
demonstrated outstanding results in various computer vision
tasks such as image classification (Lee and Kwon, 2017;
Chollet, 2017; Chan et al., 2015; He et al., 2016), object
detection (Szegedy et al., 2013; Cai et al., 2016; Li
et al., 2019) and natural language process (NLP) (Chiu and
Nichols, 2016; Lopez and Kalita, 2017). Some techniques
like dropout have been used as a method of regularisation
to improve the generalisation ability of deep learning
networks. The pooling operator is applied to summarise
feature maps, introduce feature invariance, and reduce
the spatial dimensions. Batch normalisation alleviates the
problem of the vanishing gradient in deep networks. The
residual blocks ease the training of very deep CNNs.

However, the size of feature maps extracted by the
standard CNNs is decreased, which leads to the loss of
spatial information. Some details of objects in the image,
such as locations, structures, and boundaries, are abandoned
through the pooling operator. In addition, the fixed size
of the receptive field by employing multiple convolutional
and pooling layers results in focusing on short-range
contextual information and local features. These limitations
of CNNs cause inconsistency and misclassification in the
segmentation results.

To use feature representations extracted by the CNNs
efficiently, some works have been proposed to aggregate
information from multiple levels of the model. High-level
features extracted by CNNs are commonly powerful
in making coarse category classification while weak in
reconstructing original resolution pixel labelling. To obtain
spatial information, many models (Long et al., 2015;
Ronneberger et al., 2015; Mostajabi et al., 2015) fuse
low- and high-level features to combine coarse and
fine representations of the input image by using skip
connections. Long et al. (2015) upsampled the high-level
feature that contains rich semantic information and fused
it with the low-level feature by element-wise summing.
Ronneberger et al. (2015) utilised a U-shape architecture
and concatenated low-level feature maps from the encoder
with feature maps in the decoder. Mostajabi et al. (2015)
divided the input image into different levels of area and
extracted features from these areas to make the pixel-wise
classification. The selected feature maps in these methods
are natural multi-scale due to the increasingly expanded
receptive field. The problem with these approaches is the

fixed size of the receptive field, which limits the model’s
ability to extract long-range contextual information.

To obtain contextual information in a broad receptive
field, there are other works focusing on increasing the
size of the receptive field effectively. Different shapes
and sizes of objects in the image make it difficult for
pixel-wise classification. To deal with these multi-scale
objects, there are other networks (Chen et al., 2017a, 2017b)
exploit multi-scale contextual information by using dilated
convolution layers that have different dilation rates. But the
dilated convolution may result in the loss of localisation
information and the inconsistency in the final results due
to its sampling mechanism. Zhao et al. (2017) presented
PSPNet that applied pyramid pooling module to extract
both local and global context information. However, the
pooling-based approaches (Zhang et al., 2018; Zhao et al.,
2017) extract contextual information in a non-adaptive way
and treat all pixels equally, which contradicts the fact that
pixels of different locations and features have different
importance to each other.

To capture long-range dependencies among pixels, Chen
et al. (2017b) and Zheng et al. (2015) employed a
fully connected conditional random field to model the
relationships between all pixels directly. Visin et al. (2016)
and Byeon et al. (2015) utilised recurrent neural networks
to learn spatial dependencies between pixels. However, the
parameters of these approaches are difficult to train.

To make up for the aforementioned deficiencies of
CNNs applied in semantic image segmentation, this paper
proposes a multi-level spatial attention network (MSANet).
The proposed network utilises an encoder-decoder structure
that has an encoder to extract multi-level features and
a decoder to reconstruct spatial features and semantic
information. In the network, a multi-level spatial attention
module (MSAM) introduces the self-attention mechanism to
aggregate multi-level contextual information. Specifically,
two MSAM are applied in the network, which receives
multi-level feature maps from the encoder and embeds
long-range spatial dependencies between any two locations
of the feature maps. To update the features of each location,
MSAM fuses feature maps selected from the encoder by
dilated convolution and aggregates features of all locations
by using weighted summation. The weights are computed
based on the feature similarities between two locations and
are normalised by a softmax layer. Therefore, two locations
with similar features are likely to be assigned the same
label.

The main contributions of our work can be summarised
as follows:

• A new attention-based network, MSANet, is proposed
with a multi-level attention mechanism to utilise
multi-level features and capture global contextual
features.

• The MSAM is present to apply a self-attention
mechanism among different level features for learning
long-range spatial relationships between features.
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Figure 1 The architecture of MASNet (see online version for colours)
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Notes: We employ CNNs in the encoder and decoder, with max-pooling layers to downsample and unpooling
layers to upsample. Between encoder and decoder, we design a MSAM to aggregate multi-level features.

Figure 2 The MSAM (see online version for colours)
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• The proposed network is evaluated on the PASCAL
VOC 2012 (Everingham et al., 2015) and Cityscape
(Cordts et al., 2016) datasets. The results demonstrate
that our attention-based model achieves competitive
performance compared with state-of-the-art methods.

2 Related work

2.1 Semantic segmentation

Starting with the groundbreaking work of FCNs (Long
et al., 2015), many models based on the deep CNN have
been developed for semantic image segmentation. FCNs
replaces the last fully connected layers of traditional CNNs
with the convolutional layers to make a dense prediction.
To get richer context information in a broad receptive field,
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DeepLab (Chen et al., 2017b) applies the atrous convolution
in the model to enlarge the size of the receptive fields of
the networks. Compared with traditional convolution, atrous
convolution can learn a set of denser feature maps without
increasing the computation and the number of parameters.
Considering different objects at various scales, Atrous
Spatial Pyramid Pooling (ASPP) has been present. There
are multiple parallel atrous convolution layers in ASPP
with different dilation rates to learn richer feature maps
at multiple scales. Peng et al. (2017) proposed a global
convolutional network, which employs a fully convolutional
structure to obtain local features and applies a large
filter size in the network to make a dense classification.
Differently, Zhao et al. (2017) presented a pyramid pooling
module to aggregate the region-based context by inputting
the extracted feature maps into multiple parallel pooling
layer with various kernel sizes. These methods focus on
expanding the size of the models’ receptive field, which
results in losing local information and long-range contextual
features.

To capture long-range relationships between pixels,
many methods have been proposed in semantic image
segmentation. Chen et al. (2017b) utilised a fully connected
conditional random field to post-process the classification
outputs of the deep convolutional networks. Zheng et al.
(2015) ran a fully connected conditional random field as a
recurrent neural network and trained all parameters of both
CNNs and the conditional random field in an end-to-end
manner. Ji et al. (2020) designed a cascaded conditional
random field, which receives feature maps from multiple
layers in the decoder to refine the object boundaries. Qiu
et al. (2020) fused multiple segmentation results of different
deep CNNs and used a fully connected conditional random
field to infer the label of each pixel. Some works turn
to the recurrent neural network for long-range contextual
information aggregation. Qiu et al. (2020) applied a VGG16
network to extract local features and stacked multiple
recurrent neural network layers to capture global contextual
dependencies all over the input image. Yan et al. (2016)
utilised multiple spatial recurrent LSTM layers to build
spatially relationships across different local areas among
the input image. Luo et al. (2019) combined the fully
convolutional network with channel attention mechanism
(CAM) and applied multiple CAMs between different layers
to obtain semantic and spatial location information.

2.2 Encoder-decoder

The encoder-decoder is widely used in image segmentation
frameworks, like U-Net (Ronneberger et al., 2015) and
DeepLab (Chen et al., 2017a). In this architecture, the
encoder usually employs sophisticated CNNs that are
powerful in extracting multiple level features by applying
multiple convolutional and pooling layers. The decoder is
used to reconstruct feature maps with original resolution
from low-resolution feature maps that are outputted by
the encoder. To utilise low-level features for getting more
context information, most decoders utilise skip-connection.

Ronneberger et al. (2015) directly concatenated the feature
maps in the decoder with the selected feature maps from
the encoder. Noh et al. (2015) applied multiple unpooling
layers in the decoder to reuse the maximum value location
recorded by the corresponding pooling layers in the encoder
for resolution recovering.

2.3 Attention mechanism

To model implicit dependencies among the input data,
attention mechanism is successfully used in image analysis
and NLP for image caption (Xu et al., 2015), language
translation (McCann et al., 2017) and classification (Wang
et al., 2017) problems. In Wang et al. (2017), generated
attention-aware features made it easier to train deep
networks with many layers for image classification.
In Lee and Kwon (2017), attention mechanism was
used to characterise the spectral-spatial information for
hyperspectral image classification. You et al. (2016) present
a semantic attention model to provide a detailed, coherent
description of objects in the image.

For semantic image segmentation, Hu et al. (2019)
proposed an attention complementary network (ACNet)
to gather features from RBG and depth branches for
RGBD semantic segmentation. In the model, the attention
complementary module is designed to fuse features
selected from previous layers. Hu et al. (2020) used fast
spatial attention to get rich spatial context at a small
fraction of the computational cost. Zhang et al. (2019)
used a decoupled spatial neural attention network for
weakly supervised semantic segmentation, which applies
the decoupled attention model to identify object regions
and find the discriminative parts. Huang et al. (2019)
presented criss-cross attention that captures the contextual
dependencies for each pixel in its vertical and horizontal
direction and builds recurrent criss-cross attention to
aggregate global contextual information in the whole image.
Li et al. (2018b) designed a feature pyramid attention
module to fuse features with different scales and embed
spatial context information. Then, global attention upsample
module is presented to use global pooling features as
guidance for selecting localisation characteristics from
low-level features. Chen et al. (2016) directly input
multi-size images to generate multi-scale feature maps
and applied an attention mechanism to embed multi-scale
spatial context for pixel-wise classification. Huang et al.
(2017) provided the reverse attention network to capture the
information of reverse-category in the confusing area. Liu
et al. (2020) presented a CANet that introduces a covariance
attention mechanism to model global dependencies for each
location and channel by using the covariance matrix.

Different from these previous works, our proposed
model, MSANet, exploits CNNs and two MSAMs to
aggregate multi-scale spatial contextual information from
multiple selected low-level features in the encoder for
generating accurate segmentation results. Moreover, the
proposed MSAM gives a global view of the input feature
maps by equipping a large size of the receptive field.
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Figure 3 Example of semantic segmentation results on PASCAL VOC 2012 (see online version for colours)
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Figure 4 Example of semantic segmentation results on Cityscapes (see online version for colours)
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3 Methods

This section describes the overall architecture of the
proposed network for semantic image segmentation. The
MSAM is then introduced.

3.1 Multi-level spatial attention network

The proposed network employs an encoder-decoder
architecture, as shown in Figure 1. The proposed encoder
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is composed of four convolutional blocks, and each block
contains three convolutional layers with 3 × 3 filter sizes
and a pooling layer. The first three pooling layers have
a 2 × 2 filter size to learn representations, increase the
size of the receptive field, introduce invariant, and reduce
the number of parameters. The last pooling layer of the
encoder has a 3 × 3 filter size to get a large size of the
receptive field and sets the stride to 1 to keep the size
of feature maps for preserving spatial information. Given
an input image with resolution H ×W , each of the first
three convolutional blocks in the encoder downsamples the
feature maps by a factor of 2. The final feature maps have
a size of H

8 × W
8 .

Table 1 Detailed configuration of the proposed encoder network

Blocks Layers Output size Kernel Stride Pad

Block 1 Conv2D 64 × 224 × 224 3 × 3 1 1
Conv2D 64 × 224 × 224 3 × 3 1 1
Conv2D 64 × 224 × 224 3 × 3 1 1

Max-pooling 64 × 112 × 112 2 × 2 2 0
Block 2 Conv2D 128 × 112 × 112 3 × 3 1 1

Conv2D 128 × 112 × 112 3 × 3 1 1
Conv2D 64 × 224 × 224 3 × 3 1 1

Max-pooling 128 × 56 × 56 2 × 2 2 0
Block 3 Conv2D 256 × 56 × 56 3 × 3 1 1

Conv2D 256 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 3 × 3 1 1

Max-pooling 256 × 28 × 28 2 × 2 2 0
Block 4 Conv2D 512 × 28 × 28 3 × 3 1 1

Conv2D 512 × 28 × 28 3 × 3 1 1
Conv2D 512 × 28 × 28 3 × 3 1 1

Max-pooling 512 × 28 × 28 3 × 3 1 1

Notes: ‘Conv2D’ denotes the convolutional layer.
ReLU layers and batch normalisation layers
are omitted from the table for brevity.

The proposed corresponding decoder also has four
convolutional blocks, and each block contains three
convolutional layers with 3 × 3, 1 × 1, and 3 × 3 filter
size. Three unpooling layers are inserted in the decoder.
Each unpooling layer can upsample the feature maps by a
factor of 2 to reconstruct spatial characteristics, which puts
values in the feature maps to the locations recorded in the
corresponding pooling layer. To make the final pixel-level
classification, the output feature maps of the decoder are
input into a softmax layer to generate probabilistic maps
that indicate the probability of each pixel belongs to each
semantic category.

There are two MSAMs applied in the network to fuse
the multi-scale feature maps from different layers in the
encoder, embed low-level details, and capture long-range
dependencies between any two positions. The first module
selects two sets of low-level feature maps from the encoder
as input, while the second module selects three sets of
low-level feature maps. Each set of feature maps is the
output of the activation function of the last convolutional
layer of the corresponding convolution block. The outputs
of each MSAM are cascaded with the feature maps in the

decoder to enhance the feature representation and make a
dense classification.

3.2 Multi-level spatial attention module

Due to multiple stacked convolutional and pooling layers,
fully convolutional networks are limited in a fixed size
of the receptive field, which results in focusing on
local features and losing spatial and long-range contextual
information. This inherent problem causes the inconsistency
and misclassification in the segmentation result and the
blurry of the boundaries.

To capture long-range spatial relationships between any
two positions in the feature map without losing location
information, this paper presents a MSAM. The proposed
MSAM fuses multi-scale feature maps selected from the
encoder and captures long-range contextual information
from these feature maps by modelling dependencies
between any two positions in the feature map.

As shown in Figure 2, the second MSAM is described.
The sizes of three input feature maps are C1 ×H1 ×W1,
C2 ×H2 ×W2, and C3 ×H3 ×W3, respectively. These
feature maps are then input into three convolutional layer
with different size of filter and stride to have a same size.
The outputs are cascaded with the size of C ×H ×W .
These feature maps are feed into four parallel convolutional
layers to produce four new feature maps A ∈ RC×H×W ,
B ∈ RC×H×W , C ∈ RC×H×W , and D ∈ RC×H×W . A
and B are reshaped to RC×N , where N = H ×W . We
then multiply the transpose of A by B, and use a softmax
layer to compute the multi-level spatial attention map S ∈
RN×N :

sij =
exp(Ai ·Bj)∑N
i=1 exp(Ai ·Bj)

(1)

where sij describes the dependency between the ith position
and jth. The greater the value of sij , the more similar
feature representations of the two location are, and the more
likely the two location has the same label.

The feature map C is also reshaped to RC×N . We then
multiply C by the transpose of S, and reshape the outputs
to RC×H×W . Afterward, we perform a element-wise sum
between these outputs and the feature maps D to get the
final outputs E ∈ RC×H×W .

Ej =
∑N

i=1
Cisij +Dj (2)

It can be known that feature at each location in E is the
weighted sum of the features at all locations. Therefore, the
network has a global contextual view of the feature maps
and capture contextual information according to the spatial
dependencies between features.

4 Experiments

The architecture of our proposed model is shown in
Figure 1. To evaluate the proposed model, experiments
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are carried out on the PASCAL VOC 2012 (Everingham
et al., 2015) and Cityscapes dataset (Cordts et al., 2016).
The results have shown that the proposed model achieves
outstanding segmentation performance in qualitative and
quantitative on two datasets. The next subsections introduce
the datasets and implementation details. Then experiments
on the PASCAL VOC 2012 and Cityscapes datasets are
present. Finally, the results of the two datasets are reported.

Table 2 Detailed configuration of the proposed decoder network

Blocks Layers Output size Kernel Stride Pad

Block 1 Conv2D 1,024 × 28 × 28 3 × 3 1 1
Conv2D 512 × 28 × 28 1 × 1 1 0
Conv2D 256 × 28 × 28 3 × 3 1 1
Unpooling 256 × 56 × 56 2 × 2 2 0

Block 2 Conv2D 512 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 1 × 1 1 0
Conv2D 128 × 56 × 56 3 × 3 1 1
Unpooling 128 × 112 × 112 2 × 2 2 0

Block 3 Conv2D 256 × 112 × 112 3 × 3 1 1
Conv2D 128 × 112 × 112 1 × 1 1 0
Conv2D 64 × 112 × 112 3 × 3 1 1
Unpooling 64 × 224 × 224 2 × 2 2 0

Block 4 Conv2D 128 × 224 × 224 3 × 3 1 1
Conv2D 64 × 224 × 224 1 × 1 1 0
Conv2D 21 × 224 × 224 3 × 3 1 1

Notes: ‘Conv2D’ denotes the convolutional layer.
ReLU layers and batch normalisation layers
are omitted from the table for brevity.

4.1 Datasets

• PASCAL VOC 2012: The original dataset contains
1,464 images for training and 1,449 for validation.
90% of the training and validation images are
selected and augmented by flipping the image
horizontally and vertically for training. 10% of the
training and validation images are selected for testing.
The dataset has one background category and 20
foreground categories, such as airplane, bicycle, boat,
bus, car, motorbike, train, bottle, chair, dining table,
potted plant, sofa, TV/monitor, bird, cat, cow, dog,
horse, sheep, and person, that are pixel-level labelled.

• Cityscapes: The dataset contains 5,000 images
captured from 50 cities for semantic understanding of
urban street scenes. There are 2,979 training images,
500 validating images, and testing 1,525 images. Each
image has 2,048 × 1,024 pixels. These pixels are
annotated with one background class and 19 semantic
classes, such as flat surfaces, humans, vehicles,
constructions, objects, nature, sky, etc. This dataset is
also augmented by flipping images horizontally and
vertically for training.

4.2 Implementation details

The proposed model is implemented in the Pytorch
framework. The architecture is illustrated in Figure 1.

Table 3 Detailed configuration of the proposed MSAM

Modules Layers Output size Kernel Stride Pad

Module 1 Conv2D 64 × 56 × 56 12 × 12 4 4
Conv2D 64 × 56 × 56 6 × 6 2 2
Conv2D 128 × 56 × 56 3 × 3 1 1
Conv2D 256 × 56 × 56 1 × 1 0 1
Conv2D 256 × 56 × 56 1 × 1 0 1
Conv2D 256 × 56 × 56 1 × 1 0 1
Conv2D 256 × 56 × 56 1 × 1 0 1

Module 1 Conv2D 64 × 112 × 112 6 × 6 2 2
Conv2D 64 × 112 × 112 3 × 3 1 1
Conv2D 128 × 112 × 112 1 × 1 0 1
Conv2D 128 × 112 × 112 1 × 1 0 1
Conv2D 128 × 112 × 112 1 × 1 0 1
Conv2D 128 × 112 × 112 1 × 1 0 1

Notes: ‘Conv2D’ denotes the convolutional layer.
ReLU layers and batch normalisation layers
are omitted from the table for brevity.

Table 4 Segmentation results on the PASCAL VOC 2012 dataset

Method mIoU Mean accuracy

FCNs 62.7% 90.3%
U-Net 67.1% 92.6%
DeepLabv1 71.6% 93.2%
DeepLabv3 77.5% 95.1%
MSANet without attention 72.3% 92.8%

MSANet 78.1% 94.6%

Table 5 Segmentation results on the Cityscapes dataset

Method mIoU Mean accuracy

FCNs 59.3% 87.5%
U-Net 63.4% 88.6%
DeepLabv1 70.4% 91.3%
DeepLabv3 76.8% 94.5%
MSANet without attention 73.0% 91.4%

MSANet 76.3% 93.1%

The detailed configurations of the encoder and the
decoder are shown in Tables 1 and 2, respectively. Both
the proposed encoder and decoder are initialised with
zero-mean Gaussian. The input image is firstly fed into
the encoder to learning hierarchical feature representations
that are downsampled to 1

8 resolution of the original
input image. Therefore, the low, fine feature maps are
transferred to high, coarse feature maps by performing
a lot of convolution and pooling operators. These final
local feature maps produced by the encoder go through
the decoder to reconstruct semantic and spatial information.
In the decoder, three unpooling layers are utilised to
recover the resolution of feature maps by upsampling
feature maps to sparse feature maps. Then, a group of
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convolutional layers is applied to produce a set of dense
feature maps. The proposed MSAM is used to embed
global contextual information into the local feature maps
that are concatenated with the feature maps in the decoder.
The output feature maps are input into a softmax layer to
generate probability maps that represent the probability of
each pixel assigned to every predefined category.

Two MSAM are applied in the network. The detailed
configurations of these two modules are illustrated in
Table 3. To obtain the same resolution of the feature
maps, the selected feature maps from the encoder, which
have different sizes, are feed to two or three parallel
convolutional layers with different filter sizes and strides.
These convolutional layers are equipped with larger filter
sizes for low-level feature maps to increase the size of the
receptive field. Therefore, the module captures multi-scale
feature maps from multiple levels in the encoder. These
multi-scale feature maps are also inputted into four
parallel convolutional layers and reshaped. To generate the
multi-level spatial attention map, matrix multiplication is
performed between two feature matrices, and the result is
feed into a softmax layer to be normalised. The normalised
multi-level spatial attention map multiply by another feature
matrix to utilise the spatial dependencies between features.
To output the final feature maps, these feature maps are
element-wise summed with the fourth feature maps. At last,
these final feature maps are cascaded with the feature maps
from the corresponding layer in the decoder.

We conduct all our experiments in python, using
Pytorch. An Nvidia GeForce TITAN X is used for all
experiments. The Adam optimiser is used to fine-tune the
network on the pixel-classification task on the cross-entropy
loss function. We use an initial learning rate of 0.001,
multiplying by

(
1− iter

total iter

)0.9 after each iteration. The
batch size of training and testing is 4. We reshape all the
images to the size of 250 × 250. During training, we
randomly crop the input images to the size 224 × 224. The
maximum training time is set to 200 epochs.

The performance of our network is measured by two
metrics:

• Mean accuracy: This metric outputs the average
prediction accuracy over all classes. It can be defined
as

MeanAccuracy =
1

Ncls

∑Ncls

i=1

Nii∑Ncls

j=1 Nij

(3)

where Ncls is the total number of categories. Nii is
the number of pixels belonging to class i and are
labelled as class i. Nij is the number of pixels
belonging to class i and are labelled as class j.

• Mean IoU: This metric, also referred to as the Jaccard
index, is essentially a method to quantify the percent
overlap between the target mask and the prediction
output. It can be defined as

mIoU =
1

Ncls

∑Ncls

i=1

Nii∑Ncls

j=1 Nij

+
∑Ncls

j=1 Nji −Nii

(4)

where Nii is the number of true positives, Nij is the
number of false positives, and Nji it the number of
false negatives. mIoU is the most widely used
evaluation metric.

We also compare our model with other approaches such
as FCNs (Long et al., 2015), U-Net (Ronneberger et al.,
2015), DeepLabv1 (Chen et al., 2017b) and DeepLabv3
(Chen et al., 2017a). The performance has shown that our
model gets better results, as illustrated in Tables 4 and 5.
To qualitative evaluate our model, some prediction of our
model is shown in Figures 3 and 4. From the prediction of
our model, we can see that our model well reconstruct the
shapes and boundaries of objects.

4.3 Evaluation on the PASCAL VOC 2012 dataset

The proposed MSANet is compared with other approaches
such as FCNs (Long et al., 2015), U-Net (Ronneberger
et al., 2015), DeepLabv1 (Chen et al., 2017b), and
DeepLabv3 (Chen et al., 2017a), where FCNs, U-Net, and
DeepLabv1 are baseline methods, and DeepLabv3 is one
of the state-of-the-art methods. These three approaches are
initialised by their pre-trained models and fine-tuned on
our preprocessed image datasets. As shown in Table 4,
MSANet obtains 93.6% mean pixel-accuracy, where FCNs
get 94.6%, U-Net gets 92.6%, DeepLabv1 gets 93.2%,
and DeepLabv3 gets 95.1%. These models achieve similar
performance in mean pixel-accuracy. However, MSANet
obtains 78.1% mean pixel-accuracy, where FCNs get
63.7%, U-Net gets 67.1%, DeepLabv1 gets 71.6%, and
DeepLabv3 gets 77.5%. MSANet performs better than other
models evaluated in mIoU. MSAM is also evaluated by
comparing the MSANet with the network that doesn’t apply
the attention mechanism. The MSANet without attention
mechanism obtains 92.8% in mean pixel-accuracy and
72.3% in mIoU. Therefore, MASM improves 5.8% in mIoU
and 1.8% in mean pixel-accuracy on the PASCAL VOC
2012 dataset.

To qualitatively evaluate these models, some
segmentation results of MSANet and other methods are
shown in Figure 3. In the first row of Figure 3, U-Net
only locates and recognises a small part of the area of
two boats. Moreover, U-Net makes wrong classifications
of the area among the area of the small boat. However,
MSANet and DeepLabv3 segment the semantic area of
two boats with complete shape, clear boundary, and correct
label. In the second row, U-Net outlines the area of the
sheep. But there are some areas labelled with incorrect
labels. Although making some misclassification of the
areas in the upper left and lower right corner, MSANet
maintains consistency in the semantic area of the sheep
with smooth boundary and complete structure. In the third
row, U-Net mixed the area of the human and the horse,
and the segmented area of the horse is fully deformed.
The segmentation result of the MSANet has separated
the two semantic areas, and the shape and structure of
the human and horse are complete. In the fourth row,
U-Net completely regardless of the semantic area in the
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upper right corner. MSANet has segmented the human and
two motorcycles with clear boundaries. Therefore, these
examples of segmentation results validate that MSANet can
segment the semantic areas with complete shapes, smooth
boundaries, and consistency.

Figure 5 Segmentation results produced by MSANet on the
PASCAL VOC 2012 dataset (see online version
for colours)

Ιµαγε Γρουνδ Τρυτη Πρεδιχτιον

4.4 Evaluation on the Cityscapes dataset

Experiments are conducted on the Cityscapes dataset to
further evaluate the performance of our model. As shown
in Table 5, MSANet obtains 93.1% mean pixel-accuracy
and 76.3% mIoU that outperform all baseline methods
and can be competitive with DeepLabv3. In addition,
these quantitative results also verify that MASM improves
3.3% in mIoU and 1.7% in mean pixel-accuracy on the
Cityscapes dataset.

Some segmentation results produced by U-Net,
DeepLabv3, and MSANet are visualised in Figure 4. In
the first row of Figure 4, U-Net classifies the area of the
human as a car and regardless of the traffic light. However,
MSANet accurately locates and recognises the human and
the light. In the third row, U-Net still ignores human on
the left. MSANet has segmented the small semantic area of
the human. These segmentation results prove that MSANet
can precisely locate and classify objects, including small
objects such as humans and traffic lights.

Figure 6 Segmentation results produced by MSANet on the
Cityscapes dataset (see online version for colours)

Ιµαγε Γρουνδ Τρυτη Πρεδιχτιον

4.5 Discussion

To further evaluate the effectiveness of the MSANet, more
examples of segmentation results produced by MSANet
are provided. As seen in Figure 5, MSANet can segment
persons, chairs, buses, sofas, and motorcycles. But some
areas of the sofa under the person are classified as chair in
the fourth row of Figure 5. And some separated areas of
the sofa are connected in the results. These results verify
that MSANet can precisely segment the semantic areas and
always maintain consistency in the results. But MASNet
also makes mistakes when encountering complex structures
such as the legs of the sofa and areas around the table in
the fourth row of Figure 5.

The segmentation results in Figure 6 validate that our
model can efficiently deal with small objects. For example,
the traffic lights in the fourth row, the little car in the first
row, and persons in the second row are all recognised. But
some thin and long objects like the poles in the fourth row
of the Figure 6 and the mast in the first row of the Figure 3.
The reason for the phenomenon is that the number of pixels
in the areas of these objects is insufficient for learning local
feature representations for pixel-wise classification.

As shown in Figure 7, some activation maps randomly
selected from the MSAM are visualised to verify the
capability of the MSAM. As seen in Figure 7, the highlight
areas precisely locate and roughly outline semantic objects
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in the image, such as the dog, train, and sheep. The widely
distributed highlight areas have validated MASM’s ability
to capture long-range contextual information.

Figure 7 Visualisation of MSAM (see online version
for colours)

Ιµαγε Γρουνδ Τρυτη Αττεντιον Μαπ

5 Conclusions

This paper proposes an attention-based network, MSANet,
for semantic image segmentation, which applies an
encoder-decoder structure to extract multi-level local
features and reconstruct spatial information. Especially,
the model utilises the MSAM to fuse multi-level features
selected from different layers in the encoder and capture
global spatial dependencies between local features. The
experiments have demonstrated that the MSAM can deal
with long-range contextual information efficiently, keep
consistency in the segmentation results, and improve
the segmentation performance. Our model has achieved
outstanding performance on the PASCAL VOC 2012 and
the Cityscapes datasets.
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