Multi-step torque distribution for an over-actuated electric vehicle
by Houhua Jing; Zhiyuan Liu; Haifeng Liu
International Journal of Vehicle Design (IJVD), Vol. 82, No. 1/2/3/4, 2020

Abstract: The over-actuated electric vehicle can flexibly adjust the torque of four wheels, to improve operational efficiency and vehicle motion performance. A multi-step torque distribution strategy is proposed, which can comprehensively consider the energy optimisation, vehicle stability and actuator dynamics, and realise the comprehensive control of longitudinal and lateral motion. It is composed of a static control allocation for energy optimisation, and a dynamic control allocation for manoeuvrability and stability enhancement based on model predictive control. It does not rely on complex online optimisation and is adaptive to highlight energy-saving, motion performance or stability under various scenarios. Finally, the controller is validated using a high-fidelity simulator called veDYNA.

Online publication date: Thu, 01-Apr-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com