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Abstract: This paper introduces the design, implementation, training and testing of
deep convolutional neural network (DCNN)-based support vector machines (SVMs). These
DCNN-based SVMs are designed using software tools developed by the authors that enable
them to construct, train, and test the DCNN-based SVMs and effectively facilitate vision-based
inspection to detect different undesirable manufacturing defects. Two pretrained DCNNs are
used for this purpose: the sssNet is developed by the authors and was trained using many actual
and simple target images consisting of seven categories, and the standard AlexNet that was
trained by a large number of images consisting of 1,000 categories. In this work, the pretrained
sssNet and AlexNet are used as feature vector extractors in training and testing. The generated
feature vectors are used as inputs to train SVMs for the final binary classification represented
as accept (OK) or reject (NG) category.
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This paper is a revised and expanded version of a paper entitled ‘Fusion method of
convolutional neural network and support vector machine for high accuracy anomaly detection’
presented at 2019 IEEE International Conference on Mechatronics and Automation (ICMA
2019), Tianjin, China, 4–7 August 2019.

1 Introduction

The performance of the automatic defect detection systems
based on AI approaches, deep learning and convolutional
neural network (CNN) exceeds any skilled inspectors,
and it is expected to have a high demand for such
systems. For example, the accurate online detection of
many manufacturing processes such as welding defects
detection is still challenging due to different types of defects
associated with it. Recently, Zhang et al. introduced a
deep learning-based online detection approach detecting
defects in robotic arc welding process and associated
with aluminium alloy using CNN and welding images
(Zhang et al., 2019). Also, railway track fasteners have
an important function to steadily fix tracks on the ballast
bed. The need for automatic defect detection of such
fasteners is required to ensure track safety and to reduce
maintenance cost. To challenge this need, Wei et al.
contributed by developing methods based on techniques of
image processing and deep learning networks (Wei et al.,
2019). Besides, Zhong et al. proposed a transfer learning
approach based on CNN and support vector machines
(SVMs) and applied his development to the process of gas
turbine fault diagnosis (Zhong et al., 2019). Moreover, Fu
et al. proposed an effective and compact CNN model that
can strengthen low-level features training and incorporate
multiple receptive fields in order to realise quick accurate
and reliable classification of steel surface defects (Fu et al.,
2019).

However, it is not easy for beginners and novice
engineers to efficiently construct a reliable visual inspection
system based on the AI learning frameworks made with
c++, Python on Caffe, Chainer, TensorFlow, etc. (Kato
et al., 2018). For example, the Convolutional Architecture
for Fast Feature Embedding (CAFFE) developed by
Berkeley Vision and Learning Center is a deep learning
framework supported by open source libraries. Practical
results for designing deep neural networks and image
recognition in the Caffe framework are used and
demonstrated (Komar et al., 2018). Chainer provided by
Preferred Networks, Inc. is an open source software library
to effectively conduct the calculation and training of neural
networks. The characteristic function is to dynamically
generate data structure needed for back propagation
algorithms, which enables the software construction of
complex and deep neural networks (Tokui et al., 2015).
TensorFlow provided by Google is also an open source
software library to support developments based on machine
learning, numerical analysis, deep learning and so on
(Ertam and Aydin, 2017).

User-friendly software tools have been developed by
Nagata et al. to facilitate the design of applications based
on DCNNs (Nagata et al., 2018b). For example, generally

DCNNs have several blocks. These blocks mainly consist
of convolutional, ReLU and pooling layers. The layers
accept image files in the former hidden layers that lead to
fully-connected layers and an output layer represented by
softmax function layer. The developed software tools by the
authors enable researchers, relevant students and engineers
to design, train and test DCNNs without the necessity to
engage with the complex details of using programming
language in the development, such as C++ or Python.

Besides the CNNs, Zhang et al. (2006) reported the
use of one-class learning-based SVM, in which one class
SVM is concluded as an effective method to deal with
unsupervised training data. Chittilappilly and Subramaniam
presented industrial defect detection using SVM approach
(Chittilappilly and Subramaniam, 2017), in which feature
vectors extracted from denoised and restored images are
applied to SVM classifier for identifying fault in the
industrial applications. Nagata et al. also introduced a
design and training tool to support the development of
CNN-based SVMs (Nagata et al., 2019a).

Figure 1 Six types of defect examples that may appear during
manufacturing process of resin moulded articles with
horizontal length of about 30 mm (see online version
for colours)

Burr Crack Protrusion Chipping Spot Fracture

This paper presents binary classifications using DCNNs,
SVMs and template matching method for vision-based
inspection to detect manufacturing defects. Firstly, using
the developed software tools, two one-class learning-based
SVMs are designed and trained using only OK images
with no defect for the purpose to distinguish it from
images with manufacturing defects. It is assumed in this
paper that the manufacturing defects include burr, crack,
chipping, protrusion, spot and fracture which normally
appear during the manufacturing process of resin moulded
articles. Examples of typical defects are shown in Figure 1.
As it is known that it is difficult for conventional shallow
NNs to be applied to the defect detection system which
has to classify many similar images into defective or
non-defective.
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Figure 2 The proposed SVM obtained from one-class learning with sssNet and trained for binary classification (see online version
for colours)
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Our designed DCNN named sssNet for seven classifications

Note: The input to the SVM is the feature vector generated by the first fully-connected layer of the designed sssNet.

Due to its great ability as feature vector extractors,
two pretrained DCCNs are used for this purpose: the
sssNet is developed by the authors and was trained using
many actual, single and target images consisting of seven
categories, and the standard AlexNet that was trained by a
large number of images consisting of 1,000 categories.

In this work, the pretrained sssNet and AlexNet are
firstly used as feature vector extractors in training and
testing of two one-class learning using SVMs. They
are called as one-class learning using SVMs processes
with AlexNet and processes with sssNet, respectively. In
one-class learning process, only OK images are used. Then,
the AlexNet is also used as a feature vector extractor in
training and testing of a two-class learning-based SVM.
In two-class learning process, both OK and NG images
are used. The feature vectors generated by the DCNNs
are used as inputs to train SVMs for the final binary
classification represented as accept (OK) or reject (NG)
category. The performance of both SVMs trained through
one-class learning using AlexNet and sssNet, and also the
SVM trained through two-class learning using AlexNet
are evaluated and compared through binary classification
experiments. Then, a template matching method is adopted
and integrated to extract actual target areas from the original
images used for training and testing, which enables to not
only enhance the accuracy and reliability of the binary
classification but also reduce the calculation load.

2 SVMs integrated with two types DCNNs

Defect inspection of manufactured product conducted
by human is in general unstable and insufficient, and
accordingly the error in the classification tends to lead to
serious problems. Hence, AI in terms of deep learning can
contribute to develop automatic inspection of defects that
is able to recognise and remove the undesirable defective

products from the good ones. This section introduces two
types of DCNN-based SVMs with aim to perform binary
classification, which are designed, trained and tested using
the software tools developed on MATLAB. Neural Network
Toolbox, Parallel Computing Toolbox for GPU, Deep
Learning Toolbox, Statistics and Machine Learning Toolbox
provided by MathWorks are used for the development. The
experiments show that input images to the trained SVMs
can be classified into OK or NG categories with a high
accuracy.

2.1 The Design of sssNet-based SVM

The sssNet is the authors’ original DCNN and it is
developed and trained using many actual and simple target
images as input images for the purpose to classify it into
seven categories, these categories are: OK with no defect,
and the other six are with different types of defect: crack,
chipping, protrusion, burr, spot or fracture as shown in
Figure 1. The output of the sssNet is represented by the
probability called score. The sssNet can also extract a
multidimensional feature vector x = [x1, x2, ..., x32]

T from
each inputted image. Since, the SVM with its extension by
the Kernel method is able to solve nonlinear classification
problems, the SVM is integrated with the sssNet to get
such a DCNN-based SVM that can characteristically extract
the multidimensional feature vectors from the input images
and then can classify the vectors in terms of binary
classification, i.e., OK or NG. Figure 2 introduces the
designed DCNN-based SVM for binary classification in
which the feature vector x extracted from the first fully
connected layer (11th layer) in the sssNet is given to the
input layer of the SVM. The Gaussian kernel function
shown in equation (2) was used with one-class learning
of the DCNN-based SVM, where the feature vectors
x1,x2, ...,x5,100 ∈ ℜ32×1 were extracted from 5,100 OK
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input images that were only used with the unsupervised
learning of sssNet-based SVM while NG images were not
used at all.

The unclassified, uncategorised or unlabeled training
data is used to conduct unsupervised learning such as
one-class learning, so that no defect NG images are used
for SVM training. The algorithm of sequential minimal
optimisation (SMO) developed by Platt (1998) is used to
optimise the dual problem of quadratic programming (QP)
of the obtained SVM using Lagrange multiplier method.
In optimising one-class learning DCNN-based SVM, a
parameter ν(0 < ν < 1) is used to determine the upper
limit rate of the number of outliers, which are positioned
between an origin and a hyper plane, to that of all samples
x. In this test trial, ν is set to 0.5.

When an extracted feature vector x ∈ ℜ32×1 obtained
from a test image with the designed sssNet is introduced
into the trained SVM, the SVM output is called the score
and it corresponds to the value f(x) that is obtained by

f(x) =

N∑
i=1

αiyiG(x∗
i ,x) + b (1)

where x∗
i ∈ ℜ1×32(i = 1, 2, ..., N) represents the obtained

support vectors; N indicates to the number of the support
vectors obtained through the training associated with the
OK category training data set; b and αi (i = 1, 2, ..., N)
are the bias and the Lagrange multipliers respectively
that represent the parameters of SVM estimated from
the training process. |b| is regarded as the distance from
the origin to the hyper plane. yi is the label set to 1
indicating for one-class learning case. f(x) represents the
signed distance to the decided hyper plane, while G(x∗

i ,x)
indicates to the kernel function given by

G(x∗
i ,x) = exp

(
−
∥∥∥∥x∗

i − xs

k

∥∥∥∥2
)

(2)

where k and xs are the kernel scale and the standardised
input vector respectively and they are calculated by

xs = (x− xµ)⊘ xσ (3)

with

xµ =

∑5,100
j=1 xj

5,100
(4)

xσ =

 1

5,100

5,100∑
j=1

(xj − xµ)
◦2

◦ 1
2

(5)

where ⊘, ◦2, ◦1
2 represent the Hadamard operators for

elementwise division, the power and the root, respectively.
The experiments show that time of few minutes was

required to complete training and consequently k, N and
b were obtained numerically as 1.1875, 2,621 and –1.0639,
respectively. The designed SVM after been trained with
one-class learning is shown in Figure 4. Then, the binary
classification can be conducted by the trained SVM using

a feature vector obtained from a test image. The binary
categories are estimated by checking the sign of f(x), so
that f(x) > 0 means OK category and that of f(x) < 0
means NG category.

Also, it is necessary to mention that the nth-order
polynomial given by the following equation

G(x∗
i ,x) =

[
1 +

(x∗
i )

T

k

xs

k

]n
(6)

And this is considered also as another form of kernel
function. It is important to note that there is a need to check
in advance the matching between feature vectors and kernel
functions.

2.2 AlexNet-based SVM design

AlexNet is a well-known DCNN type that was designed
to be specialised to perform mainly image recognition.
This type of DCNN is already pre-trained using a very
large number of images, more than one million images
covering 1,000 categories. Hence, it can classify an input
image into one of the 1,000 categories. AlexNet also is
used to extract from each inputted image a feature vector
x = [x1, x2, ..., x4,096]

T . Accordingly, the feature vector
obtained from AlexNet has 4,096 elements that facilitate the
ability to deal with one thousand classifications. Figure 3
presents the proposed AlexNet-based SVM for binary
classification to whose input layer the feature vectors
obtained from the 2nd fully connected layer (20th layer)
in the AlexNet are submitted. The same conditions used
with the case of sssNet-based SVM one-class learning
were applied to train this AlexNet-based SVM. For this
one-class learning in which 5,100 of only OK images
x1,x2, ...,x5,100 ∈ ℜ4,096×1 are used for AlexNet-based
SVM unsupervised learning, it took several minutes to
complete the training. Once completing the training, the
parameters k, N and b were obtained as 26.7690, 2,667 and
–1.0635, respectively.

2.3 Experimental classifications with two SVMs trained
through one-class learning

Once both one-class learning of the two SVMs were
trained, experimental classifications are performed to check
the generalisation capability to differentiate between OK
and NG images. Normally the used images for testing are
images that were not used during the training process. The
classification results are shown in Figure 5 and they are
represented in terms of histograms. The obtained results
are associated with the sssNet-based SVM presented in
Figure 2. The output values f(x) obtained from the trained
SVM with the sssNet is denoted by the horizontal axis, and
the vertical axis denotes the number of image samples. It
can be observed from the histogram presented in Figure 5
that the SVM has the ability to well separate NG images
from OK ones.
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Figure 3 The binary class SVM with its feature vector generated from AlexNet (see online version for colours)

Co
nv

olu
tio

n
Re

LU

Ma
x P

oo
lin

g

Co
nv

olu
tio

n
Re

LU

Ma
x P

oo
lin

g

Inp
ut 

Im
ag

es

Fu
lly 

Co
nn

ec
ted

Re
LU

Fu
lly 

Co
nn

ec
ted

So
ftm

ax
Cla

ssi
fic

ati
on

 Ou
tpu

t

22
7 x

 22
7 x

 3
96

 fil
ter

s (1
1 x

 11
 x 3

)
Re

cti
fie

d L
ine

ar 
Un

it

Re
cti

fie
d L

ine
ar 

Un
it

3 x
 3

40
96

 FC
 lay

er

Cro
ss 

En
tro

py
 Fu

nc
tio

n 
No

rm
ali

zed
 Ex

po
ne

nti
al 

Support Vector 
Machine

OK

NG

Feature vector 
x = [x1, x2,…, x4096]T

Cro
ss 

ch
an

ne
l n

orm
.

Co
nv

olu
tio

n
Re

LU

Ma
x P

oo
lin

g
Cro

ss 
ch

an
ne

l n
orm

.

Co
nv

olu
tio

n
Re

LU
Co

nv
olu

tio
n

Re
LU

Dr
op

ou
t

Fu
lly 

Co
nn

ec
ted

Re
LU

Dr
op

ou
t

Re
siz

e o
f in

pu
t im

ag
e

5 c
ha

nn
els

 /e
lem

en
t

25
6 f

ilte
rs 

(5 
x 5

x 4
8)

Re
cti

fie
d L

ine
ar 

Un
it

3 x
 3

5 c
ha

nn
els

 /e
lem

en
t

38
4 f

ilte
rs 

(3 
x 3

 x 2
56

)
Re

cti
fie

d L
ine

ar 
Un

it
38

4 f
ilte

rs 
(3 

x 3
 x 1

92
)

Re
cti

fie
d L

ine
ar 

Un
it

25
6 f

ilte
rs 

(3 
x 3

 x 1
92

)
Re

cti
fie

d L
ine

ar 
Un

it
3 x

 3

to 
22

7 x
 22

7 x
 3

50
% 

dro
po

ut

Re
cti

fie
d L

ine
ar 

Un
it

40
96

 FC
 lay

er

50
% 

dro
po

ut
10

00
 FC

 lay
er

1

2

1000

AlexNet for 1000 classifications

Figure 4 Introduced the SVM as given by equation (1) after
optimised through one-class learning
(see online version for colours)
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α2 α3
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+

In addition, Figure 6 introduces the classification results
of the AlexNet-based SVM outlined in Figure 3. It can
be observed from Figure 6 that the classification results of
AlexNet-based SVM have also the ability to separate the
NG images from the OK ones with almost similar reliable
performance as what was obtained with the sssNet-based
SVM. Such similar performance and discrimination ability
have been achieved in spite of having different length
of the generated feature vectors, i.e., 32 elements from
the sssNet and 4,096 elements from AlexNet. As for the
case of having target images with grey-scaled resolution
200×200×1 as illustrated in Figure 1, the size of having
4,096 elements feature vector submitted to the SVM show
high redundancy. Table 1 includes the comparison of
misclassified images number for both the sssNet and the
AlexNet. Test images of 35,000 images (30,000 images
with 5,000 image of each defect, and 5,000 OK image)
are used to test each of the DCNN-based SVM obtained
through one-class learning. The results show that all of the
OK images were classified correctly, and it also show that
the performance superiority of the sssNet-based SVM as the

table shows the misclassified images among the six types
of different defected images used in the test images.

Figure 5 Classification results using the sssNet-based SVM
shown in Figure 2, in which horizontal and vertical
axes denote the output from the SVM and the
number of classified images, respectively
(see online version for colours)

Outputs from SVM trained using our designed DCNN named sssNet

OK

Crack

Burr

Protrusion

Chipping

Spot

Fracture

Table 1 Comparison of each of misclassified images number
between sssNet and AlexNet.

SVM Burr Crack Chipping Knob Spot Fracture

sssNet 13 4 1 0 0 0
AlexNet 167 20 298 127 0 0
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Figure 6 Classification results using the AlxNet-based SVM
shown in Figure 3, in which horizontal axis denotes
the output from the SVM and vertical axis denotes
the number of classified images (see online version
for colours)

Outputs from SVM trained using AlexNet
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Protrusion

Chipping
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In the next section, a design of a two-class learning-based
SVM is presented, which is also called as the SVM
obtained through supervised learning.

3 Another AlexNet-based SVM trained with
two-class learning

The two types of trained SVMs presented in the previous
section were obtained using one-class learning, that means
using only OK images with no defect for the training. This
section introduces the design and comparison of another
SVM trained through two-class learning. In this case, the
SVM is trained using two classes of images consisting of
OK images and NG images. For this purpose, the AlexNet
is used as a feature vector extractor. Once having the
training process done, classification function f(x) of the
SVM is calculated using equation (1), where the label yi
respectively indicates to 1 or –1 according to OK or NG
when dealing with two-class learning.

f(x) represents the signed distance from x to the
decision boundary that is called the hyper plane. In case
that the G(x∗

i ,x) is the linear kernel, it is given by

G(x∗
i ,x) =

(x∗
i )

T

k

xs

k
(7)

Accordingly, the function formulated by equation (1) can be
simplified into

f(x) =
xT
s

k
β + b (8)

where k represents the scale of the kernel, β ∈ ℜ4,096×1

indicates to the fitted linear coefficient vector, while b

denotes to the bias. The parameters of the SVM such as
k, β and b are the estimated through training. Figure 7
illustrates the the designed SVM structure after been trained
with two-class learning. The feature vector x ∈ ℜ4,096×1 is
the output obtained from the second fully connected layer
within the structure of AlexNet.

Figure 7 The SVM given by equation (8) after been trained
with two-class learning (see online version
for colours)
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Table 2 Confusion matrix checking the trained situation of the
SVM based on two-class learning

XXXXXXXXXActual
Predicted Anomaly Normal

Anomaly 30,573 27
Normal 8 5,092

Table 3 Confusion matrix checking the generalisation of the
SVM based on two-class learning

XXXXXXXXXActual
Predicted Anomaly Normal

Anomaly 5,987 13
Normal 3 997

The SVM shown in Figure 7 was trained using images
of 5,100 normal OK images and 30,600 (with 5,100 ×
6 categories) anomalies. The anomaly images include the
six types of defects highlighted shown in Figure 1. The
numerical values of the SVM parameters k, N and b were
determined through the training as 63.8168, 698 and 4.9334
respectively. By using the training images data again, the
trained situation was checked, and the result given by the
confusion matrix is presented in Table 2. From Table 2, the
accuracy and precision indicators are calculated as 0.9990
and 0.9997, respectively.

The generalisation ability of the two-class
learning-based SVM was also checked using 1,000 normal
test images and 6,000 (with 1,000 × 6 categories) for
the anomalies, and the obtained result by the confusion
matrix is introduced in Table 3. Table 3 shows that the
accuracy and precision are calculated as 0.9977 and 0.9995,
respectively. This demonstrates that it is possible to observe
the desirable generalisation, but, ability to achieve the
complete classification with a misclassified rate of 0 could
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not be reached. Table 2 shows that the decision boundary
called as the hyper plane is determined by a soft margin
concept in the training process in which a certain degree
of misclassification is allowable to avoid falling in the
situation of extreme over fitting. That is the reason of why
the misclassification at such degree as shown in Table 3 is
unavoidable.

4 Template matching to narrow images including
features

4.1 Image extraction based on normalised cross
correlation

The template matching technique is introduced in this
section. When applying a template image with size of
(M,N) as shown in Figure 8, a padding operation is used
to generate space around a target image content and also
inside any of its defined borders. This operation creates
extra space around the target original image. The total space
formed by the padded area and that of the original target
image are called an enlarged target image.

The correlation coefficient α(u, v) between a template
image and an area of the same size within the target image
enlarged using padding operation is calculated by Lewis
(2001)

α(u, v) =
sit(u, v)

si(u, v)st(u, v)
(9)

sit(u, v)

=

v+N−1∑
y=v

u+M−1∑
x=u

{f(x, y)− f̄u,v}

{t(x− u, y − v)− t̄}

(10)

si(u, v) =

√√√√v+N−1∑
y=v

u+M−1∑
x=u

{f(x, y)− f̄u,v}2 (11)

st(u, v) =

√√√√v+N−1∑
y=v

u+M−1∑
x=u

{t(x− u, y − v)− t̄}2 (12)

where (u, v) is the upper-left position coordinate of the
template image in the expanded target image; the standard
deviations are described by si(u, v) and st(u, v); sit(u, v)
represents the covariance;f(x, y) is the normalised value
of the greyscale at the (x, y) position described in the
expanded target images coordinate frame; t(x− u, y − v)
is the normalised greyscale value at the position (x−
u, y − v) described in the template image coordinate frame;
M and N are the template image width and height
respectively; t̄ is the greyscale mean value of the template
image; f̄(u, v) is also the greyscale mean value in the area
just below the template image. Equation (9) is used to
generate sequentially the correlation coefficients α(u, v) of
the template image by raster scanning it from top left to

bottom right within the expanded target image. Once the
scanning is completed, best correlated area to the template
image is extracted according to the maximum correlation
coefficient α(u, v) value. Figure 9 introduces examples
of images extracted obtained through the use of template
matching technique.

Figure 8 The configuration of a target image, padding area
and the template image of (M,N) in size
(see online version for colours)
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Figure 9 Examples of extracted images obtained through the
use of template matching technique
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4.2 Experiments

The effectiveness of the template matching method is
evaluated using 3,000 OK images without defect and some
of these images are presented in Figure 10. The original
OK images are first trimmed before using them. Then,
the designed AlexNet-based SVM shown in Figure 3 was
trained through one-class learning using the 3,000 trimmed
OK images. As a result of this, the training helped to find
the parameters k, N and b as 50.0116, 1,526 and −5.6925
respectively. After once training was done, the one-class
learning-based SVM with the Alexnet was evaluated using
120 test images including examples as shown in Figure 11.
OK images with no defect and NG images with only
one type of defects as shown in Figure 1 were used
as part of the test images. While the result of OK or
NG classification associated with the used test images is
introduce in Figure 12. This result is obtained in associated
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with the test images shown in Figure 11, where horizontal
plus and minus numerical values represented as scores are
used to classify the test images as OK or NG, respectively.
The experimental classification results indicate that all
images used in testing are successfully classified as OK or
NG category.

Figure 10 Examples of the 3,000 OK images for training the
SVM with AlexNet as a feature extractor

Figure 11 Some of 120 test images for evaluating the
one class learning-based SVM trained using images
shown in Figure 10

Figure 12 Binary classification result of 120 test images as
shown in Figure 11 (see online version for colours)
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In the same manner, the edge extraction function as shown
in Figure 13 is also provided by the proposed tool, in
which for example, Sobel filter, Prewitt filter or Roberts

filter (Topno and Murmu, 2019) is selectable. If dominant
defect features for binary classification are mainly included
around the periphery of an object, this function will be
also effective in terms of the reductions of not only the
resolution of images but also the calculation load in training
process.

Figure 13 Examples of training images converted by edge
extraction function

5 Conclusions

This paper presented the design, implementation, training
and testing of deep convolutional neural network
(DCNN)-based support vector machines (SVMs) to enhance
the performance of binary classification. Software tool
was developed to facilitate the development, testing and
evaluation. Two types of pretrained DCNNs with multiple
classifications were used in this work. The first DCNN
named sssNet was developed by the authors to inspect
real defects associated with the manufacturing process
of resin moulded articles and it was trained using many
actual and simple target images consisting of seven
categories. The objective of training is to enhance the
ability for generalisation. The second one is well known,
standardised and generalised DCNN called AlexNet which
was trained by a large number of images consisting of
1,000 categories. The pretrained sssNet and AlexNet are
firstly used as feature vector extractors in training and
testing the developed two types of one-class learning-based
SVMs. They are called as one-class learning-based SVM
processes with sssNet, and as one-class learning-based
SVMs processes with AlexNet. Only OK images are used
in both cases. In addition, the AlexNet is also used as a
feature vector extractor in training and testing of a two-class
learning-based SVM using both images with no defects
and images with defects. For all one class and two-class
learning-based SVMs, the generated compressed feature
vectors were used as inputs for the SVMs to train them for
the final binary classification represented as accept (OK) or
reject (NG) category. The three DCNN-based SVMs were
successfully designed, trained, tested and evaluated.

Both performance obtained from one-class learning
of SVMs with AlexNet and sssNet, and the SVM
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obtained through the two-class learning with AlexNet are
evaluated and compared through training and classification
experiments. The obtained results indicated that the
developed sssNet enhanced the accuracy and the reliability
of improved binary classification. Beside this, the
adopted template matching method was used with the
AlexNet-based SVM to narrow the area within the image
reflecting the important featured associated with the
images used in the training, so that to reduce the required
computational load until having the SVM to perform
desired binary classification. As a follow up with this
successful work, it is possible to develop a cascade-type
SVM that has multiple SVMs use for high accuracy binary
classification.

Currently, the authors are interested in utilising the
transfer learning method of acknowledged DCNNs such
as AlexNet, VGG16, VGG19, etc. called series network
and GoogleNet, Inception-V3, Inception-ResNet-V2, etc.
called directed acyclic graph (DAG) network. In future
work, another option dialogue is planned to be developed
to interactively design original DCNNs obtained using the
transfer learning method.
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