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1 Introduction 

Pricing has been a major concern for electricity companies over time and despite hard 
efforts, no universally accepted optimal pricing strategy has been proposed, due to the 
complexity of the issue. Factors such as demand prediction, estimation of production 
costs, transportation costs, as well as the unknown incentives of consumers and 
companies result in high uncertainty. Additionally, external parameters like regulations 
and the different structure of each specific market also add to the complexity of the issue. 
Plenty of pricing models have been proposed, (Wei et al., 2015; Belgana et al., 2015; 
Hobbs and Kelly, 1992; Jeon et al., 2018; Chen et al., 2018; Abaza and Azmy, 2013;  
Yu et al., 2015; Ma et al., 2017; Han et al., 2017; Cavraro and Badia, 2013) to name just 
a few, but each one of them addresses only one of the issues, set under specific 
assumptions. 

The main aim of this research is the development and implementation of pricing 
algorithms that could be potentially adopted by the electricity market as a new pricing 
technique using a game theory approach. Specifically, by expanding the already existing 
literature on Stackelberg game theory (Maharjan et al., 2013; Chai et al., 2014; Dai et al., 
2017) a new pricing model under real-time pricing assumptions is proposed. For this 
study, the interaction between companies and customers is modelled as a Stackelberg 
game, the competition among companies as a non-cooperative game, while the  
decision-making process of the customers is represented by an evolutionary process.  
The customer’s knowledge of the company’s production capacities and the companies’ 
knowledge of the customer’s utility functions are the key assumptions of the algorithm. 
For the purpose of this research it is also assumed that customers have the right to choose 
any company they desire in an hourly basis. Finally, it is assumed that all the producers 
own one unit producing energy and that the overall costs of each producer are equal to 
the production cost of their power plants. 

Furthermore, advanced models that take aspects such as customer profiles into 
account are also included, and for that purpose, demographics are considered. Moreover, 
in order to verify the practical value of these models, various simulations have been 
made. Before the implementation of the simulations, the parameters of the theoretical 
model have been chosen by hyperparameter optimisation methods. 

Lastly, the methodology is implemented in a hypothetical scenario, as a theoretical 
game on an electricity market, since real-time pricing has not yet been widely used as a 
pricing scheme. In the following sections, the relevant literature and the said 
methodology are presented along with the characteristics of the market that supports the 
future scenario and the results deriving from the proposed scheme. 
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2 Existing Stackelberg and evolutionary game theory literature 

A Stackelberg game (Etro, 2013) is a strategic game in which the players make their 
decisions sequentially. Therefore, the decisions of each player depend on the decisions 
the previous players make. The number of players can vary, but most of the times  
two players participate, the ‘leader’ and the ‘follower’. When it comes to electricity 
pricing, the players are the companies and the customers. Depending on the exact nature 
of the game, either the first or the last player enjoys an advantage, which however 
diminishes as the number of rounds increases. The main advantage of game theory 
models over traditional approaches such as Bertrand, Cournot and Edgeworth is that the 
former enables a more accurate and dynamic modelling approach to the problem, without 
the need of making bold assumptions. 

In evolutionary game theory (Ortmann and Weibull, 1997), there is the assumption 
that during the first decision round, a population of N beings that belong to K species 
exists. Each species has a particular ‘fitness’, which is determined by a set of rules. After 
the first decision round is over, the species with the highest fitness acquire more 
members, while the others lose members. N beings in total will still exist, but the 
distribution among the K species is different. This process continues, until the set 
termination condition is satisfied. In this case, the beings are customers and the species 
are companies. 

A variety of related Stackelberg game models have already been proposed  
(Dai and Gao, 2015a; Chen et al., 2011; Stamtsis and Doukas, 2018; Dai and Gao, 2014; 
Chen et al., 2012; Maloney, 2001), examining concepts such as consumer utility, 
company profits, company probability, net utility, and average utility. These concepts are 
briefly described below. 

The models in Maharjan et al. (2013), Chai et al. (2014), Dai and Gao (2015a), Dai  
et al. (2017), Fujiwara-Greve (2015) and Chen et al. (2012) examine the case of only one 
operating company (Κ = 1). They cannot be implemented in the problem of this study, 
but the concepts of consumer and company utility functions they propose were 
considered. 

According Maharjan et al. (2013), companies are supposed to know the behaviour of 
the consumers. Additionally, the consumers have the right to choose more than one 
producer at the same time. Furthermore, the production costs are completely ignored, as it 
is assumed that companies produce as much energy as possible, while each consumer has 
a maximum disposable income. The customer utility and the company utility produced by 
Maharjan et al. (2013), calculate the optimal demand and the optimal supply by 
addressing an optimisation problem under constraints. 

This has received criticism by Dai et al. (2017) as it does not consider certain aspects, 
for instance that utility increases only up to a point. As for Chai et al. (2014), customers 
have a specific utility function and a net utility, and these are used to measure their 
fitness in the evolutionary process. The companies strive to maximise their profits by 
adjusting their prices and production, depending on the relationship between the current 
production quantity and their demand. 

The model of Dai et al. (2017) is much similar to that of Chai et al. (2014). The main 
difference is that instead of trying to optimise the production quantity, it is assumed that 
the companies have already produced/bought a certain amount of energy, so the only 
problem that the companies face is the choice of the optimal price. 
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However, it is taken for granted that the optimal strategy for each company is to have 
a demand equal to its available energy. Dai et al. (2017) claim that when the demand 
exceeds this quantity, prices should be increased and when the opposite holds, prices 
should be decreased. 

3 The proposed model 

3.1 Contribution of the proposed model 

In contrast to the models of Dai et al. (2017) and Chai et al. (2014), the model proposed 
in this study does not rely on the demand-supply equilibrium. The prices are in this case 
adjusted depending on the income. The optimal supply quantity will be indirectly 
specified, as a function of the optimal price. That way, there is no longer need for the 
assumption that the available energy is already known, as in Chai et al. (2014). 

3.2 Theoretical description of the proposed model 

Just like the models analysed in the previous section, the behaviour of the customers has 
been modelled as an evolutionary process while the company’s behaviour has been 
modelled as a non-cooperative game. A Stackelberg game between the customers and the 
companies exists. 

To be more precise, the main idea is that: 

• There are two players: the customers and the companies. 

• The companies and the customers wish to maximise their utility. The companies 
strive to maximise their profit, while the customers desire a value-for-money option. 

• The companies announce their prices, the customers decide depending on the prices, 
then the companies adjust their prices depending on the demand. This process 
continues, until no change is left to be made. 

It is important to narrow down the differences among decision makers’ thinking, 
reasoning, representation and computing (Doukas, 2013). In this respect, we can argue 
that this approach, each customer is initially assigned to one company. Once the 
companies announce their initial prices to the customers, the customers estimate their net 
utilities. Depending on these utilities, some customers decide to change company, if their 
net utility is lower than the average. Then the customers estimate their net utilities once 
again and change companies if needed. This process is repeated until the average net 
utility rises to a satisfactory level or until many iterations have occurred. Then the 
evolutionary process comes to an end and it is claimed that the costumers have made 
their decisions. After that, the companies find out the customers’ decisions and adjust 
their prices one by one, by examining their potential profits in case of a slight price 
decrease, a slight price increase, or in case the price is stable. It is assumed that the 
companies can predict the behaviour of the customers in advance. Each time the 
companies modify their prices, the evolutionary process of the customers is repeated. 
Once no company has an incentive to change its price, that means that an equilibrium has 
been reached. 
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The theoretical contribution of this new model can be summarised to the following 
points: 

• The non-cooperation game among the companies is different. Instead of checking if 
demand is higher than supply or supply is lower than demand, three other 
calculations are made: 
1 Val0 = income with current price 
2 Val1 = income with slightly higher price 
3 Val2 = income with slightly lower price. 

After calculating Val0, Val1 and Val2, companies compare the three options and 
choose the one that yields the highest income. If Val0 is the maximum value,  
the price remains unchanged. If Val1 is the maximum value, the price increases  
by e2. If Val2 is the maximum value, the price decreases by e2. 

• The convergence condition is also different. The game ends when no company has 
modified its price. By focusing on income instead of the demand-supply equilibrium, 
there is no longer the need to have a predefined production quantity. Additionally, in 
the proposed game, instead of simultaneous price modifications, companies modify 
their prices one by one and the decision of each company depends not only on the 
consumers but also on the previous decisions of the rest of the companies. This 
modification makes the game more realistic. 

3.2.1 Consumer analysis 
3.2.1.1 Price and demand (p and q) 
Let p1, p2, ..., pk be the prices of the companies and q11, q12, ..., q1k, q21, q22, ..., q2k,  
qn1, qn2, ..., qnk be the demand of consumer i in case this consumer chooses company j. 
Each consumer must buy all the desired quantity from a single company for every 
particular hour. It is not possible to have many producers within this particular hour. 

Utility and welfare functions (U and W) 
The same functions proposed by Dai et al. (2017) have been used, as they adequately 
describe the fact that consumers desire as much energy as possible, but only up to a 
specific quantity. Moreover, the desire to obtain energy is greater that the dissatisfaction 
from paying money, provided that the right parameter values have been chosen. 

Regarding the utility function: 
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Note that the function is continuous. Therefore, it can also be claimed that: 
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where qijmax = bi / ai and qijmin a chosen minimum. 
Concerning welfare, there is: 

.i i j ijW U p q= −  
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where j is the company the consumer chose. 
Parameters a and b are unique for each customer but differ even for the same 

customer per hour, depending on factors such as weather conditions. 

3.2.1.2 Optimal consumer demand (Q) 
By finding the maximum of the previous function, we get: 
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where Q is the optimal demand for each consumer. 

3.2.1.3 Company probability (pr) 
The probability of each company j to be chosen by a consumer is prj. 

It is known that: 
1

1
K

jj
pr

=
=  and 0 ≤ prj ≤ 1. 

Note that the probability is the same for all customers. 
The customers will be gradually able to revaluate these probabilities on their own, 

considering the prices of the companies as well as their own ability to deliver the 
requested amount of energy. The exact process will be further described below. 

3.2.1.4 Total company demand and company production capacity  
(D και power) 

The total demand of company j is defined as: 

1

.
N

j j ij
i

D pr Q
=

=   

and the production capacity as Powerj. 
Companies are not always in position to provide the requested amount of energy. 

When Dj > Powerj, only a fraction Powerj / Dj, can be delivered to the customers. That 
means that in case the demand exceeds the production capacity, the consumers will only 
get a fraction of the energy they requested. 
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Consumer net utility 
Net utility is the utility that consumers receive in total from a particular company. It is 
used in order to modify the probabilities in a way that will be described later. When the 
consumers as a total receive greater welfare from company A compared to company B, 
that means that consumers have an incentive to choose company A instead of B. 
Therefore, the probability of A should be higher and the probability of B lower in the next 
round. The usage of net utility and probabilities are necessary because otherwise all 
consumers would simply choose the cheapest company and the evolutionary process 
would never end. 

The net utility that the customers receive from company j is: 
If Dj < Powerj, company j can fully satisfy demand and therefore: 
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If Dj > Powerj, then each customer receives only a fraction of Powerj / Dj and therefore: 
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To sum up, 
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3.2.1.5 Average net utility (Navg) 
We define as average net utility: 

( )
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3.2.2 Consumer evolutionary process 
How the consumers make their decisions is given below: 

Step 1 Initialise prj and learn current pj. 

Step 2 For every customer i, for every company j calculate Qij. 

Step 3 For every company j, calculate Dj. 

Step 4 For every company j, calculate Nj. 

Step 5 Calculate N(avg). 

Step 6 If for every company j |Nj – N(avg)| < e1, then the process ends. Otherwise  
prj = prj + sigma1 * (Nj – Navg) is updated for all companies that do not satisfy 
the condition and we return to Step 3, e1 and sigma1 are positive values that 
represent the convergence limit and the convergence speed respectively. 

3.2.3 Company analysis 
The income of each company is pj * sj, with sj = min(Dj, Powerj). The costs of each 
company are sj * cj + Aj, with c representing the variable production cost and A the fixed 
costs. 

The cost function, for each producer is assumed to be equal to the production costs of 
their unit, thus resulting to a linear form. Also, each company desires to sell as much 
energy as possible, since Marginal_Income > Marginal_Cost for the usual prices. 

The company profits are: 
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3.2.4 Company pricing algorithm 
Step 1 Initial prices for every company are chosen followed by running the 

evolutionary process, so that the results can be checked. 

Step 2 For every company j, the price is updated in the following way: 

Step 2a The evolutionary process of the customers is run, by using the new prices of 
the previous companies, the current prices of the following companies and the 
current price of company j. snewj is calculated which is the new sale quantity 
for company j, and . .joj j snewIncome p=  

Step 2b The evolutionary process of the customers is ran by using the new prices of the 
previous companies, the current prices of the following companies and pj = pj  
+ e2 as price of company j. snewj is calculated which is the new sale quantity 
for company j, and Income1j = (pj + e2).snewj. 

Step 2c The evolutionary process of the customers is also ran by using the new prices 
of the previous companies, the current prices of the following companies and  
pj = pj – e2 as price of company j, snewj is calculated which is the new sale 
quantity for company j, and Income2j = (pj – e2).snewj. 

Step 2d income0, income1 and income2 are compared. If max (income0, income1, 
income2) = income0, then the price does not change. If max (income0, income1, 
income2) = income1, then pj = pj + e2. If max (income0, income1, income2)  
= income2, then pj = pj – e2. 

Step 3 If any price was modified during Step 2, then Step 2 is revisited. Otherwise,  
the final prices are announced. 

4 Choice of parameters – implementation 

4.1 Problem description 

During the theoretical presentation of the model section, various parameters such as the 
customer profiles, the company profiles, the production capacity, the initial probability 
distribution and parameters a, b, e and sigma were not specified. Another parameter that 
needs to be specified is q. Information about q is provided in the section below. Thus, in 
this section the process that was followed, in order to choose parameter values that are 
appropriate for the hypothetical market in the use case scenario, is described. 

4.2 Choice of demand data 

The validity of the dataset remains a challenge (Doukas et al., 2007), so the historical 
data of the first semester (January–June) of the year 2016 were chosen for our 
simulations. Therefore, there are (31 + 29 + 31 + 30 + 31 + 30) * 24 = 4,368 hours to 
examine. The main reason for choosing year 2016 is that that year was the last year that 
was included in the research of Tyralis et al. (2017a). Analytical data regarding demand, 
temperature and GDP are also provided in Tyralis et al. (2017b). 
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4.3 Customer and company profiles 

4.3.1 Customer profiles 
Regarding the customer profiles for the theoretical game that the methodology will be 
implemented on, it is going to be assumed that all the customers have the exact same 
behaviour. Such a simplification is going to allow as to reduce the complexity of the 
algorithm and take into account an average consumer that could be later on customised. 
Such a simplification does not impede with the main objective of this study and 
significantly reduces the complexity of the algorithm, from O(C1 * C2 * K * N) to  
O(C1 * C2 * K), where K is the number of companies, N the number of customers,  
C1 the number of the non-cooperative game iterations and C2 the number of the 
evolutionary process iterations. 

4.3.2 Company profiles 
For the proposed model to resemble a real electricity market where one of the main 
players with the largest market share is a public energy producer and supplier,  
eight participants are taken into account. One of them is a public energy producer and 
supplier, and six of them are private energy producers and supplier. 

Apart from the seven participants mentioned above, for this theoretical use case,  
a number of small companies was also considered, without however holding a 
considerable market share. For the purpose of this study, all the small companies are 
represented by five companies with a small but considerable market share equal to the 
total market share. This iteration was made since there are several small companies in 
real electricity markets so the five random companies will be the 8th participant in 
running this algorithm. The participation of the small players in the analysis is important 
since without them the rest of the companies would appear overpowered and would not 
depict the actual situation taking place in several markets across Europe. Also, if the 
small companies were not grouped but were included separately, the analysis would get 
more complicated without adding any qualitative benefit. 

4.4 Production capacities 

Regarding the production capacities, it is worth mentioning that due to the assumed 
existing electricity pool, companies have access to more energy than they can produce on 
their own. This is something that happens for instance in the Greek electricity market. 
However, the way the marginal price is determined (the price should be at least equal to 
the highest of the production costs), buying energy from another company is considered 
unprofitable. Purchasing large quantities of energy from abroad is also not feasible most 
of the times. It is thus safe to assume that the available energy of each company is 
roughly equal to its production capacity. 

For the use case of this study the production capacity is 17,528 MW. 12,760 MW are 
owned by the public energy producer that also holds the biggest market share, 1,200 MW 
by one of the private companies with the largest market share (second to the public 
corporation), 820 MW by another private company that holds the third biggest market 
share, 582 by the fourth player in terms of market share in the electricity market, and the 
rest is RES capacity (which enters the market by priority). The production capacity of the 
remaining companies is unknown, and they may even obtain energy solely from the 
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electricity pool. In any case, the total remaining capacity was distributed to the remaining 
companies in accordance to their market share as presented in Table 1. 
Table 1 Production capacity of the companies in use case electricity market 

Companies Production capacity 
(MW) Price (euro) 

Public corporation (largest market share in 
the market) 

12,760 0.15 

Private company 1 (largest market share 
among the private companies, 2nd in general) 

1,200 0.092 

Private company 2 (3rd in market share) 820 0.09 
Private company 3 (4th in market share) 582 0.089 
Private company 4 250 0.085 
Private company 5 201 0.09 
Private company 6 200 0.086 
Random 1 75 0.084 
Random 2 75 0.084 
Random 3 100 0.084 
Random 4 100 0.083 
Random 5 100 0.083 

4.5 Parameters e and sigma 

Parameters e and sigma were chosen by trial and error method, before a and b were 
optimised. The run time of the program and the accuracy of the results were considered. 

4.6 Optimisation of parameters a and b 

4.6.1 The proposed method 
If all customers have the same behaviour, the total demand for each hour is: 

min max
( ) ,b PQ Q Q q

a
−= ≤ ≤  

Note that 1/a represents the price elasticity. 
The independent operator provides demand predictions in an hourly rate for the 

following day. Taking advantage of that fact, by considering the hourly prediction as 
Qavg. Then Qavg = (b – Pavr) / a. By knowing Qavg, we can express b as a function of a,  
Pavg and Qavg, so only a and Pavg remains to be found. 

In order to find optimal values for a and Pavg, it is possible to compare the initial 
market share that the models predict for various values of a and Pavg with the real marker 
shares. In that way, we will be able to choose the best values of a and Pavg. 

There are many ways to measure the discrepancy between the calculated and the real 
market shares, one of them is the following error value: 
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If MSj is the real market share of company j and msj the calculated initial market share 
of that company, then: 
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With that choice, it is ensured that small companies will not have an initial market share 
that is a multiple or a submultiple of the respective real market share. 

In order to systematically examine different values of a and Pavg, grid search was 
applied. Since 1/a represents price elasticity, 1/a receives values in the interval  
[10,000, 45,000], which means that a receives values in the interval [0.0000222, 0.0001]. 
The values of Pavg, belong to the interval [0.05, 0.15], considering the production costs 
and the maximum prices that were noticed. Grid search might have a reputation of being 
slow but in our case, the ‘curse of dimensionality’ does not hold, as we have only  
two dimensions (Keogh and Mueen, 2017). This problem is also ‘embarrassingly 
parallel’ (Régin et al., 2013), so the process can be speeded up by utilising parallel 
programming. 

To be more precise, optimisation was achieved in two steps: 
During the first step, the values of 1/a were increased by 5,000 each time, while the 

values of Pavg, were increased by 0.01. During the second step, the new intervals were 
[1/a_opt – 5,000, 1/a_opt + 5,000] and [Pavg_opt – 0.005, Pavg_opt + 0.005], while the 
steps were 1,000 and 0.001 respectively. 

4.7 The proposed model 

For the purpose of this study the total population that receives energy from the electricity 
market of the proposed use case is about 10 million people. It is assumed that 6.5 million 
are active and make their own decisions since the rest are either children or dependent 
members within households. We assume that 60% remains loyal to the public provider. 

Note that the goal of the proposed model is just to significantly improve the simple 
model, not to be absolutely realistic. By making the simple assumption that 60% of the 
consumers always remain loyal to the public corporation and only the rest 40% of the 
consumers follow the evolutionary process, we obtain our proposed model. 
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5 Simulation results 

5.1 Purpose of the simulation 

In order to test the results of our model, the profits that the simple model calculates under 
standard conditions are compared to the calculated profits under ‘no retaliation’ 
conditions and to the profits under ‘total cooperation’ conditions. No retaliation 
conditions mean that each company takes into account the possibility that its competitors 
will, likewise, decrease their prices, and only if it is still profitable, it proceeds in actually 
decreasing the price. Total cooperation conditions mean that all companies cooperate, in 
order to maximise their total profit. If our model is valid from a business perspective, 
then the total cooperation profits should be the highest and the standard condition profits 
the lowest. In addition, the calculated market shares of the first iteration (before any price 
is modified) for the simple and the proposed model were compared, in order to test if 
marketing aspects can be incorporated correctly. 

5.1.1 Simple model, market share results 
By adding the results for each particular hour of the semester, we obtained the total 
market shares, as they are presented in Figure 1, where PC is the public corporation,  
PC1-PC6 are the private companies, and R1-R5 are the smallest companies modelled as 
the 8th participant in the algorithm. 

Figure 1 Initial market shares by running the algorithm 

 

In Figure 2, we can see the different results that the proposed model yields. It is evident 
that the customer loyalty was incorporated correctly, as the market share of the public 
corporation significantly increased. 
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Figure 2 Market shares with the improved proposed model 

 

5.1.2 Profits comparison 
After the market shares, the profits are compared for the two scenarios. 

Figure 3 Final incomes under standard conditions 
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Figure 4 Final income under no retaliation conditions 

 

Figure 5 Final income under total cooperation conditions 

 

It can be observed that the profits are greater for the non-retaliation scenario and even 
greater for the total cooperation (cartel) scenario. These results are expected, as by 
avoiding price wars, companies can increase their profits. 
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6 Conclusions 

This study attempts to produce a new algorithm for the electricity market taking into 
account the preferences of both the customers and the producers and suppliers. In contrast 
to countries such as China where various pricing models already exist (Meng et al., 
2018), similar models for European markets are scarce. Thus, this study explores a rather 
unexplored field. Furthermore, in contrast to most of the existing models that are limited 
to a strict game theoretical approach with no apparent business value, the proposed model 
includes aspects of marketing as well. As it can be observed in the previous section, even 
a very simple improvement can lead to more accurate results. With proper market 
segmentation and with more accurate demographic data, it could probably be 
implemented by companies. At a theoretical level, the proposed alternative Stackelberg 
models tackle some of the problems that the existing models face. Opportunities for 
further research include to explore the effect on the algorithm of the fact that the 
available energy of companies may surpass their production capacities. Additionally, 
some assumptions regarding the demographics and the market shares of the companies 
could customised to specific country needs for more accurate results. The real utility 
functions of customers can include numerous additional parameters such as the 
customer’s willingness to change energy producer. Finally, the algorithm can be adjusted 
to the changes that are expected to be implemented in the market. 
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