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Abstract: In this paper, modified version of multi-verse optimiser (MVO) was 
suggested and tested on numerical optimisation problems. MVO is an 
innovative optimisation approach which stimulated from the concepts of 
cosmology; they are named as white hole, black hole and wormhole. 
Mathematical modelling of this concept has been carried out to acquire 
exploitation, exploration and local search. Modification in MVO has been made 
by introducing concept of dynamic variation in population size (universe). 
Modified multi-verse optimiser (MMVO) was tested on 16 benchmark 
functions having different complexity. Statistical comparisons of other 
algorithms outcomes is depicted that MMVO performs better than other 
algorithms. 
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1 Introduction 

Nature is the main source of the inspiration for optimisation. These techniques are 
generally concerning the population-based techniques. Since a long period of time in 
spite of success is obtaining better result for difficult problems in global world. Many 
algorithms of nature are categorised under the stochastic/probabilistic process. Generally, 
set of random solution is created for starting any optimisation process. These solutions 
are combined or evolved over the course of interactions, this serves as the base of frame 
work for most of the population-based algorithms. Only the method of evolution or 
combination makes the difference between the algorithms. The process of exploration 
and exploitation is another concept which is common between populations-based. 
Researchers always try to discover search space globally by which they take the solution 
of the best global optimum proper balance between exploration and exploitation. 

The origin of this world is considered according to big-bang theory. This is the root 
cause of every natural events occurring in this world. The next theory recently considered 
is multi-verse theory. 

Optimisation techniques generally population-based techniques have one major 
inspiration, i.e., nature. Detail classification of algorithm on the basis of collective 
behaviour is discussed (Ibrahim et al., 2020). Detailed literature review is examined to 
study the various variants of multi-verse optimiser (MVO) algorithm as well as its 
strength (Dubey et al., 2018). Some of the algorithms which are stimulated from the 
nature and acquire optimisation as: genetic algorithm (GA) (Goldberg, 1989), which 
mimics the biological evolution such as mutation, selection and crossover to carry out the 
optimisation. Particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995), which is 
inspired by the social behaviour of birds, insects and fish. Artificial bee colony (ABC) 
optimisation (Karaboga, 2005), which imitates the foraging behaviour of honey bees. 
Gravitational search algorithm (GSA) (Rashedi et al., 2009), uses Newtonian laws for the 
optimisation. Cuckoo search algorithm (CSA) (Yang and Deb, 2009), follows the brood 
parasitism of cuckoo birds for the optimisation. Flower pollination algorithm (FPA) 
(Yang, 2012), gets inspiration from the pollination of flowering plants. Grey wolf 
optimisation (GWO) (Mirjalili et al., 2014), which imitates the hunting behaviour of grey 
wolves for the optimisation. Improved multi-verse optimisation (IMVO) (Mishra et al., 
2020), which gets improvement of the dynamic variation of population size in MVO. A 
set of random solution is created to start any optimisation process. Then these solutions 
are combined or evolved over the course of iterations, this is the basic framework for 
most of the population-based algorithms. 

In this paper, a nature-inspired population-based algorithm known as modified  
multi-verse optimiser (MMVO) is suggested. It gets stimulation from the multi-verse 
theory in physics. To develop the MMVO algorithm, the concept of multi-verse theory 
has been considered as mathematically modelled, i.e., white hole, black hole and 
wormhole. The remaining part of the paper is arranged as follows: Section 2 described 
with the suggested algorithm (MVO) and its modification, results and discussion are 
depicted in Section 3 and conclusion is given in Section 4. 
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2 Multi-verse optimisation 

The existence of this world depends upon a big bang theory (Khoury et al., 2002). This 
theory is assumed as the source of everything happening in the world. Now, there  
is another theory known as multi-verse theory (Tegmark, 2004), which says that  
one universe is produced by one big bang. We are living in a universe now, but according 
to multi-verse theory, in this world, there are more than one universe exists, these 
universes may have interaction, collisions and different laws of physics. 

MVO algorithm basically depends on three concepts, which are taken from the  
multi-verse theory and these concepts are: white holes, black holes and wormholes. 
Cyclic model of multi-verse theory (Paul and Neil, 2002), says that concoction of white 
holes is done by the collision of parallel universes. Black holes are in contrast with white 
holes. They try to attract everything also beams of light with a very high gravitational 
force (Michael and Kip, 1988). Wormholes are supposed to associate all other parts of 
cosmoses with each other. It associates another parts of cosmos, therefore it is applied a 
tunnel by the objects to move from one region to another region in the cosmos (Alan, 
2007). Also, it gives path for the objects to travel from one cosmos to another cosmos. 
Models of these three components are shown in Figure 1. 

Figure 1 (a) White hole (b) Black hole (c) Wormhole (see online version for colours) 

    
(a) (b) (c) 

Every cosmos (universe) has an inflation rate which is generated by the expansion of 
cosmos. Inflation rate is a very important part for every cosmos because structure of stars, 
asteroids, planets, suitability for life, physical laws, white, black and wormholes based  
on inflation/expansion rate. White, black and wormholes are way for all cosmoses 
(universes) to connect with each other to obtain a fixed situation this concept gives the 
stimulation of MVO algorithm. 

2.1 MVO algorithm 

As we know that, exploration and exploitation are considered as search processes in case 
of population-based techniques. White holes and black holes are applied for the 
exploration of search space in MVO algorithm and wormholes are used for the 
exploitation of search space. 

Some assumptions has been made for the optimisation such that each homogeneous 
solution is obtained to universe and each variable in that solution which is like as object 
in the cosmos (universe), as well as the supply inflation rate to every solution which is 
directly proportional to fitness function value of solution. Also, here we have considered 
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time in place of iteration because this term is common in cosmology and multi-verse 
theory. 

Some rules are framed to cosmoses (universes) for optimisation using MVO 
algorithm which are as follows (Mirjalili et al., 2016): 

a Inflation rate is directly proportional to the probability of having white holes. 

b Inflation rate is inversely proportional to the probability of having black holes. 

c Cosmoses (universes) having greater inflation rate try to send objects via white 
holes. 

d Cosmoses (universes) having smaller inflation rate try to receive objects via black 
holes. 

e Objects of all cosmoses (universes) move randomly towards best cosmos (universe) 
through wormholes without considering the inflation rate. 

Roulette wheel selection is used to select of white or black holes and exchange of 
cosmos’s objects. Each and every time, cosmoses (universes) based upon their rate of 
inflation are classified wherein one out of them gets selected using roulette wheel 
selection to possess a white hole. The iterative method of MVO is described as below. 

Nomenclature 
Xq qth parameter of the best universe 

WEP wormhole existence probability 

r2, r3, r4 random number 

m number of universes 
q
px  qth parameter of pth universe 

lbq, ubq lower and upper bound of qth variable 

TDR travelling distance rate 

n number of objects. 

Suppose that, 
1 2
1 1 1

1 2

n

n
m m m

x x x
u

x x x

 
 =  
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  


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where n is the no. of variables (parameters) and m is the number of solutions (universes) 
(Michael and Kip, 1988). 
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where q
px  denotes the qth parameter of pth universe, up denotes the pth universe, NI(up) is 

normalised rate of inflation of pth universe, r1 is a random no. lies in [0,1], and q
sx  

denotes the qth parameter of sth universe selected by a roulette wheel mechanism. 
According to equation (1), roulette wheel is applied to choose and obtain white holes, 

which depends upon normalised rate of inflation. For lower rate of inflation probability 
will be more when objects send via white or black hole tunnels. This mechanism gives 
surety for the exploration, because cosmoses (universes) are required to exchange objects 
and undergo sudden change in search space for the exploration. In order to carry out 
exploitation, we suppose that every cosmos (universe) has wormholes to move the 
objects via space randomly. 

To update the position in optimal universe, following calculation need to be 
performed: 

( )( )
( )( )

4 3
2

4 3

2

0.5

0.5
q q q q

q
q q q qp

q
p

X TDR ub lb r lb r
r WEP

X TDR ub lb r lb rx

x r WEP

 + ∗ − ∗ + < < − ∗ − ∗ + ≥= 


≥

 (3) 

where Xq denotes the qth parameter of best universe found so far, TDR is coefficient, WEP 
is another coefficient, lbq denotes lower bound of qth variable, ubq denotes upper bound of 
qth variable, q

px  denotes the qth parameter of pth universe, and r2, r3, r4 are random 
numbers lie in [0, 1]. 

Wormhole existence probability (WEP) and travelling distance rate (TDR) are 
supposed to increase over the course of iterations to emphasise the exploitation. These 
coefficient can be formulated as follows: 

max minminWEP i
I
− = + ∗ 

 
 (4) 

where min is minimum [0.2], max is maximum (Ibrahim et al., 2020), i denotes current 
iteration and I denotes maximum iteration. 

1

11
i

kTDR
I

k
= −  (5) 

where k = 6, defining accuracy of exploitation over the course of iterations. 
In MVO algorithm, optimisation starts by producing a set of random universes. In 

every iteration, objects lying in the cosmos (universe) having high rate of inflation try to 
travel towards the universe having low rate of inflation through white or black holes. 
Meanwhile, every cosmos (universe) undergoes sudden teleportation in its objects via 
wormholes towards best cosmos (universe). This process will be continued whenever the 
require criterion achieve. The computational complexity of MVO algorithm is given as: 

( )( )( )( ) ( ) ( )O IMVO O I O quick sort m n O roulette wheel= + ∗ ∗  (6) 

( )( )2( ) logO IMVO O I m m n m= + ∗ ∗  (7) 
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where m is the no. of cosmoses (universes), I is the maximum number of iterations, and  
n is the number of objects. 

Figure 2 Flowchart for multi-verse optimisation (see online version for colours) 

Initialize universes (population size) and 
compute inflation rate using fitness function 

Compute WEP and TDR using equations (4) and (5) 

Sort the universes on the basis of 
inflation rate 

Compute normalised inflation rate as per 
Figure 3(b) 

Update position of universes by 
implementing equation (3) 

Compute inflation rate for updated 

Is termination criteria 
Iter(max) is reached? 

Display solution 

Stop 

No 

Yes 

Start 

 

2.2 Modified MVO algorithm 

Modification in MVO is made in two ways: 

a cosmos (universe) numbers are varied iteratively 

b introduce more randomness in algorithm that helps to minimise stagnation of 
standard MVO. 

These steps are depicted in Figure 3(a) and Figure 3(b). 
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Figure 3 Pseudo code of modification phase of MVO 

x = Iter/Iter_max; 
       if (x ≤ 0.5) 
           Universes_no = 150 
      end 
       if (x > 0.5) 
           Universes_no = 50 
      end 

 
(a) 

for each Universe i  
     for each Universe j  
       if r2 < WEP 
       r2 ∈ random(0, 1) 
        r3 ∈ random(0, 1) 
       if r3 < 0.7 
        Universes(i, j) = Best_universe(1, j) + TDR*((ub – lb)*rand + lb); 
        end 
       if r3 > 0.7 
       Universes(i, j) = Best_universe(1, j) – TDR*((ub – lb)*rand + lb); 
      end 
     end 

   end 
end 

 
(b) 

Table 1 Uni-modal benchmark functions 

Function Dimension Range Fmin 
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3 Numerical benchmarks and simulation results 

In this paper, 16 benchmark functions are selected, dimension of these test functions is 
considered as 50 and these test functions are given in Table 1, Table 2 and Table 3. The 
employed benchmark functions are determined into three groups: uni-modal benchmark 
functions, multi-modal benchmark functions and composite benchmark functions. In  
uni-modal benchmark functions, is only one global optimum, therefore, it is useful to test 
the exploitation of algorithms. Multi-modal benchmark functions having only one global 
optimum and multiple local optima. Whereas, composite benchmark functions are 
providing the balance of exploitation and exploration which presented in Table 3. 
Table 2 Multi-modal benchmark functions 

Function Dimension Range Fmin 

( )8
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( ) sin | |
n

i i
i

F x x x
=
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50 [–50, 50] 0 

For the simulation analysis the number of cosmoses (universes) is considered as 150 for 
have of maximum iteration and 50 for the remaining iteration. The maximum number of 
iteration which is nothing but the stopping criterion considered as 100. 
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Table 3 Composite benchmark functions 

F14(CF1) 50 [–5, 5] 0 
 f1, f2, f3, ……………………, f10 = sphere function    
 [σ1, σ2, σ3, …………………, σ10] = [1, 1, 1, ………, 1]    
 [λ1, λ2, λ3, …………………, λ10] = [5/100, 5/100, 5/100, 

………, 5/100] 
   

F15(CF2) 50 [–5, 5] 0 
 f1, f2, f3, ……………………, f10 = Griewank’s function    
 [σ1, σ2, σ3, …………………, σ10] = [1, 1, 1, ………, 1]    
 [λ1, λ2, λ3, …………………, λ10] = [5/100, 5/100, 5/100, 

………, 5/100] 
   

F16(CF3) 50 [–5, 5] 0 
 f1, f2, f3, ……………………, f10 = Griewank’s function    
 [σ1, σ2, σ3, …………………, σ10] = [1, 1, 1, ………, 1]    
 [λ1, λ2, λ3, …………………, λ10] = [1, 1, 1, …………, 1]    

Table 4 Results of uni-modal benchmark functions 

Function 
MMVO  MVO  

(Mirjalili et al., 2016) 
 PSO  

(Mirjalili et al., 2016) 
Mean SD  Mean SD  Mean SD 

F1 0.5010 0.1002  2.08583 0.648651  3.552364 2.853733 
F2 4.4556 10.2025  15.92479 44.7459  8.716272 4.929157 
F3 310.0885 70.3062  453.2002 177.0973  2380.963 1183.351 
F4 2.2314 0.8809  3.123005 1.582907  21.5169 6.71628 
F5 310.7155 462.0721  1,272.13 1,479.477  1,132.486 1,357.967 
F6 0.4550 0.0664  2.29495 0.630813  86.62074 147.3067 
F7 0.0311 0.0102  0.051991 0.029606  0.577434 0.318544 

Table 5 Results of multimodal benchmark functions 

Function 
MMVO  MVO  

(Mirjalili et al., 2016) 
 PSO  

(Mirjalili et al., 2016) 
Mean SD  Mean SD  Mean SD 

F8 –12,413.021 931.0624  –11,720.2 937.1975  –6,727.59 1,352.882 
F9 214.4299 40.8172  118.046 39.34364  99.83202 24.62872 
F10 1.3191 0.5642  4.074904 5.501546  4.295044 1.308386 
F11 0.5600 0.0622  0.938733 0.059535  624.3092 105.3874 
F12 2.017 1.0112  2.459953 0.791886  13.38384 8.969122 
F13 0.1134 0.0834  0.222672 0.086407  21.11298 12.83179 
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Figure 4 Plot of benchmark function and their convergence curve (see online version for colours) 
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The benchmark functions were tested by performing consecutive 30 runs and the 
obtained statistical results of test functions are tabulated in Table 4, Table 5 and Table 6. 
The obtained results are also compared with other methods as MVO (Mirjalili et al., 
2016) and PSO (Mirjalili et al., 2016) from the tabulated results, it is clearly observed 
that MMVO performs better in terms of mean value and the standard deviation (SD) 
while comparison to other reported methods. 
Table 6 Results of composite benchmark functions 

Function 
MMVO  MVO  

(Mirjalili et al., 2016) 
 PSO  

(Mirjalili et al., 2016) 
Mean SD  Mean SD  Mean SD 

F14 0.998 0.1792  10.00017 31.62288  20 63.2455 
F15 0.0007204 0.00016235  30.00705 48.30615  60 84.3274 
F16 –1.0316 6.7679 × 10–16  50.00061 52.70461  20 42.1637 

The comparison of convergence curves of all the tested functions were plotted and 
presented in Figure 4. Here, it is clearly observed that convergence characteristics of 
MMVO are found to be better than MVO and PSO. 

4 Conclusions 

In this paper, a modified version of optimisation algorithm stimulated from the concepts 
of cosmology and multi-verse theory in physics is suggested. MMVO is based on the 
three concepts, i.e., white, black and wormholes. Sixteen benchmark functions have been 
considered to study MMVO. These test functions provides the information related to 
exploitation, exploration and convergence of MMVO. 

In cosmoses (universes), white holes might be produced due to high rate of inflation, 
so that they can move objects to other cosmoses and help them to improve their rate of 
inflation. In cosmoses (universes), black holes might be produced due to low rate of 
inflation, so that they can receive objects from other cosmoses which in turn modify their 
inflation rate. White or black hole tunnels are used for the moving of objects from 
cosmoses (universes) having high rate of inflation to cosmoses (universes) having low 
rate of inflation, such that overall rate of inflation of all cosmoses (universes) can be 
modified over the course of iterations. Wormholes have the tendency to appear randomly 
in any universe without considering the rate of inflation, which maintains the diversity of 
cosmoses (universes) over the course of iterations. White or black hole tunnels has the 
requirement of immediate changes in cosmos (universe), which causes exploration of 
search space. Sudden changes in cosmoses (universes) leads to the resolution of problem 
of stagnation of local optima. Wormholes re-span variables of cosmoses (universes) 
around obtained best solution in a random manner, which modifies exploitation. The 
convergence of MMVO has been modified by accentuating local search proportional to 
the number of iterations. 
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